Microstructure and mechanical properties of Al-Alloy with rare earth

The development of aluminum alloys is of great interest to many of the industries and biomedical applications, because they provide a high strength to weight ratio, high wear resistance, low density and low coefficient of thermal expansion compared with other materials. These improvements in the fie...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammad Diab, Nateg
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/48722/25/NategMohammadDiabMFKM2015.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.48722
record_format uketd_dc
spelling my-utm-ep.487222020-06-18T05:58:22Z Microstructure and mechanical properties of Al-Alloy with rare earth 2015-01 Mohammad Diab, Nateg TJ Mechanical engineering and machinery The development of aluminum alloys is of great interest to many of the industries and biomedical applications, because they provide a high strength to weight ratio, high wear resistance, low density and low coefficient of thermal expansion compared with other materials. These improvements in the field of application make the study of their mechanical behavior of utmost importance. However, these alloys possess some limitations in terms of the interactive effects of additives. Therefore, the present study aims to investigate the influence of the rare-earth, e.g., Lanthanum and yttrium with the amounts of 0.5, 1.0, and 1.5 wt.% on the microstructure and mechanical properties of hypereutectic Al-Si and hypoeutectic Al-Mg alloys. The microscopic observations contain of optical, field emission scanning electron, energy dispersive spectroscopy and X-ray diffraction, and mechanical properties testing, such as tensile, impact, and hardness test were carried out. A good agreement was observed between the results of microstructure and mechanical properties. XRD and EDS results indicate the formation of intermetallic compounds that associated with the modifications, which may play a major cause in improving the mechanical properties. It was also found that the secondary dendrite arm spacing value became smaller with increasing La addition, and decreased slightly from the unmodified 5 µm to 4.1 µm. On the other hand, when the content of La is 1.0%, the iron-rich phases tend to be slender with a size of about 0.5 µm. While with the addition of 1.0 wt.% of Y, the volume fraction of the dendritic phase are tend to decrease along with increase the grain size to 40 µm. The modifications of Al-alloy eutectic structure were improved ductility from 0.7% and 8% to 1.8 and 10.5 with the addition of 1.0 wt.% of La and Y, respectively. However, the addition of 1.0 wt.% of La and Y led to increase the ultimate tensile strength from 100 MPa and 180 MPa to 150 MPa and 200 MPa, respectively. A further addition of La and Y results in a reduction in mechanical properties. 2015-01 Thesis http://eprints.utm.my/id/eprint/48722/ http://eprints.utm.my/id/eprint/48722/25/NategMohammadDiabMFKM2015.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:85087 masters Universiti Teknologi Malaysia, Faculty of Mechanical Engineering Faculty of Mechanical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Mohammad Diab, Nateg
Microstructure and mechanical properties of Al-Alloy with rare earth
description The development of aluminum alloys is of great interest to many of the industries and biomedical applications, because they provide a high strength to weight ratio, high wear resistance, low density and low coefficient of thermal expansion compared with other materials. These improvements in the field of application make the study of their mechanical behavior of utmost importance. However, these alloys possess some limitations in terms of the interactive effects of additives. Therefore, the present study aims to investigate the influence of the rare-earth, e.g., Lanthanum and yttrium with the amounts of 0.5, 1.0, and 1.5 wt.% on the microstructure and mechanical properties of hypereutectic Al-Si and hypoeutectic Al-Mg alloys. The microscopic observations contain of optical, field emission scanning electron, energy dispersive spectroscopy and X-ray diffraction, and mechanical properties testing, such as tensile, impact, and hardness test were carried out. A good agreement was observed between the results of microstructure and mechanical properties. XRD and EDS results indicate the formation of intermetallic compounds that associated with the modifications, which may play a major cause in improving the mechanical properties. It was also found that the secondary dendrite arm spacing value became smaller with increasing La addition, and decreased slightly from the unmodified 5 µm to 4.1 µm. On the other hand, when the content of La is 1.0%, the iron-rich phases tend to be slender with a size of about 0.5 µm. While with the addition of 1.0 wt.% of Y, the volume fraction of the dendritic phase are tend to decrease along with increase the grain size to 40 µm. The modifications of Al-alloy eutectic structure were improved ductility from 0.7% and 8% to 1.8 and 10.5 with the addition of 1.0 wt.% of La and Y, respectively. However, the addition of 1.0 wt.% of La and Y led to increase the ultimate tensile strength from 100 MPa and 180 MPa to 150 MPa and 200 MPa, respectively. A further addition of La and Y results in a reduction in mechanical properties.
format Thesis
qualification_level Master's degree
author Mohammad Diab, Nateg
author_facet Mohammad Diab, Nateg
author_sort Mohammad Diab, Nateg
title Microstructure and mechanical properties of Al-Alloy with rare earth
title_short Microstructure and mechanical properties of Al-Alloy with rare earth
title_full Microstructure and mechanical properties of Al-Alloy with rare earth
title_fullStr Microstructure and mechanical properties of Al-Alloy with rare earth
title_full_unstemmed Microstructure and mechanical properties of Al-Alloy with rare earth
title_sort microstructure and mechanical properties of al-alloy with rare earth
granting_institution Universiti Teknologi Malaysia, Faculty of Mechanical Engineering
granting_department Faculty of Mechanical Engineering
publishDate 2015
url http://eprints.utm.my/id/eprint/48722/25/NategMohammadDiabMFKM2015.pdf
_version_ 1747817459819216896