Optimal heat sink based on heat transfer model and particle swarm optimization method

The advancement of electronic technology has led to increase in heat dissipation especially in Central Processing Unit (CPU). This problem occurs when CPUsare scaled down to reduce size, to raise power density and performance of device. High heat dissipation can increase device temperature that will...

全面介绍

Saved in:
书目详细资料
主要作者: Mohd. Hanafi, Mohd. Zainolarifin
格式: Thesis
语言:English
出版: 2015
主题:
在线阅读:http://eprints.utm.my/id/eprint/53849/1/MohdZainolarifinMFKE2015.pdf
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:The advancement of electronic technology has led to increase in heat dissipation especially in Central Processing Unit (CPU). This problem occurs when CPUsare scaled down to reduce size, to raise power density and performance of device. High heat dissipation can increase device temperature that will reduceproducts lifespan. Currently, conventional air cooling technologies such as fan and heat sink have been used to minimize device temperature. However, heat sink is a preferable choice where it is easy to handle and cost effective. Thus, to reduce the temperature of CPU electronic package, the process of heat transfer is also needed to be enhanced and in this case it must consider a high performance heat sink component. Therefore, in this study thermal resistance network is used to develop a model of radial plate fin heat sink. Heat sink dimension has been optimized using Particle Swarm Optimization (PSO) technique. The main objective is to maximize heat dissipation rate and to minimize the size of heat sink. Simulations for single and multi objectives PSO are explored for searching the optimal dimensions of radial plate fin heat sink design. The optimal design could maximize heat dissipation and minimize the size of heat sink. The results show that heat dissipation can be increased by 16% while the size of heat sink has been reduced by 31.2%.