Mineral carbonation of red gypsum for carbon dioxide sequestration

Reduction of carbon dioxide (CO2) emissions into the atmosphere is a key challenge in order to mitigate the anthropogenic greenhouse effect. A CO2 emission causes lots of problems to human health and increases the global warming, CO2-uptake decreases these environmental issues. Mineral carbonation p...

Full description

Saved in:
Bibliographic Details
Main Author: Rahmani, Omeid
Format: Thesis
Language:English
Published: 2014
Subjects:
Online Access:http://eprints.utm.my/id/eprint/78388/1/OmeidRahmaniPFPREE2014.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.78388
record_format uketd_dc
spelling my-utm-ep.783882018-08-26T04:56:21Z Mineral carbonation of red gypsum for carbon dioxide sequestration 2014-09 Rahmani, Omeid TP Chemical technology Reduction of carbon dioxide (CO2) emissions into the atmosphere is a key challenge in order to mitigate the anthropogenic greenhouse effect. A CO2 emission causes lots of problems to human health and increases the global warming, CO2-uptake decreases these environmental issues. Mineral carbonation process is an alternative method during which industrial wastes rich in calcium (Ca) or magnesium (Mg) react with CO2 to form a stable carbonated mineral. In this research the feasibility of CO2 mineral carbonation by the use of red gypsum, as a Ca-rich source, was technically evaluated using autoclave mini reactor. For this purpose, the effect of a wide-range of key procedure variables such as reaction temperature, reaction time, particle size, stirring rate, CO2 pressure, and liquid to solid ratio, on the rate of mineral carbonation were studied. The results show that the maximum conversion of Ca (98.8%) is obtained at the condition that has optimum amount of these variables. Moreover, the results confirmed that red gypsum has high potential to form calcium carbonate (CaCO3) during the process of CO2 mineral carbonation. It was concluded that mineral carbonation process using red gypsum could be considered as an attractive and lowcost method in industry to mitigate considerable amount of CO2 from the atmosphere, which is the main issue in the current and coming years. 2014-09 Thesis http://eprints.utm.my/id/eprint/78388/ http://eprints.utm.my/id/eprint/78388/1/OmeidRahmaniPFPREE2014.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:98562 masters Universiti Teknologi Malaysia, Faculty of Petroleum and Renewable Energy Engineering Faculty of Petroleum and Renewable Energy Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Rahmani, Omeid
Mineral carbonation of red gypsum for carbon dioxide sequestration
description Reduction of carbon dioxide (CO2) emissions into the atmosphere is a key challenge in order to mitigate the anthropogenic greenhouse effect. A CO2 emission causes lots of problems to human health and increases the global warming, CO2-uptake decreases these environmental issues. Mineral carbonation process is an alternative method during which industrial wastes rich in calcium (Ca) or magnesium (Mg) react with CO2 to form a stable carbonated mineral. In this research the feasibility of CO2 mineral carbonation by the use of red gypsum, as a Ca-rich source, was technically evaluated using autoclave mini reactor. For this purpose, the effect of a wide-range of key procedure variables such as reaction temperature, reaction time, particle size, stirring rate, CO2 pressure, and liquid to solid ratio, on the rate of mineral carbonation were studied. The results show that the maximum conversion of Ca (98.8%) is obtained at the condition that has optimum amount of these variables. Moreover, the results confirmed that red gypsum has high potential to form calcium carbonate (CaCO3) during the process of CO2 mineral carbonation. It was concluded that mineral carbonation process using red gypsum could be considered as an attractive and lowcost method in industry to mitigate considerable amount of CO2 from the atmosphere, which is the main issue in the current and coming years.
format Thesis
qualification_level Master's degree
author Rahmani, Omeid
author_facet Rahmani, Omeid
author_sort Rahmani, Omeid
title Mineral carbonation of red gypsum for carbon dioxide sequestration
title_short Mineral carbonation of red gypsum for carbon dioxide sequestration
title_full Mineral carbonation of red gypsum for carbon dioxide sequestration
title_fullStr Mineral carbonation of red gypsum for carbon dioxide sequestration
title_full_unstemmed Mineral carbonation of red gypsum for carbon dioxide sequestration
title_sort mineral carbonation of red gypsum for carbon dioxide sequestration
granting_institution Universiti Teknologi Malaysia, Faculty of Petroleum and Renewable Energy Engineering
granting_department Faculty of Petroleum and Renewable Energy Engineering
publishDate 2014
url http://eprints.utm.my/id/eprint/78388/1/OmeidRahmaniPFPREE2014.pdf
_version_ 1747817977040863232