Multiple phase flow identification using computational simulation and convolutional neural network
The Identification of gas-solid flow characterization in dense-phase pneumatic conveying particles is very important to a vast area of industrial fields such as chemical and pharmaceutical industries since a slight change in flow characteristics results in a completely different product. The motion...
Saved in:
主要作者: | Helmy, Mohamed Tawfik Ibrahim |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2020
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/93119/1/MohamedTawfikIbrahimMSKE2020.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Bird species identification using spectrograms and convolutional neural networks
由: Saad, Aymen
出版: (2020) -
Convolutional neural networks for face recognition and finger-vein biometric identification
由: Ahmad Radzi, Syafeeza
出版: (2014) -
Convolution and max pooling layer accelerator for convolutional neural network
由: Goh, Jinn Chyn
出版: (2020) -
Spectral domain convolutional neural network optimized for computational workload and memory access cost
由: Rizvi, Shahriyar Masud
出版: (2023) -
Video annotation using convolution neural network
由: Wan Abd. Kadir, Wan Zahiruddin
出版: (2018)