Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates

The inventory routing problem (IRP) is one of the most challenging problems in logistics and supply chain management (SCM). It aims to optimise the integration between inventory management and vehicle routing operations in a supply network. IRP arise invol ving the inventory and distribution process...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Khodri Harahap, Afif Zuhri
Format: Thesis
Language:eng
eng
eng
Published: 2022
Subjects:
Online Access:https://etd.uum.edu.my/10223/1/permission%20to%20use-NOT%20ALLOWED.pdf
https://etd.uum.edu.my/10223/2/s902153_01.pdf
https://etd.uum.edu.my/10223/3/s902153_02.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uum-etd.10223
record_format uketd_dc
spelling my-uum-etd.102232023-01-16T04:00:43Z Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates 2022 Muhammad Khodri Harahap, Afif Zuhri Abdul Rahim, Kamarul Irwan College of Business (COB) College of Business (COB) HE Transportation and Communications The inventory routing problem (IRP) is one of the most challenging problems in logistics and supply chain management (SCM). It aims to optimise the integration between inventory management and vehicle routing operations in a supply network. IRP arise invol ving the inventory and distribution process consisting of a set of vehicle routes, delivery quantities, and delivery times that minimise the total inventory and transportation costs with the implementation of vendormanaged inventory (VMI) policies. VMI is a policy in which a supplier assumes the responsibility of maintaining the inventory for the customer while ensuring that they will not run out of stock. Thus, this research aims to develop a mathematical model known as a mixedinteger programming model t problem (MPo solve a multiperiod stochastic unstationary inventory routing SUIRP) in which the demand is considered non problem focuses on the oneto-- consistent over time. The many network, where a single warehouse needs to serve several customers over t he planning horizon. The inventories are transported from a warehouse to a set of customers using a fleet of homogeneous vehicles to meet the customer's requirements. As a condition, a customer is allowed to be visited once over a given period. A customer’ s demand rates in each period are stochastic unstationary and the warehouse is implementing a VMI. This problem is solved using a simulation software called a mathematical programming language (AMPL) to achieve the optimization result. The mathematical mod el is modified by the addition of a forecasting technique to determine the customer demand rates to supply the inventories and develop the best vehicle routes for the delivery process. A sensitivity analysis is performed on the critical parameters that inf luence the optimization results. The computational results show that the algorithms that implement this modified formulation can achieve a better optimization result. Thus, this study helps the organisation optimise the total inventory and transportation c osts for the benefit of financial performance. 2022 Thesis https://etd.uum.edu.my/10223/ https://etd.uum.edu.my/10223/1/permission%20to%20use-NOT%20ALLOWED.pdf text eng staffonly https://etd.uum.edu.my/10223/2/s902153_01.pdf text eng staffonly https://etd.uum.edu.my/10223/3/s902153_02.pdf text eng staffonly phd doctoral Universiti Utara Malaysia
institution Universiti Utara Malaysia
collection UUM ETD
language eng
eng
eng
advisor Abdul Rahim, Kamarul Irwan

topic HE Transportation and Communications
spellingShingle HE Transportation and Communications
Muhammad Khodri Harahap, Afif Zuhri
Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
description The inventory routing problem (IRP) is one of the most challenging problems in logistics and supply chain management (SCM). It aims to optimise the integration between inventory management and vehicle routing operations in a supply network. IRP arise invol ving the inventory and distribution process consisting of a set of vehicle routes, delivery quantities, and delivery times that minimise the total inventory and transportation costs with the implementation of vendormanaged inventory (VMI) policies. VMI is a policy in which a supplier assumes the responsibility of maintaining the inventory for the customer while ensuring that they will not run out of stock. Thus, this research aims to develop a mathematical model known as a mixedinteger programming model t problem (MPo solve a multiperiod stochastic unstationary inventory routing SUIRP) in which the demand is considered non problem focuses on the oneto-- consistent over time. The many network, where a single warehouse needs to serve several customers over t he planning horizon. The inventories are transported from a warehouse to a set of customers using a fleet of homogeneous vehicles to meet the customer's requirements. As a condition, a customer is allowed to be visited once over a given period. A customer’ s demand rates in each period are stochastic unstationary and the warehouse is implementing a VMI. This problem is solved using a simulation software called a mathematical programming language (AMPL) to achieve the optimization result. The mathematical mod el is modified by the addition of a forecasting technique to determine the customer demand rates to supply the inventories and develop the best vehicle routes for the delivery process. A sensitivity analysis is performed on the critical parameters that inf luence the optimization results. The computational results show that the algorithms that implement this modified formulation can achieve a better optimization result. Thus, this study helps the organisation optimise the total inventory and transportation c osts for the benefit of financial performance.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Muhammad Khodri Harahap, Afif Zuhri
author_facet Muhammad Khodri Harahap, Afif Zuhri
author_sort Muhammad Khodri Harahap, Afif Zuhri
title Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
title_short Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
title_full Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
title_fullStr Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
title_full_unstemmed Solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
title_sort solving a multiperiod inv entory routing problem with stochastic unstationary demand rates
granting_institution Universiti Utara Malaysia
granting_department College of Business (COB)
publishDate 2022
url https://etd.uum.edu.my/10223/1/permission%20to%20use-NOT%20ALLOWED.pdf
https://etd.uum.edu.my/10223/2/s902153_01.pdf
https://etd.uum.edu.my/10223/3/s902153_02.pdf
_version_ 1776103768806391808