The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models

In practice, the large datasets contain various types of anomalous records that significantly complicate the analysis problem. In particular, the prevalence of outliers, missing or incomplete data can completely invalidate the results obtained with standard analysis procedures, often with no indicat...

Full description

Saved in:
Bibliographic Details
Main Author: Munirah, Yahya
Format: Thesis
Language:eng
eng
Published: 2011
Subjects:
Online Access:https://etd.uum.edu.my/2499/1/Munirah_Yahya.pdf
https://etd.uum.edu.my/2499/2/1.Munirah_Yahya.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uum-etd.2499
record_format uketd_dc
spelling my-uum-etd.24992016-04-27T07:06:30Z The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models 2011 Munirah, Yahya Siraj, Fadzilah College of Arts and Sciences (CAS) College of Arts and Sciences QA76 Computer software In practice, the large datasets contain various types of anomalous records that significantly complicate the analysis problem. In particular, the prevalence of outliers, missing or incomplete data can completely invalidate the results obtained with standard analysis procedures, often with no indication that anything is wrong. High quality of decision making actually rely on high quality data, therefore data preprocessing has become the essential and important base of DM with no doubt because of no quality data, mean no quality mining results. Data preprocessing consists of interactive step such as data cleaning, data transformation, data reduction and data discretization. Data mining model have been used for extensive analysis in researches or data analysis work as it able to spot subtle relationships and associations. Logistic regression is an important statistical method for modeling and predicting categorical data. Another technique can be used in data mining task is neural network (NN) which have been successfully applied in a wide range of supervised and unsupervised learning applications. This study explored on the use of data preprocessing techniques such as missing values treatment namely Mean of Attributes and Mean of Target. The experimental results indicate that for the Logistic Regression models, models higher average accuracy is shown by data whose missing values were treated as Mean of Attribute. However, for NN models both missing value treatment did not affect the NN models. Prior to NNs training, the data needs to be transformed into form that is acceptable as input to Multi Layer Perceptron(MLP) network. Hence, several normalization techniques had been explored to compare which techniques suitable in each of the three datasets. There are several normalization techniques used for the experimental setup that is Min-Max normalization, Z-Score normalization and Sigmoidal normalization. For Wisconsin Breast Cancer data, Min-Max is preferable. However, for Pima Indians Diabetes and Thyroid Disease data set, Sigmoidal normalization is more preferable than the rest of the method. Hence, the experimental results indicate that the performance of DM models depends not only on the missing value and normalization techniques, it also depends on the amount of missing value in the whole data set. 2011 Thesis https://etd.uum.edu.my/2499/ https://etd.uum.edu.my/2499/1/Munirah_Yahya.pdf application/pdf eng validuser https://etd.uum.edu.my/2499/2/1.Munirah_Yahya.pdf application/pdf eng public masters masters Universiti Utara Malaysia
institution Universiti Utara Malaysia
collection UUM ETD
language eng
eng
advisor Siraj, Fadzilah
topic QA76 Computer software
spellingShingle QA76 Computer software
Munirah, Yahya
The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models
description In practice, the large datasets contain various types of anomalous records that significantly complicate the analysis problem. In particular, the prevalence of outliers, missing or incomplete data can completely invalidate the results obtained with standard analysis procedures, often with no indication that anything is wrong. High quality of decision making actually rely on high quality data, therefore data preprocessing has become the essential and important base of DM with no doubt because of no quality data, mean no quality mining results. Data preprocessing consists of interactive step such as data cleaning, data transformation, data reduction and data discretization. Data mining model have been used for extensive analysis in researches or data analysis work as it able to spot subtle relationships and associations. Logistic regression is an important statistical method for modeling and predicting categorical data. Another technique can be used in data mining task is neural network (NN) which have been successfully applied in a wide range of supervised and unsupervised learning applications. This study explored on the use of data preprocessing techniques such as missing values treatment namely Mean of Attributes and Mean of Target. The experimental results indicate that for the Logistic Regression models, models higher average accuracy is shown by data whose missing values were treated as Mean of Attribute. However, for NN models both missing value treatment did not affect the NN models. Prior to NNs training, the data needs to be transformed into form that is acceptable as input to Multi Layer Perceptron(MLP) network. Hence, several normalization techniques had been explored to compare which techniques suitable in each of the three datasets. There are several normalization techniques used for the experimental setup that is Min-Max normalization, Z-Score normalization and Sigmoidal normalization. For Wisconsin Breast Cancer data, Min-Max is preferable. However, for Pima Indians Diabetes and Thyroid Disease data set, Sigmoidal normalization is more preferable than the rest of the method. Hence, the experimental results indicate that the performance of DM models depends not only on the missing value and normalization techniques, it also depends on the amount of missing value in the whole data set.
format Thesis
qualification_name masters
qualification_level Master's degree
author Munirah, Yahya
author_facet Munirah, Yahya
author_sort Munirah, Yahya
title The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models
title_short The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models
title_full The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models
title_fullStr The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models
title_full_unstemmed The Impact of Missing Value Methods and Normalization Techniques on the Performance of Data Mining Models
title_sort impact of missing value methods and normalization techniques on the performance of data mining models
granting_institution Universiti Utara Malaysia
granting_department College of Arts and Sciences (CAS)
publishDate 2011
url https://etd.uum.edu.my/2499/1/Munirah_Yahya.pdf
https://etd.uum.edu.my/2499/2/1.Munirah_Yahya.pdf
_version_ 1747827359798525952