Just Queuing: Policy-Based Scheduling Mechanism for Packet Switching Networks

The pervasiveness of the Internet and its applications lead to the potential increment of the users’ demands for more services with economical prices. The diversity of Internet traffic requires some classification and prioritisation since some traffic deserve much attention with less delay and loss...

Full description

Saved in:
Bibliographic Details
Main Author: Miaji, Yaser Shamsulhak A
Format: Thesis
Language:eng
eng
Published: 2011
Subjects:
Online Access:https://etd.uum.edu.my/2980/1/Yaser_Shamsulhak_A_Miaji.pdf
https://etd.uum.edu.my/2980/2/1.Yaser_Shamsulhak_A_Miaji.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pervasiveness of the Internet and its applications lead to the potential increment of the users’ demands for more services with economical prices. The diversity of Internet traffic requires some classification and prioritisation since some traffic deserve much attention with less delay and loss compared to others. Current scheduling mechanisms are exposed to the trade-off between three major properties namely fairness, complexity and protection. Therefore, the question remains about how to improve the fairness and protection with less complex implementation. This research is designed to enhance scheduling mechanism by providing sustainability to the fairness and protection properties with simplicity in implementation; and hence higher service quality particularly for real-time applications. Extra elements are applied to the main fairness equation to improve the fairness property. This research adopts the restricted charge policy which imposes the protection of normal user. In terms of the complexity property, genetic algorithm has an advantage in holding the fitness score of the queue in separate storage space which potentially minimises the complexity of the algorithm. The integrity between conceptual, analytical and experimental approach verifies the efficiency of the proposed mechanism. The proposed mechanism is validated by using the emulation and the validation experiments involve real router flow data. The results of the evaluation showed fair bandwidth distribution similar to the popular Weighted Fair Queuing (WFQ) mechanism. Furthermore, better protection was exhibited in the results compared with the WFQ and two other scheduling mechanisms. The complexity of the proposed mechanism reached O(log(n)) which is considered as potentially low. Furthermore, this mechanism is limited to the wired networks and hence future works could improve the mechanism to be adopted in mobile ad-hoc networks or any other wireless networks. Moreover, more improvements could be applied to the proposed mechanism to enhance its deployment in the virtual circuits switching network such as the asynchronous transfer mode networks.