Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques
The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that si...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | eng eng |
Published: |
2014
|
Subjects: | |
Online Access: | https://etd.uum.edu.my/5314/1/s91962.pdf https://etd.uum.edu.my/5314/2/s91962_abstract.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-uum-etd.5314 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Utara Malaysia |
collection |
UUM ETD |
language |
eng eng |
advisor |
Jamaludin, Zulikha Mahmuddin, Massudi |
topic |
QA71-90 Instruments and machines |
spellingShingle |
QA71-90 Instruments and machines Qtaish, Osama Kayed Taher Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques |
description |
The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that simultaneously
optimizes all the execution paths involved in the composite service at the same time while meeting the QoS requirements. This issue brings us to the challenge of solving the QoS-aware service composition problem, so called an optimization problem. A further research challenge is the determination of the QoS characteristics that can be considered as selection criteria. In this thesis, a smart QoS-aware service composition approach is proposed. The aim is to solve the above-mentioned problems via an optimization mechanism based upon the combination between runtime path prediction method and heuristic algorithms. This mechanism is performed in two steps. First, the runtime path prediction method predicts, at runtime, and just before the actual composition, execution, the execution path that will potentially be executed. Second, both the constructive procedure (CP) and the complementary procedure (CCP) heuristic algorithms computed the optimization considering only the execution path that has been predicted by the runtime path
prediction method for criteria selection, eight QoS characteristics are suggested after
investigating related works on the area of web service and web service composition. Furthermore, prioritizing the selected QoS criteria is suggested in order to assist clients when choosing the right criteria. Experiments via WEKA tool and simulation prototype were conducted to evaluate the methods used. For the runtime path prediction method, the results showed that the path prediction method achieved promising prediction accuracy, and the number of paths involved in the prediction did not affect the accuracy. For the optimization mechanism, the evaluation was conducted by comparing the mechanism with relevant optimization techniques. The simulation results showed that the proposed optimization mechanism outperforms the relevant optimization techniques by (1) generating the highest overall QoS ratio solutions, (2) consuming the smallest computation time, and (3) producing the lowest percentage of constraints violated number. |
format |
Thesis |
qualification_name |
Ph.D. |
qualification_level |
Doctorate |
author |
Qtaish, Osama Kayed Taher |
author_facet |
Qtaish, Osama Kayed Taher |
author_sort |
Qtaish, Osama Kayed Taher |
title |
Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques |
title_short |
Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques |
title_full |
Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques |
title_fullStr |
Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques |
title_full_unstemmed |
Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques |
title_sort |
optimal qos aware multiple paths web service composition using heuristic algorithms and data mining techniques |
granting_institution |
Universiti Utara Malaysia |
granting_department |
Awang Had Salleh Graduate School of Arts & Sciences |
publishDate |
2014 |
url |
https://etd.uum.edu.my/5314/1/s91962.pdf https://etd.uum.edu.my/5314/2/s91962_abstract.pdf |
_version_ |
1776103676467740672 |
spelling |
my-uum-etd.53142022-12-28T01:42:54Z Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques 2014 Qtaish, Osama Kayed Taher Jamaludin, Zulikha Mahmuddin, Massudi Awang Had Salleh Graduate School of Arts & Sciences Awang Had Salleh Graduate School of Arts & Sciences QA71-90 Instruments and machines The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that simultaneously optimizes all the execution paths involved in the composite service at the same time while meeting the QoS requirements. This issue brings us to the challenge of solving the QoS-aware service composition problem, so called an optimization problem. A further research challenge is the determination of the QoS characteristics that can be considered as selection criteria. In this thesis, a smart QoS-aware service composition approach is proposed. The aim is to solve the above-mentioned problems via an optimization mechanism based upon the combination between runtime path prediction method and heuristic algorithms. This mechanism is performed in two steps. First, the runtime path prediction method predicts, at runtime, and just before the actual composition, execution, the execution path that will potentially be executed. Second, both the constructive procedure (CP) and the complementary procedure (CCP) heuristic algorithms computed the optimization considering only the execution path that has been predicted by the runtime path prediction method for criteria selection, eight QoS characteristics are suggested after investigating related works on the area of web service and web service composition. Furthermore, prioritizing the selected QoS criteria is suggested in order to assist clients when choosing the right criteria. Experiments via WEKA tool and simulation prototype were conducted to evaluate the methods used. For the runtime path prediction method, the results showed that the path prediction method achieved promising prediction accuracy, and the number of paths involved in the prediction did not affect the accuracy. For the optimization mechanism, the evaluation was conducted by comparing the mechanism with relevant optimization techniques. The simulation results showed that the proposed optimization mechanism outperforms the relevant optimization techniques by (1) generating the highest overall QoS ratio solutions, (2) consuming the smallest computation time, and (3) producing the lowest percentage of constraints violated number. 2014 Thesis https://etd.uum.edu.my/5314/ https://etd.uum.edu.my/5314/1/s91962.pdf text eng public https://etd.uum.edu.my/5314/2/s91962_abstract.pdf text eng public http://sierra.uum.edu.my/record=b1270999~S1 Ph.D. doctoral Universiti Utara Malaysia Acuna, E., & Rodriguez, C. (2004). The treatment of missing values and its effect on classifier accuracy. In D. Banks, F.R. McMorris, P. Arabie, & W. Gaul (Eds.), Classification, Clustering, and Data Mining Applications (pp. 639-647). Springer Berlin Heidelberg. Agrawal, R., Gunopulos, D., & Leymann, F. (1998). Mining process models from workflow logs. Springer Berlin Heidelberg. Alrifai, M., & Risse, T. (2009). Combining global optimization with local selection for efficient QoS-aware service composition. Proceedings of the 18th international conference on World wide web, 881-890. Alrifai, M., Risse, T., Dolog, P., & Nejdl, W. (2009). A scalable approach for qosbased web service selection. In G. Feuerlicht, & W. Lamersdorf (Eds.), Service-Oriented Computing – ICSOC 2008 Workshops (pp. 190-199). Springer Berlin Heidelberg. Alrifai, M., Skoutas, D., & Risse, T. (2010). Selecting skyline services for qos-based web service composition. Proceedings of the 19th international conference on World wide web, 11-20. Arab Bank. (2012). Sustainability Report 2012. Arab Bank. Retrieved 25, May, 2013 from www.arabbank.com/uploads/File/Sustainability Report2012_English.pdf?CSRT=8982756408031428478 Ardagna, D., & Mirandola, R. (2010). Per-flow optimal service selection for Web services based processes. Journal of Systems and Software, 83(8), 1512-1523. Ardagna, D., & Pernici, B. (2006). Global and local qos guarantee in web service selection. In C.J. Bussler, & A. Haller (Eds.), Business Process Management Workshops (pp. 32-46). Springer Berlin Heidelberg. Ardagna, D., & Pernici, B. (2006). Adaptive service composition in flexible processes. Software Engineering, IEEE Transactions on, 33(6), 369-384. Austin, D., Daniel, A., Ferris, C., & Garg, S. (2004). Web services architecture requirements. W3C Working Group Note. Retrieved 5, April, 2012, from http://www.w3.org/TR/wsa-reqs/ Bahadori, S., Kafi, S., Far, K. Z., & Khayyambashi, M. R. (2009). Optimal web service composition using hybrid GA-TABU search. Journal of Theoretical and Applied Information Technology, 9(1), 10-15. Balas, E., & Zemel, E. (1980). An algorithm for large zero-one knapsack problems. Operations Research, 28(5), 1130-1154. Baryannis, G., Carro, M., Danylevych, O., Dustdar, S., Karastoyanova, D., Kritikos, K., ... & Wetzstein, B. (2008). Overview of the state of the art in composition and coordination of services. S-CUBE Software Services and Systems Network Consortium. Retrieved 11, July, 2012 from http://www.s-cube- network.eu/results/deliverables/wp-jra-2.2/PO-JRA-2.2.1-Overview-of-the-state-of-the-art-in- composition-and-coordinationof%20services.pdf. Bayt. (2013). Average Monthly Salary in Jordan. Bayt.com. Retrieved 3, April, 2013 from http://www.bayt.com/en/jordan/jobs/ Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 quality model for evaluation of B2B applications. Information and Software Technology, 51(3), 599-609. Benatallah, B., Dumas, M., Sheng, Q. Z., & Ngu, A. H. H. (2002). Declarative composition and peer-to-peer provisioning of dynamic web services. Proceedings of the 18th International Conference on Data Engineering, 296-308. Berbner, R., Heckmann, O., & Steinmetz, R. (2005). An Architecture for a qos driven composition of web service based workflows. Networking and Electronic Commerce Research Conference (NAEC 2005). Berbner, R., Spahn, M., Repp, N., Heckmann, O., & Steinmetz, R. (2006). Heuristics for qos-aware web service composition. Proceedings of the IEEE International Conference on Web Services, 72-82. Bilchev, G., & Parmee, I. (1995).The ant colony metaphor for searching continuous design spaces. In T.C. Fogarty (Ed.), Selected Papers from AISB Workshop on Evolutionary Computing (pp. 25-39). Springer Berlin Heidelberg. Blomberg, L. C., & Ruiz, D. D. A. (2013). Evaluating the influence of missing data on classification algorithms in data mining applications. SBSI 2013: Simpósio Brasileiro de Sistemas de Informação. Bolcer, G. A., & Kaiser, G. (1999). SWAP: Leveraging the web to manage workflow. Internet Computing, IEEE, 3(1), 85-88. Booth, D., & Liu, C. K. (2006). Web services description language (WSDL) version 2.0 Part 0: Primer. W3C Working Draft. Retrieved 16, June, 2010, from http://www.w3.org/TR/wsdl20-primer/ Botella, P., Burgués, X., Carvallo, J. P., Franch, X., & Quer, C. (2002). Using quality models for assessing COTS selection. Proceedings of WER 2002, 263-277. Burstein, M., Bussler, C., Zaremba, M., Finn, T., Huhns, M. N., Paolucci, M., ... & Williams, S. (2005). A semantic web services architecture. IEEE Internet Computing, 9(5), 72. Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2005). An approach for qos-aware service composition based on genetic algorithms. Proceedings of the 2005 conference on Genetic and evolutionary computation, 1069-1075. Cardellini, V., Casalicchio, E., Grassi, V., & Mirandola, R. (2006). A Framework for optimal service selection in broker-based architectures with multiple qos classes. Proceedings of the IEEE Services Computing Workshops, 105-112. Cardellini, V., Di Valerio, V., Grassi, V., Iannucci, S., & Presti, F. L. (2011). A performance comparison of QoS-driven service selection approaches. In Towards a Service-Based Internet (pp. 167-178). Springer Berlin Heidelberg. Cardoso, J. (2005). Path mining in web processes using profiles. Encyclopedia of data warehousing and mining, 896-901. Cardoso, J. (2008). Applying data mining algorithms to calculate the quality of service of workflow processes. In P. Chountas, L. Petrounias, & J. Kacprzyk (Eds.), Intelligent Techniques and Tools for Novel System Architectures. Springer Berlin Heidelberg. Cardoso, J., & Lenic, M. (2006).Web process and workflow path mining using the multi-method approach. International Journal of Business Intelligence and Data Mining, 1(3), 304-328. Cardoso, J., Miller, J., Sheth, A., & Arnold, J. (2004).Modeling quality of service for workflows and web service processes. Web Semantics: Science, Services and Agents on the World Wide Web Journal, 1(3), 281–308. Cardoso, J., & Sheth, A. (2003). Semantic e-workflow composition. Journal of Intelligent Information Systems (JIIS), 21(3), 191-225. Casati, F., Ilnicki, S., Jin, L. J., Krishnamoorthy, V., & Shan, M. C. (2000). E-flow: A platform for developing and managing composite e-services. Proceedings Academia/Industry Working Conference on Research Challenges, 341-348. Choen, D. (2012). Bank loans and how to qualify for one. Loan Article. Retrieved 14, July, 2013, from http://www.bills.com/bank-loans/ Choi, S., Her, J., & Kim, S. (2006). Modeling qos attributes and metrics for evaluating services in SOA considering consumers' perspective as the first class requirement. Proceedings of the 2nd IEEE Asia-Pacific Service Computing Conference, 398-405. Clement, U., Hately, A., Riegen, C. v., & Rogers, T. (2004). UDDI version 3.0.2. DDI Spec Technical Committee Draft. Retrieved 16, June, 2011, from http://www.uddi.org/pubs/uddi_v3.htm Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 263-296. Degwekar, S., Su, S. Y. W., & Lam, H. (2004). Constraint specification and processing in web services publication and discovery. Proceedings of the IEEE International Conference on Web Services, 210-217. Dimitrios, G., Hans, S., Andrzej, C., & Donald, B. (1999). Managing process and service fusion in virtual enterprises. Information Systems - Special issue on information systems support for electronic commerce, 24(6), 429-456. Dong, S., & Dong, W. (2009). A qos driven web service composition method based on ESGA (Elitist Selection Genetic Algorithm) with an improved initial population selection strategy. International Journal of Distributed Sensor Networks, 5(1), 54-54. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1), 29-41. Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on Software Engineering, 21(2), 146-162. Du, Y., Wang, X., Ai, L., & Li, X. (2012). Dynamic Selection of Services under Temporal Constraints in Cloud Computing. In e-Business Engineering (ICEBE), 2012 IEEE Ninth International Conference on, 252-259. Dustdar, S., & Papazoglou, M. P. (2008). Services and service composition-an introduction. it - Information Technology, 50, 086 - 092. Dustdar, S., & Schreiner, W. (2005). A survey on web services composition. International Journal on Web and Grid Services, 1(1), 1-30. Fitzpatrick, R. (1996). Software quality: Definitions and strategic issues. Reports. Retrieved 19, May, 2010, from http://www.comp. dit.ie/rfitzpatrick/papers/quality01.pdf Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14(5), 661-680. Ganesarajah, D., & Lupu, E. (2002). Workflow-based composition of web-services: A business model or a programming paradigm?. Proceedings of the Sixth International Enterprise Distributed Object Computing Conference (EDOC’02), 273-284. Gao, Z.-p., Chen, J., Qiu, X.-s., & Meng, L.-m. (2009). QoE/QoS driven simulated annealing-based genetic algorithm for web services selection. The Journal of China Universities of Posts and Telecommunications, 16(1), 102-106. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., & Shan, M. C. (2004). Business process intelligence. Computers in Industry, 53(3), 321-343. Guoping, Z., Huijuan, Z., & Zhibin, W. (2009). A qos-based web services selection method for dynamic web service composition. Proceedings of the 2009 First International Workshop on Education Technology and Computer Science, 832-835. Gutiérrez-Peña, E. (2004). Bayesian classification methods. Psychology Science, 46(1), 52-64. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD explorations newsletter, 11(1), 10-18. Hifi, M., Michrafy, M., & Sbihi, A. (2004). Heuristic algorithms for the multiplechoice multidimensional knapsack problem. Journal of the Operational Research Society, 55(12), 1323–1332. Hilari, M. O. (2009). Quality of service (QoS) in SOA systems. A Systematic Review. (Master’s thesis, UniversitatPolitècnica de Catalunya, 2009). Retrieved 7, May, 2013 from http://upcommons.upc.edu/pfc/handle/2099.1/7714 Huang, A. F. M., Lan, C.-W., & Yang, S. J. H. (2009). An optimal qos-based Web service selection scheme. Information Sciences: An International Journal, 169(19), 3309-3322. Hull, R., Benedikt, M., Christophides, V., & Su, J. (2003). E-services: A look behind the curtain. Proceedings of the twenty-second ACM SIGMOD-SIGACTSIGART symposium on Principles of database systems, 1-14. ISO-9000:2005. (2005). Quality management systems fundamentals and vocabulary. International Organization for Standardization. Retrieved 24, August, 2010, from http://www.iso.org/iso/watermarksample.pdf ISO/IEC 25012:2008. (2008), Software engineering -- Software product Quality Requirements and Evaluation (SQuaRE) -- Data quality model. Retrieved 24, June, 2014, from http://www.iso.org/iso/home/store/catalogue_tc/ catalogue_detail.htm?csnumber=35736 ISO/IEC. (1998). Information technology – quality of service: Framework (ISO/IEC 13236). International Organization for Standardization. Retrieved 15, April, 2010, from http://www.iso.org/iso/iso_catalogue/catalogue_ tc/catalogue_detail.htm?csnumber=26993 Ivanovic, D., Carro, M., & Hermenegildo, M. (2010). Towards data-aware qosdriven adaptation for service orchestrations. In Web Services (ICWS), 2010 IEEE International Conference on, 107-114). Jacobsson, M., Lidén, P., Stjernschantz, E., Boström, H., & Norinder, U. (2003). Improving structure-based virtual screening by multivariate analysis of scoring data. Journal of medicinal chemistry, 46(26), 5681-5689. Jaeger, M., Muhl, G., & Golze, S. (2005). QoS-aware composition of web services: An evaluation of selection algorithms. In R. Meersman, & Z. Tari (Eds.), On the Move to Meaningful Internet Systems 2005 (Vol. 3660, pp. 646-661). Springer Berlin Heidelberg. Jaeger, M. C. (2007). Optimising quality-of- service for the composition of electronic services (Doctoral dissertation, Berlin University of Technology). Retrieved from http://opus4.kobv.de/opus4-tuberlin/frontdoor/ index/index/docId/1413 Jaeger, M. C., Rojec-Goldmann, G., & Muhl, G. (2004). QoS aggregation for web service composition using workflow patterns. Proceedings of the Enterprise Distributed Object Computing Conference, Eighth IEEE International, 149-159. Jafarpour, N., & Khayyambashi, M. R. (2010). QoS-aware selection of web service composition based on Harmony Search algorithm. Proceedings of the 12th international conference on Advanced communication technology, 1345- 1350. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., ... & Yiu, A. (2007). Web services business process execution language version 2.0. OASIS standard, 11, 11. Jiang, H., Yang, X., Yin, K., Zhang, S., & Cristoforo, J. A. (2011). Multi-path qosaware web service composition using variable length chromosome genetic algorithm. Information Technology Journal, 10(1), 113-119. Jin, C., Wu, M., Jiang, T., & Ying, J. (2008). Combine automatic and manual process on web service selection and composition to support qos. 12th International Conference on Computer Supported Cooperative Work in Design, 2008 (CSCWD 2008), 459-464. Kim, E., Kang, G., Lee, Y., & McRae, M. (2005). OASIS web services quality model TC. Advanced Open Standards for the Information Society (OASIS). Retrieved July 13, 2010, from http://www.oasis-open.org/committees/tc_home. php?wg_abbrev=wsqm Kim, E., Lee, Y., Kim, Y., Park, H., Yun, J., & Kang, G. (2011). OASIS web services Quality factors version 1.0. Advanced Open Standards for the Information Society (OASIS). Retrieved July 13, 2012, from http://docs.oasis-open.org/ wsqm/WS-Quality-Factors/v1.0/cs01/WS-Quality- Factors-v1.0-cs01.html Khan, S., Li, K. F., Manning, E. G., & Akbar, M. M. (2002). Solving the knapsack problem for adaptive multimedia systems. Studia Informatica Universalis., 2(1), 156-168. Ko, J. M., Kim, C. O., & Kwon, I.-H. (2008). Quality-of-service oriented web service composition algorithm and planning architecture. Journal of Systems and Software, 81(11), 2069-2090. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the International Joint Conference on Artificial Intelligence IJCAI, 1136-1145. Kotsiantis, S. B. (2006). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249–268. Lécué, F. (2009). Optimizing qos-aware semantic web service composition. In A. Bernstein, D. R. Karger, T. Heath, & K. Thirunarayan (Eds.), Proceedings of the 8th International Semantic Web Conference (pp. 375-391). Springer Berlin Heidelberg Lee, J. (2003). Matching algorithms for composing business process solutions with web services. In K. Bauknecht, A. Tjoa, & G. Quirchmayr (Eds.), ECommerce and Web Technologies (Vol. 2638, pp. 393-402). Springer Berlin Heidelberg. Lee, K., Jeon, J., Lee, W., Jeong, S.-H., & Park, S.-W. (2003). Qos for web services: requirements and possible approaches. W3C Working Group Note. Retrieved 9, August, 2010, from http://www.w3c.or.kr/kr-office/TR/2003/ ws-qos/ Leitner, P., Hummer, W., & Dustdar, S. (2013). Cost-based optimization of service compositions. Services Computing, IEEE Transactions on, 6(2), 239-251. Li, S., & Chen, M. (2010). An adaptive-GA based QoS driven service selection for Web services composition. In Computer Application and System Modeling (ICCASM), 2010 International Conference on. IEEE. Li, W., & Yan-xiang, H. (2010). Web service composition based on qos with chaos particle swarm optimization. 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), 2010, 1-4. Liao, J., Liu, Y., Zhu, X., Wang, J., & Qi, Q. (2013). Accurate QoS-based service selection algorithm for service composition. In Local Computer Networks (LCN), 2013 IEEE 38th Conference on, 344-347. Liu, D., Shao, Z., & Yu, C. (2009a). Optimizing service selection by user's qos expectation. Proceedings of the International Multi Conference of Engineers and Computer Scientists. Liu, D., Shao, Z., Yu, C., & Fan, G. (2009b). A heuristic qos-aware service selection approach to web service composition. Proceedings of the 2009 Eigth IEEE/ACIS International Conference on Computer and Information Science. Liu, P., Lei, L., & Wu, N. (2005). A quantitative study of the effect of missing data in classifiers. The Fifth International Conference on Computer and Information Technology, 2005 (CIT 2005), 28-33. Liu, Y., Ngu, A. H., & Zeng, L. Z. (2004). Qos computation and policing in dynamic web service selection. Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters, 66-73. Liu, Y.,Wu, W., & Liu, S. (2012). A novel qos-aware service composition approach based on path decomposition. 2012 IEEE Asia-Pacific Services Computing Conference, 76-82. Lou, Y.-s., Tao, Z.-h., Wang, Z.-j., & Yue, L.-l. (2009). Research on a global optimization method for qos of web service composite. Proceedings of the 2009 First IEEE International Conference on Information Science and Engineering, 352-355. Luo, Y. S., Qi, Y., Hou, D., Shen, L. F., Chen, Y., & Zhong, X. (2011). A novel heuristic algorithm for qos-aware end-to-end service composition. Computer Communications, 34(9), 1137-1144. Mani, A., & Nagarajan, A. (2002). Understanding quality of service for web services. IBM. Retrieved 9 August, 20011, from https://www.ibm.com/developerworks/java/library/ ws-quality/ Martello, S., Pisinger, D., & Toth, P. (1999). Dynamic programming and strong bounds for the 0-1 knapsack problem. Management Science, 45(3), 414-424. Martello, S., & Toth, P. (1988).A new algorithm for the 0-1 knapsack problem. Management Science, 34(5), 633-644. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., ... & Sycara, K. (2005). Bringing semantics to web services: The OWL-S approach. In J. Cardoso, & A. Sheth (Eds.), Semantic Web Services and Web Process Composition (pp. 26-42). Springer Berlin Heidelberg. Martello, S. & Toth, P.(1986). Algorithms for knapsack problems. In S. Martello, G. Laporte, M. Minoux, & C. Ribeiro (Eds.), Surveys in Combinatorial Optimization, (Vol. 31, pp. 213–258). Amsterdam: Annals of Discrete Mathematics. Masseglia, F., Poncelet, P., & Teisseire, M. (2008). Successes and new directions in data mining. IGI Global. Menasce, D. A. (2002). QoS issues in web services. Internet Computing, IEEE, 6(6), 62-65. Menasce, D. A. (2004).Composing web services: A qos view. Internet Computing, IEEE, 8(6), 88-90. Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., & Dustdar, S. (2006). Towards recovering the broken SOA triangle: A software engineering perspective. 2nd international workshop on Service oriented software engineering: in conjunction with the 6th ESEC/FSE joint meeting, 22-28. Ming, C., & Zhen-wu, W. (2006). An Approach for web services composition based on qos and discrete particle swarm optimization. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2006 (SNPD 2006), 37-41. Missaoui, A., & Barkaoui, K. (2010). A neuro-fuzzy model for qos based selection of web service. Journal of Software Engineering and Applications, 3(6), 588-592. Mitra, N., & Lafon, E. Y. (2006). SOAP version 1.2 Part 0: Primer (second edition). W3C Recommendation. Retrieved 12, June, 2010, from http://www.w3.org/TR/2006/REC-soap12-part0- 20060426/ Monmarch, N., Venturini, G., & Slimane, M. (2000). On how pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems, 16(9), 936-946. Moser, M., Jokanovic, D. P., & Shiratori, N. (1996). An algorithm for the multidimensional multiple-choice knapsack problem. IEICE transactions on fundamentals of electronics, communications and computer sciences, 80(3), 582-589. Mostofa Akbar, M., Sohel Rahman, M., Kaykobad, M., Manning, E. G., & Shoja, G. C. (2006). Solving the multidimensional multiple-choice knapsack problem by constructing convex hulls. Computers & operations research, 33(5), 1259-1263. Neelavathi, S., & Vivekanandan, K. (2011). An innovative quality of service (QOS) based service selection for service orchrestration in SOA. International Journal of Scientific & Engineering Research, 2(4). Newcomer, E., & Lomow, G. (2004). Understanding SOA with web services (independent technology guides). Addison-Wesley Professional. Norinder, U., Lidén, P., & Boström, H. (2006). Discrimination between modes of toxic action of phenols using rule based methods. Molecular diversity, 10(2), 206-212. O’Brien, L., Bass, L., & Merson, P. (2005). Quality attributes and service-oriented architectures. Software Engineering Institute. Retrieved 12, July, 2012, from http://www.sei. cmu.edu/library/abstracts/reports/05tn014.cfm Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiitem scale measuring consumer perceptions of service quality. Journal of Retailing, 64, 12-36. Parejo, J. A., Fernandez, P., & Cortes, A. R. (2008). Qos-aware services composition using tabu search and hybrid genetic algorithms. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, 2(1), 55-66. Patel, C., Supekar, K., & Lee, Y. (2003). A qos oriented framework for adaptive management of web service based workflows. In V. Marík, W. Retschitzegger, & O. Štepánková (Eds.), Database and Expert Systems Applications (Vol. 2636, pp. 826-835). Springer Berlin Heidelberg. Patel, C., Supekar, K., & Lee, Y. (2004). Provisioning resilient, adaptive web services-based workflow: A semantic modeling approach. IEEE International Conference onWeb Services, 2004, 480-487. Pei, S., Shi, X., & Hu, D. (2014). Research on the Particle-Ant Colony Algorithm in Web Services Composition Problem. Journal of Applied Sciences, 14(8). Pisinger, D. (1996). A minimal algorithm for the 0-1 knapsack problem. Operations Research, 45(5), 658-666. Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Scholkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods (pp. 185-208). MIT Press. Prekopcsák, Z., Henk, T., & Gáspár-Papanek, C. (2010). Cross-validation: The illusion of reliable performance estimation. RCOMM 2010: RapidMiner Community Meeting and Conference. Qiqing, F., Xiaoming, P., Qinghua, L., & Yahui, H. (2009). A global qos optimizing web services selection algorithm based on moaco for dynamic web service composition. International Forum on Information Technology and Applications, 2009 (IFITA'09), 37-42. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco: Morgan Kaufmann Publishers Inc. Ran, S. (2003). A model for web services discovery with QoS. ACM SIGecom Exchanges, 4(1), 1-10. Rajeswari, M., Sambasivam, G., Balaji, N., Saleem Basha, M. S., Vengattaraman, T., & Dhavachelvan, P. (2014). Appraisal and analysis on various web service composition approaches based on QoS factors. Journal of King Saud University-Computer and Information Sciences, 26(1), 143-152. Razzazi, M. R., & Ghasemi, T. (2009). An exact algorithm for the multiple-choice multidimensional knapsack based on the core. In H. Sarbazi, B. Parhami, S.G Miremadi, & S. Hessabi (Eds.), Advances in Computer Science and Engineering (pp. 265-282). Springer Berlin Heidelberg. Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., & Dustdar, S. (2009). Towards composition as a service - a quality of service driven approach. Proceedings of the 2009 IEEE International Conference on Data Engineering. Rozinat, A., & van der Aalst, W. M. (2006). Decision mining in ProM. In S. Dustdar, J. L. Amit, & P. Sheth (Eds.), Business Process Management (pp. 420-425). Springer Berlin Heidelberg. Sasikaladevi, N., & Arockiam, L. (2014). LASA-HEU: Heuristic Approach for Service Selection in Composite Web Services. In Computing and Communication Technologies (WCCCT), 2014 World Congress on, 256-259. Sathya, M., Swarnamugi, M., Dhavachelvan, P., & Sureshkumar, G. (2010). Evaluation of qos based web-service selection techniques for service composition. International Journal of Software Engineering, 1(5), 73-90. Sbihi, A. (2006). A best first search exact algorithm for the multiple-choice multidimensional knapsack problem. Journal of Combinatorial Optimization, 13(4), 336-351. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., & Van der Aalst, W. (2008). Process flexibility: A survey of contemporary approaches. In W. Van der Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw, & C. Szyperski (Eds.), Advances in Enterprise Engineering I (Vol. 10, pp. 16-30). Springer Berlin Heidelberg. Schuller, D., Eckert, J., Miede, A., Schulte, S., & Steinmetz, R. (2010). QoS-aware service composition for complex workflows. Proceedings of the 2010 Fifth International Conference on Internet and Web Applications and Services, 333-338. Schuller, D., Polyvyanyy, A., García-Bañuelos, L., & Schulte, S. (2011). Optimization of complex qos-aware service compositions. In G. Kappel, Z. Maamar, & H.R. Motahari-Nezhad (Eds.), Service-Oriented Computing (pp. 452- 466). Springer Berlin Heidelberg. Shen, J., & Yuan, S. (2009). QoS-aware peer services selection using ant colony optimization. In W. Van der Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw, & C. Szyperski (Eds.), Business Information Systems Workshops (Vol. 36, pp. 362-364). Springer Berlin Heidelberg. Singh, A. K. (2012). Global optimization and integer programming networks. International Journal of Information, 2(8). Sumathi, S., & Esakkirajan. S. (2007). Fundamentals of relational database management systems. Springer Berlin Heidelberg. Tang, M., & Ai, L. (2010). A hybrid genetic algorithm for the optimal constrained web service selection problem in web service composition. In M. Tang (Ed.), Proceeding of the 2010 World Congress on Computational Intelligence. Barcelona. Tao, F., LaiLi, Y., Xu, L., & Zhang, L. (2013). FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. Industrial Informatics, IEEE Transactions on, 9(4), 2023-2033. Toma, I., & Foxvog, D. (2006). Non-functional properties in web services. Web Service Modeling Ontology (WSMO) Working Draft. Retrieved 13, June, 2010, from http://www.wsmo.org/TR/d28/d28.4/v0.1/ Todorovski, L., & Džeroski, S. (2000). Combining multiple models with meta decision trees. In D. Zighed, J. Komorowski, & J. Zytkow (Eds.), Principles of Data Mining and Knowledge Discovery (Vol. 1910, pp. 69-84). Springer Berlin Heidelberg. Tong, H., Cao, J., & Zhang, S. (2006). A distributed genetic algorithm for optimizing the quality of grid workflow. In K. Chang, W. Wang, L. Chen, C. Ellis, C.-H. Hsu, A. Tsoi, & H. Wang (Eds.), Advances in Web and Network Technologies, and Information Management (Vol. 4536, pp. 408-419). Springer Berlin Heidelberg. Toyoda, Y. (1965). A simplified algorithm for obtaining approximate solutions to zero-one programming problems. Management Science, 21(12), 1416-1426. Ukor, R., & Carpenter, A. (2009). Flexible service selection optimization using meta-metrics. Proceedings of the 2009 Congress on Services – I, 593-598. Ukor, R., & Carpenter, A. (2008.). On modeled flexibility and service selection optimisation. 9th Workshop on Business Process Modeling, Development and Support. van der Aalst, W. M., Adriansyah, A., de Medeiros, A. K., Arcieri, F., Baier, T., Blickle, T., ... & Pontieri, L. (2012). Process mining manifesto. In F. Daniel, K. Barkaoui, & S. Dustdar (Eds.), Business process management workshops (pp. 169-194). Springer Berlin Heidelberg. van der Aalst, W. M., Hofstede, A. H., Kiepuszewski, B., & Barros, A. P. (2003). Workflow patterns. Distributed and Parallel Databases, 14(1), 5-51. van der Aalst, W., M. (2009). Process-aware information systems: Lessons to be learned from process mining. Transactions on Petri Nets and Other Models of Concurrency II, 1-26. van der Aalst, W., M., Dongen, B. F. v., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering, 46(2), 236-266. van der Aalst, W. M., Weijters, A. J., & Maruster, L. (2002). Workflow mining: Which processes can be rediscovered. BETA Working Paper Series, WP 64, Eindhoven University of Technology, Eindhoven. van der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P. (2003). Workflow patterns. Distributed and parallel databases, 14(1), 5-51. van der Werf, J. M., van Dongen, B. F., Hurkens, C. A., & Serebrenik, A. (2008). Process discovery using integer linear programming. In K.M. van Hee, & R. Valk (Eds.), Applications and Theory of Petri Nets (pp. 368-386). Springer Berlin Heidelberg. Wan, C., C., U., Chen, L., Huang, R., Luo, J., & Shi, Z. (2008). On solving qosaware service selection problem with service composition. Seventh International Conference on Grid and Cooperative Computing, 2008 (GCC '08), 467-474. Wang, J., & Hou, Y. (2008). Optimal web service selection based on multi-objective genetic algorithm. Proceedings of the 2008 International Symposium on Computational Intelligence and Design, 553-556. Wang, L., & He, Y.-x.(2010). A web service composition aalgorithm based on global qos optimizing with MOCACO. In C.-H.Hsu, L. Yang, J. Park, & S.-S.Yeo (Eds.), Algorithms and Architectures for Parallel Processing (Vol. 6082, pp. 218-224). Springer Berlin Heidelberg. Wang, R., Chi, C.-H., & Deng, J. (2009). A fast heuristic algorithm for the composite web service selection. In Q. Li, L. Feng, J. Pei, S. Wang, X. Zhou, & Q.-M. Zhu (Eds.), Advances in Data and Web Management (Vol. 5446, pp. 506-518). Springer Berlin Heidelberg. Wang, S., Zhu, X., & Yang, F. (2014). Efficient QoS management for QoS–aware web service composition. International Journal of Web and Grid Services, 10(1), 1-23. Weinhardt, C., Anandasivam, A., Blau, B., & Stosser, J. (2009). Business models in the service World. IT Professional, 11, 28-33. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann. Wu, M., Xiong, X., Ying, J., Jin, C., & Yu, C. (2011). QoS-driven global optimization approach for large-scale web services composition. Journal of Computers, 6(7), 1452-1460. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37. Xia, Y.-m., Chen, J.-l., & Meng, X.-w. (2008). On the dynamic ant colony algorithm optimization based on multi-pheromones. Proceedings of the Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008). Yang, L., Dai, Y., Zhang, B., & Gao, Y. (2006). A dynamic web service composite platform based on qos of services. In H. Shen, J. Li, M. Li, J. Ni, & W. Wang (Eds.), Advanced Web and Network Technologies, and Applications (Vol. 3842, pp. 609-616). Springer Berlin Heidelberg. Yang, Z., Shang, C., Liu, Q., & Zhao, C. (2010). A dynamic web services composition algorithm based on the combination of ant colony algorithm and genetic algorithm. Journal of Computational Information Systems, 6(8), 2616-2622. Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making. Thousand Oaks, CA: Sage Publication. Yu, D., Li, C., & Yin, Y. (2014). Optimizing Web Service Composition for Dataintensive Applications. International Journal of Database Theory & Application, 7(2). Yu, T., & Lin, K.-J.(2005). A broker-based framework for qos-aware web service composition. Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE'05), 22-29. Yu, T., Zhang, Y., & Lin, K. J. (2007). Efficient algorithms for web services selection with end-to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1), 6. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. Z. (2003). Quality driven web services composition. Proceedings of the 12th international conference on World Wide Web, 411-421. Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., & Chang, H. (2004). QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering, 30(5), 311-326. Zhang, C., Su, S., & Chen, J. (2006). DiGA: Population diversity handling genetic algorithm for qos-aware web services selection. Computer Communications, 30(5), 1082-1090. Zhang, C., Su, S., & Chen, J. (2006a). A novel genetic algorithm for qos-aware web services selection. In J. Lee, J. Shim, S.-g. Lee, C. Bussler, & S. Shim (Eds.), Data Engineering Issues in E-Commerce and Services (Vol. 4055, pp. 224-235). Springer Berlin Heidelberg. Zhang, C., Su, S., & Chen, J. (2006b). Efficient population diversity handling genetic algorithm for qos-aware web services selection. In V. Alexandrov, G. van Albada, P. Sloot, & J. Dongarra (Eds.), Computational Science – ICCS 2006 (Vol. 3994, pp. 104-111). Springer Berlin Heidelberg. Zhang, L.-J., Li, B., Chao, T., & Chang, H. (2003). On demand web services-based business process composition. International Conference on Systems, Man and Cybernetics, 2003, 4056-4064. Zhang, W., Chang, C. K., Feng, T., & Jiang, H.-y. (2010). QoS-based dynamic web service composition with ant colony optimization. 34th Annual Computer Software and Applications Conference (COMPSAC), 2010, 493-502. Zhang, W., Yang, Y., Tang, S., & Fang, L. (2006). QoS-driven service selection optimization model and algorithms for composite web services. Proceedings of the 31st Annual International Computer Software and Applications Conference, 425-431. Zheng, H., Zhao, W., Yang, J., & Bouguettaya, A. (2013). Qos analysis for web service compositions with complex structures. Services Computing, IEEE Transactions on, 6(3), 373-386. Zibanezhad, B., Zamanifar, K., Nematbakhsh, N., & Mardukhi, F. (2009). An approach for web services composition based on qos and gravitational search algorithm. Proceedings of the 6th international conference on Innovations in information technology, 340-344. |