Defuzzification of groups of fuzzy numbers using data envelopment analysis

Defuzzification is a critical process in the implementation of fuzzy systems that converts fuzzy numbers to crisp representations. Few researchers have focused on cases where the crisp outputs must satisfy a set of relationships dictated in the original crisp data. This phenomenon indicates that th...

Full description

Saved in:
Bibliographic Details
Main Author: Al-Ogaidi, Jehan Saleh Ahmed
Format: Thesis
Language:eng
eng
Published: 2016
Subjects:
Online Access:https://etd.uum.edu.my/6015/1/s93607_01.pdf
https://etd.uum.edu.my/6015/2/s93607_02.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uum-etd.6015
record_format uketd_dc
institution Universiti Utara Malaysia
collection UUM ETD
language eng
eng
advisor Mat Kasim, Maznah
Madjid, Zerafat Angiz E. Langroudi
topic QA299.6-433 Analysis
QA76.76 Fuzzy System.
spellingShingle QA299.6-433 Analysis
QA76.76 Fuzzy System.
Al-Ogaidi, Jehan Saleh Ahmed
Defuzzification of groups of fuzzy numbers using data envelopment analysis
description Defuzzification is a critical process in the implementation of fuzzy systems that converts fuzzy numbers to crisp representations. Few researchers have focused on cases where the crisp outputs must satisfy a set of relationships dictated in the original crisp data. This phenomenon indicates that these crisp outputs are mathematically dependent on one another. Furthermore, these fuzzy numbers may exist as a group of fuzzy numbers. Therefore, the primary aim of this thesis is to develop a method to defuzzify groups of fuzzy numbers based on Charnes, Cooper, and Rhodes (CCR)-Data Envelopment Analysis (DEA) model by modifying the Center of Gravity (COG) method as the objective function. The constraints represent the relationships and some additional restrictions on the allowable crisp outputs with their dependency property. This leads to the creation of crisp values with preserved relationships and/or properties as in the original crisp data. Comparing with Linear Programming (LP) based model, the proposed CCR-DEA model is more efficient, and also able to defuzzify non-linear fuzzy numbers with accurate solutions. Moreover, the crisp outputs obtained by the proposed method are the nearest points to the fuzzy numbers in case of crisp independent outputs, and best nearest points to the fuzzy numbers in case of dependent crisp outputs. As a conclusion, the proposed CCR-DEA defuzzification method can create either dependent crisp outputs with preserved relationship or independent crisp outputs without any relationship. Besides, the proposed method is a general method to defuzzify groups or individuals fuzzy numbers under the assumption of convexity with linear and non-linear membership functions or relationships.
format Thesis
qualification_name Ph.D.
qualification_level Doctorate
author Al-Ogaidi, Jehan Saleh Ahmed
author_facet Al-Ogaidi, Jehan Saleh Ahmed
author_sort Al-Ogaidi, Jehan Saleh Ahmed
title Defuzzification of groups of fuzzy numbers using data envelopment analysis
title_short Defuzzification of groups of fuzzy numbers using data envelopment analysis
title_full Defuzzification of groups of fuzzy numbers using data envelopment analysis
title_fullStr Defuzzification of groups of fuzzy numbers using data envelopment analysis
title_full_unstemmed Defuzzification of groups of fuzzy numbers using data envelopment analysis
title_sort defuzzification of groups of fuzzy numbers using data envelopment analysis
granting_institution Universiti Utara Malaysia
granting_department Awang Had Salleh Graduate School of Arts & Sciences
publishDate 2016
url https://etd.uum.edu.my/6015/1/s93607_01.pdf
https://etd.uum.edu.my/6015/2/s93607_02.pdf
_version_ 1747828007276380160
spelling my-uum-etd.60152021-04-05T01:48:25Z Defuzzification of groups of fuzzy numbers using data envelopment analysis 2016 Al-Ogaidi, Jehan Saleh Ahmed Mat Kasim, Maznah Madjid, Zerafat Angiz E. Langroudi Awang Had Salleh Graduate School of Arts & Sciences Awang Had Salleh Graduate School of Arts and Sciences QA299.6-433 Analysis QA76.76 Fuzzy System. Defuzzification is a critical process in the implementation of fuzzy systems that converts fuzzy numbers to crisp representations. Few researchers have focused on cases where the crisp outputs must satisfy a set of relationships dictated in the original crisp data. This phenomenon indicates that these crisp outputs are mathematically dependent on one another. Furthermore, these fuzzy numbers may exist as a group of fuzzy numbers. Therefore, the primary aim of this thesis is to develop a method to defuzzify groups of fuzzy numbers based on Charnes, Cooper, and Rhodes (CCR)-Data Envelopment Analysis (DEA) model by modifying the Center of Gravity (COG) method as the objective function. The constraints represent the relationships and some additional restrictions on the allowable crisp outputs with their dependency property. This leads to the creation of crisp values with preserved relationships and/or properties as in the original crisp data. Comparing with Linear Programming (LP) based model, the proposed CCR-DEA model is more efficient, and also able to defuzzify non-linear fuzzy numbers with accurate solutions. Moreover, the crisp outputs obtained by the proposed method are the nearest points to the fuzzy numbers in case of crisp independent outputs, and best nearest points to the fuzzy numbers in case of dependent crisp outputs. As a conclusion, the proposed CCR-DEA defuzzification method can create either dependent crisp outputs with preserved relationship or independent crisp outputs without any relationship. Besides, the proposed method is a general method to defuzzify groups or individuals fuzzy numbers under the assumption of convexity with linear and non-linear membership functions or relationships. 2016 Thesis https://etd.uum.edu.my/6015/ https://etd.uum.edu.my/6015/1/s93607_01.pdf text eng public https://etd.uum.edu.my/6015/2/s93607_02.pdf text eng public Ph.D. doctoral Universiti Utara Malaysia Abbasbandy, S., & Asady, B. (2006). Ranking of fuzzy numbers by sign distance. Information Sciences, 176(16), 2405–2416. doi:10.1016/j.ins.2005.03.013 Abbasbandy, S., & Hajjari, T. (2009). A new approach for ranking of trapezoidal fuzzy numbers. Computers & Mathematics with Applications, 57(3), 413–419. doi:10.1016/j.camwa.2008.10.090 Abdullah, N. H. (2014). Making space at hospitals (KKM) health DG Malaysia. The Malaysian Medical Gazette. Retrieved March 9, 2015, from http://www.mmgazette.com/making-space-at-hospitals-kkm-health-dgmalaysia-datuk-dr-noor-hisham-abdullah/ Allen, R., Athanassopoulos, a, Dyson, R. G., & Thanassoulis, E. (1997). Weights restrictions and value judgements in data envelopment analysis: Evolution, development and future directions. Annals of Operations Research, 73, 13–34. doi:Doi 10.1023/A:1018968909638 Al-share, K. (1998). Robustness of data envelopment analysis (DEA) efficiency classification: An empirical study of Jordanian hospitals. University of Texas at Arlington. Altamirano-Corro, a., & Peniche-Vera, R. (2014). Measuring the institutional efficiency using DEA and AHP: The case of a Mexican University. Journal of Applied Research and Technology, 12(1), 63–71. doi:10.1016/S1665-6423(14)71606-2 Andersen, P., & Petersen, N. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264. Angiz, M., & Sajedi, M. (2012). Improving Cross-Efficiency Evaluation Using Fuzzy Concepts. World Applied Sciences Journal, 16(10), 1352–1359. Angulo-Meza, L., & Lins, M. P. E. (2002). Review of methods for increasing discrimination in data envelopment analysis. Annals of Operations Research, 116(1-4), 225–242. doi: Doi 10.1023/A:1021340616758 Aref, M. A., & Javadian, N. (2009). A new fuzzy topsis method for material handling system selection problems. In Proceedings of the 8th WSEAS International Conference on Software engineering, parallel and distributed systems (pp. 169–174). World Scientific and Engineering Academy and Society (WSEAS). Asady, B., & Zendehnam, a. (2007). Ranking fuzzy numbers by distance minimization. Applied Mathematical Modelling, 31(11), 2589–2598. doi:10.1016/j.apm.2006.10.018 Asandului, L., Roman, M., & Fatulescu, P. (2014). The efficiency of healthcare systems in Europe: A data envelopment analysis approach. Procedia Economics and Finance, 10(14), 261–268. doi:10.1016/S2212-5671(14)00301-3 Ashrafi, A., Seow, H.-V., Lee, L. S., & Lee, C. G. (2013). The efficiency of the hotel industry in Singapore. Tourism Management, 37, 31–34. doi:10.1016/j.tourman.2012.12.003 Assaf, A., Barros, C. P., & Josiassen, A. (2012). Hotel efficiency: A bootstrapped metafrontier approach. International Journal of Hospitality Management, 31(2), 621–629. doi:10.1016/j.ijhm.2011.12.006 Au, W., Chan, K., & Wong, A. (2006). A fuzzy approach to partitioning continuous attributes for classification. IEEE Transactions on Knowledge and Data Engineering, 18(5), 715–719. Avkiran, N. K. (2001). Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis. Socio-Economic Planning Sciences, 35(1), 57–80. doi:10.1016/S0038-0121(00)00010-0 Bachouch, R. B., Guinet, A., & Hajri-Gabouj, S. (2012). An integer linear model for hospital bed planning. International Journal of Production Economics, 140(2), 833–843. doi:10.1016/j.ijpe.2012.07.023 Ban, A. (2008). Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval. Fuzzy Sets and Systems, 159(11), 1327–1344. doi:10.1016/j.fss.2007.09.008 Ban, A., & Coroianu, L. (2012). Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity. International Journal of Approximate Reasoning, 53(5), 805–836. doi:10.1016/j.ijar.2012.02.001 Banaiyan, a., Mahdiani, H. R., & Fakhraie, S. M. (2005). Cost performance Coanalysis in VLSI implementation of existing and new defuzzification methods. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06) (Vol. 1, pp. 1–6). doi:10.1109/CIMCA.2005.1631367 Banaiyan, A., Mahdiani, H. R., & Fakhraie, S. M. (2006). Software implementation issues of existing and new defuzzification methods. In 2006 IEEE International Conference on Fuzzy Systems (pp. 1817–1822). Ieee. doi:10.1109/FUZZY.2006.1681952 Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092. Barro, S., & Marin, R. (Eds.). (2002). Fuzzy logic in medicine. New York: Springer-Verlag. doi:10.1007/9783790818048 Bede, B. (2013). Mathematics of fuzzy sets and fuzzy logic. (J. Kacprzyk, Ed.) (Vol. 295). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-35221-8 Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), 141 – 164. Belton, V., & Vickers, S. P. (1993). Demystifying DEA — A visual interactive approach based on multiple criteria analysis. Journal of the Operational Research Society, 44(9), 883–896. doi:10.1057/jors.1993.157 Biswas, A., & Pal, B. B. (2005). Application of fuzzy goal programming technique to land use planning in agricultural system. Omega, 33(5), 391–398. doi:10.1016/j.omega.2004.07.003 Bodjanova, S. (2006). Median alpha-levels of a fuzzy number. Fuzzy Sets and Systems, 157(7), 879–891. doi:10.1016/j.fss.2005.10.015 Bottle, A., Aylin, P., & Majeed, A. (2006). Identifying patients at high risk of emergency hospital admissions: A logistic regression analysis. Journal of the Royal Society of Medicine, 99(8), 406–414. doi:10.1258/jrsm.99.8.406 Bouyssou, D. (1999). Using DEA as a tool for MCDM: Some remarks. Journal of the Operational Research Society, 50(9), 974–978. doi:10.2307/3010194 Bray, S., Caggiani, L., & Ottomanelli, M. (2015). Measuring transport systems efficiency under uncertainty by fuzzy sets theory based data envelopment analysis: Theoretical and practical comparison with traditional DEA model. Transportation Research Procedia, 5(2015), 186–200. doi:10.1016/j.trpro.2015.01.005 Briec, W., & Kerstens, K. (2006). Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms. Top, 14(1), 135–166. doi:Doi 10.1007/Bf02579006 Brockett, P. L., Charnes, A., Cooper, W. W., Huang, Z. M., & Sun, D. B. (1997). Data transformations in DEA cone ratio envelopment approaches for monitoring bank performances. European Journal of Operational Research, 98(1997), 250–268. doi:10.1016/S0377-2217(97)83069-X Caley, M., & Sidhu, K. (2011). Estimating the future healthcare costs of an aging population in the UK: Expansion of morbidity and the need for preventative care. Journal of Public Health, 33(1), 117–122. doi:10.1093/pubmed/fdq044 Caramia, M., & Dell’Olmo, P. (2008). Multi-objective optimization. In Multiobjective Management in Freight Logistics (pp. 11–36). London: Springer-Verlag. doi:10.1007/978-1-84800-382-8 Cardoen, B., Demeulemeester, E., & Beliën, J. (2010). Operating room planning and scheduling: A literature review. European Journal of Operational Research, 201(3), 921–932. doi:10.1016/j.ejor.2009.04.011 Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315–326. doi:10.1016/S0165-0114(00)00043-9 Chaloob, I. Z., Ramli, R., & Nawaw, M. K. M. (2016). A new multi-interval weights approach in fuzzy goal programming for a multi-criteria problem. International Journal of Mathematics in Operational Research, 9(2), 214–229. Chang, P. T., & Lee, E. S. (1994). Ranking of fuzzy sets based on the concept of existence. Computers Math. Applic., 27(9110), 1–21. Chang, Y.-H., Yeh, C.-H., & Chang, Y.-W. (2013). A new method selection approach for fuzzy group multicriteria decision making. Applied Soft Computing, 13(4), 2179–2187. doi:10.1016/j.asoc.2012.12.009 Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming. Wiley, New-York. doi:10.1287/mnsc.4.1.38 Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30(1-2), 91–107. doi:10.1016/0304-4076(85)90133-2 Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (Eds.). (1994). Data envelopment analysis: Theory, methodology and applications. Vasa. New York: Springer Science & Business Media. doi:10.1007/978-94-011-0637-5 Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. doi:10.1016/0377-2217(78)90138-8 Chen, C.-M., Du, J., Huo, J., & Zhu, J. (2012). Undesirable factors in integer-valued DEA: Evaluating the operational efficiencies of city bus systems considering safety records. Decision Support Systems, 54(1), 330–335. doi:10.1016/j.dss.2012.05.040 Chen, L.-H., & Tsai, F.-C. (2001). Fuzzy goal programming with different importance and priorities. European Journal of Operational Research, 133(3), 548–556. doi:10.1016/S0377-2217(00)00201-0 Chen, S.-H. (1985). Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems, 17(2), 113–129. doi:10.1016/0165-0114(85)90050-8 Chen, S.-J. J., & Hwang, C.-L. (1992). Fuzzy multiple attribute decision making: Methods and applications. New York: Springer-Verlag. doi:10.1007/978-3-642-46768-4 Cheng, C.-H. (1998). A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems, 95(1998), 307–317. Chu, T.-C., & Tsao, C.-T. (2002). Ranking fuzzy numbers with an area between the centroid point and original point. Computers & Mathematics with Applications, 43(1-2), 111–117. doi:10.1016/S0898-1221(01)00277-2 Clark, T. D., Larson, J. M., Mordeson, J. N., Potter, J. D., & Wierman, M. J. (2008). Applying fuzzy mathematics to formal models in comparative politics. Chennai: Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-540-77461-7 Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: Prior to choosing a model. Omega, 44(2014), 1–4. doi:10.1016/j.omega.2013.09.004 Cook, W. D., & Zhu, J. (2005). Modeling performance measurement: Applications and implementation issues in DEA. Journal of Chemical Information and Modeling (Vol. 53). Boston: pringer Science + Business Media, Inc. doi:10.1017/CBO9781107415324.004 Cooper, W. W. (2005). Origins , uses of , and relations between goal programming and data envelopment analysis. Journal of Multi-Criteria Decision Analysis, 13(1), 3–11. Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Introduction to data envelopment analysis and its uses: with DEA-solver software and references. . New York: Springer Science & Business Media. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-Solver Software. (Second Edi.). New York: Springer. De Campos Ibáñez, L. M., & Muñoz, A. G. (1989). A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems, 29(1989), 145–153. doi:10.1016/0165-0114(89)90188-7 De, P. K., & Yadav, B. (2011). An algorithm to solve multi-objective assignment problem using interactive fuzzy goal programming approach. Int. J. Contemp. Math. Sciences, 6(34), 1651–1662. Deb, K. (2014). Multi-objective optimization. In E. K. Burke & G. Kendall (Eds.), Search methodologies: Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (Second Edi., pp. 403–449). New York: Springer. doi:10.1007/978-1-4614-6940-7_15 Deng, Y., Zhenfu, Z., & Qi, L. (2006). Ranking fuzzy numbers with an area method using radius of gyration. Computers & Mathematics with Applications, 51(6-7), 1127–1136. doi:10.1016/j.camwa.2004.11.022 Dhingra, A. K., & Moskowitz, H. (1991). Application of fuzzy theories to multiple objective decision making in system design. European Journal of Operational Research, 53(3), 348–361. doi:10.1016/0377-2217(91)90068-7 Diwekar, U. (2008). Introduction to applied optimization. Springer Science+Business Media, LLC (Second Edi., Vol. 22). New York. doi:10.1007/978-0-387-76635-5 Domańska, D., & Wojtylak, M. (2010). Change a sequence into a fuzzy number. In L. Cao, J. Zhong, & Y. Feng (Eds.), Advanced Data Mining and Applications (pp. 55–62). New York: Springer Berlin Heidelberg. Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2015). A crossefficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Computers & Industrial Engineering, 79(2015), 103–114. doi:10.1016/j.cie.2014.10.026 Dowsland, K. A. (2014). Classical techniques. In E. K. Burke & G. Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (pp. 97–125). New York: Springer Science+Business Media. doi:10.1007/978-1-60761-842-3_19 Doyle, J., & Green, R. (1993). Data envelopment analysis and multiple criteria decision making. OMEGA Int. J. ofMgmt Sci., 21(6), 713–715. Driankov, D., Hellendoorn, H., & Reinfrank, M. (1996). An introduction to fuzzy control (2nd ed.). New York: Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-662-03284- Du, J., Chen, C.-M., Chen, Y., Cook, W. D., & Zhu, J. (2012). Additive superefficiency in integer-valued data envelopment analysis. European Journal of Operational Research, 218(1), 186–192. doi:10.1016/j.ejor.2011.10.023 Du, J., Liang, L., Chen, Y., & Bi, G. (2010). DEA-based production planning. Omega, 38(1-2), 105–112. doi:10.1016/j.omega.2009.07.001 Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184(1), 3–28. doi:10.1016/j.fss.2011.06.003 Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. SIAM Review (Vol. 144). New York: Academic press. doi:10.1137/1027081 Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24(3), 279–300. doi:doi:10.1016/0165-0114(87)90028-5 Dubois, D., & Prade, H. (Eds.). (2000). Fundamentals of fuzzy sets. Springer Science+Business Media, LLC. Duch, W. (2005). Uncertainty of data, fuzzy membership functions, and multilayer perceptrons. IEEE Transactions on Neural Networks, 16(1), 10–23. doi:10.1109/TNN.2004.836200 Duch, W., & Jankowski, N. (1997). New neural transfer functions. Applied Mathematics and Computer Science, 7(1997), 639–658. Economic Planning Unit. (2013). Malaysian well-being report 2013. Ehrgott, M., & Gandibleux, X. (Eds.). (2003). Multiple criteria optimization: State of the art annotated bibliographic surveys. Dordrecht: Kluwer Academic Publishers. Eiselt, H. A., & Sandblom, C.-L. (2007). Linear Programming and its Applications. New York: Springer Science & Business Media. Emrouznejad, A., & Amin, G. R. (2009). DEA models for ratio data: Convexity consideration. Applied Mathematical Modelling, 33(1), 486–498. doi:10.1016/j.apm.2007.11.018 Emrouznejad, A., Tavana, M., & Hatami-Marbini, A. (2014). The State of the Art in Fuzzy Data Envelopment Analysis. In A. Emrouznejad & M. Tavana (Eds.), Performance Measurement with Fuzzy Data Envelopment Analysis (pp. 1–45). Springer Berlin Heidelberg. Esogbue, A. O., Song, Q., & Hearnes, W. E. (2000). Defuzzification Filters and Applications to Power System Stabilization Problems. Journal of Mathematical Analysis and Applications, 251(1), 406–432. doi:http://dx.doi.org/10.1006/jmaa.2000.7116 Fang, H.-H., Lee, H.-S., Hwang, S.-N., & Chung, C.-C. (2013). A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega, 41(4), 731–734. doi:10.1016/j.omega.2012.10.004 Färe, R., & Lovell, C. . K. (1978). Measuring the technical efficiency of production. Journal of Economic Theory, 19(1), 150–162. doi:10.1016/0022- 0531(78)90060-1 Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, 120(3), 253–290. doi:10.1016/S0377-2217(01)00022-4 Fortemps, P., & Roubens, M. (1996). Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems, 82(3), 319–330. doi:10.1016/0165-0114(95)00273-1 Fukuyama, H., & Sekitani, K. (2012). Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming. European Journal of Operational Research, 221(1), 165–174. doi:10.1016/j.ejor.2012.02.035 Garavaglia, G., Lettieri, E., Agasisti, T., & Lopez, S. (2011). Efficiency and quality of care in nursing homes: An Italian case study. Health Care Manag Sci, 14(1), 22–35. Ginart, A., & Sanchez, G. (2002). Fast defuzzification method based on centroid estimation. Applied Modelling and Simulation, 58(1), 20–25. Giokas, D. I. (2001). Greek hospitals: How well their resources are used. Omega, 29(1), 73–83. doi:10.1016/S0305-0483(00)00031-1 Goetschel, R., & Voxman, W. (1986). Elementary fuzzy calculus. Fuzzy Sets and Systems, 18(1), 31–43. doi:10.1016/0165-0114(86)90026-6 Golany, B. (1988). An interactive MOLP procedure for the extension of DEA to effectiveness analysis. Journal of the Operational Research Society, 39(8), 725–734. Grzegorzewski, P. (2002). Nearest interval approximation of a fuzzy number. Fuzzy Sets and Systems, 130(3), 321–330. doi:10.1016/S0165-0114(02)00098-2 Grzegorzewski, P., & Mrówka, E. (2005). Trapezoidal approximations of fuzzy numbers. Fuzzy Sets and Systems, 153(1), 115–135. doi:10.1016/j.fss.2004.02.015 Grzegorzewski, P., & Mrówka, E. (2007). Trapezoidal approximations of fuzzy numbers—revisited. Fuzzy Sets and Systems, 158(7), 757–768. doi:10.1016/j.fss.2006.11.015 Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets and Systems, 119(1), 149–160. doi:10.1016/S0165-0114(99)00106-2 Gupta, S. K., & Dangar, D. (2010). Duality in fuzzy quadratic programming with exponential membership functions. Fuzzy Information and Engineering, 2(4), 337–346. doi:10.1007/s12543-010-0054-5 Gwo-Hshiung, T., & Huang, J.-J. (2011). Multiple attribute decision making: methods and applications. New York: Taylor & Francis Group. Hajiagha, S. H. R., Mahdiraji, H. A., & Sadat, S. H. (2013). Multi‐ objective linear programming with interval coefficients. Kybernetes, 42(3), 482–496. doi:10.1108/03684921311323707 Hajjari, T. (2011). On deviation degree methods for ranking fuzzy numbers. Australian Journal of Basic and Applied Sciences, 5(5), 750–758. Hajjari, T., & Abbasbandy, S. (2011). A promoter operator for defuzzification methods. Australian Journal of Basic and Applied Sciences, 5(10), 1096–1105. Hannan, E. L. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248. doi:10.1016/0165-0114(81)90002-6 Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214(3), 457–472. doi:10.1016/j.ejor.2011.02.001 Hatami-Marbini, A., Saati, S., & Makui, A. (2009). An application of fuzzy numbers ranking in performance analysis. Journal of Applied Sciences, 9(9), 1770–1775. doi:: 10.3923/jas.2009.1770.1775 Hatami-Marbini, A., Saati, S., & Tavana, M. (2011). Data envelopment analysis with fuzzy parameters: An interactive approach. International Journal of Operations Research and Information Systems, 2(3), 39–53. doi:10.4018/joris.2011070103 Hatami-Marbini, A., Tavana, M., & Emrouznejad, A. (2012). Productivity growth and efficiency measurements in fuzzy environments with an application to health care. International Journal of Fuzzy System Applications, 2(2), 1–35. doi:10.4018/ijfsa.2012040101 Hatzichristos, T., & Potamias, J. (2004). Defuzzification operators for geographical data. In S. A. Brandt (Ed.), Proc. 12th Int. Conf. on Geoinformatics−Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 (pp. 481–488). Sweden. Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81–86. doi:10.1016/0165-0114(92)90062-9 Hou, F. (2016). The prametric-based GDM procedure under fuzzy environment. Group Decision and Negotiation, 25(2016), 1–14. doi:10.1007/s10726-015-9468-0 Hsiao, B., Chern, C. C., Chiu, Y. H., & Chiu, C. R. (2011). Using fuzzy superefficiency slack-based measure data envelopment analysis to evaluate Taiwan’s commercial bank efficiency. Expert Systems with Applications, 38(8), 9147–9156. doi:10.1016/j.eswa.2011.01.075 Huang, C., & Shi, Y. (2002). Towards efficient fuzzy information processing. (J. Kacprzyk, Ed.). New York: Springer-Verlag Berlin Heidelber. doi:10.1007/978-3-7908-1785-0 Huguenin, J.-M. (2015). Data envelopment analysis and non-discretionary inputs: How to select the most suitable model using multi-criteria decision analysis. Expert Systems with Applications, 42(5), 2570–2581. doi:10.1016/j.eswa.2014.11.004 Inuiguchi, M., & Kume, Y. (1991). Goal programming problems with interval coefficients and target intervals. European Journal of Operational Research, 52(3), 345–360. doi:10.1016/0377-2217(91)90169-V Ishizaka, A., & Nemery, P. (2013). Multicriteria decision analysis: Methods and software. Chichester, UK: John Wiley & Sons, Ltd. Jahanshahloo, G. R., Pourkarimi, L., & Zarepisheh, M. (2006). Modified MAJ model for ranking decision making units in data envelopment analysis. Applied Mathematics and Computation, 174(2006), 1054–1059. doi:10.1016/j.amc.2005.06.001 Jahanshahloo, G. R., Soleimani-damaneh, M., & Nasrabadi, E. (2004). Measure of efficiency in DEA with fuzzy input–output levels: A methodology for assessing, ranking and imposing of weights restrictions. Applied Mathematics and Computation, 156(1), 175–187. doi:10.1016/j.amc.2003.07.036 Johnes, J. (2006). Data envelopment analysis and its application to the measurement of efficiency in higher education. Economics of Education Review, 25(3), 273–288. doi:10.1016/j.econedurev.2005.02.005 Jones, D., & Tamiz, M. (2010). Practical goal programming (Vol. 141). New York: Springer. Juan, Y.-K. (2009). A hybrid approach using data envelopment analysis and casebased reasoning for housing refurbishment contractors selection and performance improvement. Expert Systems with Applications, 36(3), 5702–5710. doi:10.1016/j.eswa.2008.06.053 Kahraman, C. (2008). Multi-criteria decision making methods and fuzzy sets. In P. M. Pardalos & D.-Z. Du (Eds.), Fuzzy multi-criteria decision making (pp. 1–18). New York: Springer Science+Business Media, LLC. doi:10.1007/978-0-387-76813-7 Kao, C. (2010). Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Applied Mathematical Modelling, 34(7), 1779–1787. doi:10.1016/j.apm.2009.09.022 Kao, C., & Liu, S.-T. (2000). Data envelopment analysis with missing data: an application to university libraries in Taiwan. Journal of the Operational Research Society, 51(8), 897–905. Kao, C., & Liu, S.-T. (2003). A mathematical programming approach to fuzzy efficiency ranking. International Journal of Production Economics, 86(2), 145–154. doi:10.1016/S0925-5273(03)00026-4 Katharaki, M., & Katharakis, G. (2010). A comparative assessment of Greek Universities’ efficiency using quantitative analysis. International Journal of Educational Research, 49(4-5), 115–128. doi:10.1016/j.ijer.2010.11.001 Kaufmann, a. (1986). On the relevance of fuzzy sets for operations research. European Journal of Operational Research, 25(3), 330–335. doi:10.1016/0377-2217(86)90264-X Keshavarz, E., & Toloo, M. (2015). Efficiency status of a feasible solution in the multi-objective integerlinear programming problems: A DEA methodology. Applied Mathematical Modelling, 39(12), 3236–3247. doi:10.1016/j.apm.2014.11.032 Khalili-Damghani, K., Tavana, M., & Haji-Saami, E. (2015). A data envelopment analysis model with interval data and undesirable output for combined cycle power plant performance assessment. Expert Systems with Applications, 42(2), 760–773. doi:10.1016/j.eswa.2014.08.028 Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy, 63(3013), 189–194. doi:10.1016/j.energy.2013.09.021 Kikuchi, S. (2000). A method to defuzzify the fuzzy number: transportation problem application. Fuzzy Sets and Systems, 116(1), 3–9. doi:10.1016/S0165- 0114(99)00033-0 Kim, S.-C., Ira, H., Young, K. K., & Buckley, T. A. (2000). Flexible bed allocation and performance in the intensive care unit. Journal of Operations Management, 18(4), 427–443. doi:10.1016/S0272-6963(00)00027-9 Kokangul, A. (2008). A combination of deterministic and stochastic approaches to optimize bed capacity in a hospital unit. Computer Methods and Programs in Biomedicine, 90(1), 56–65. doi:10.1016/j.cmpb.2008.01.001 Köksal, G., & Nalçaci, B. (2006). The relative efficiency of departments at a Turkish engineering college: A data envelopment analysis. Higher Education, 51(2), 173–189. doi:10.1007/sl0734-004-6380-y Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007. doi:10.1016/j.ress.2005.11.018 Kuah, C. T., & Wong, K. Y. (2011). Efficiency assessment of universities through data envelopment analysis. Procedia Computer Science, 3(2011), 499–506. doi:10.1016/j.procs.2010.12.084 Kumar, S., & Gulati, R. (2014). Deregulation and Effciency of Indian Banks. New Delhi: Springer India. Lai, Y.-J., & Hwang, C.-L. (1992). Fuzzy mathematical programming: Methods and applications (Vol. 7). Berlin Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-48753-8 Lancaster, S. S., & Wierman, M. J. (2003). Empirical study of defuzzification. In 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS (pp. 121–126). IEEE. doi:10.1109/NAFIPS.2003.1226767 Leberling, H. (1981). On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets and Systems, 6(2), 105–118. doi:10.1016/0165-0114(81)90019-1 Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. II. Systems, Man and Cybernetics, IEEE Transactions, 20(1990), 404–418. doi:10.1109/21.52551 Lee, H. S. (2000). A new fuzzy ranking method based on fuzzy preference relation. In Systems, Man, and Cybernetics, 2000 IEEE International Conference (Vol. 5, pp. 3416–3420). IEEE. Lee, H. S., Shen, P. D., & Chyr, W. L. (2005). A fuzzy method for measuring efficiency under fuzzy environment. In R. Khosla, R. J. Howlett, & L. C. Jain (Eds.), (Vol. 3682, pp. 343–349). Springer Berlin Heidelberg. Lee, K. H. (2006). First course on fuzzy theory and applications. Berlin Heidelberg: Springer Science & Business Media. Leekwijck, W. Van, & Kerre, E. E. (1999). Defuzzification: criteria and classification. Fuzzy Sets and Systems, 108(1999), 159–178. Lertworasirikul, S. (2002). Fuzzy data envelopment analysis (DEA). Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. North Carolina State University. Lertworasirikul, S., Fang, S.-C., Joines, J. A., & Nuttle, H. L. W. (2003a). Fuzzy data envelopment analysis (DEA): A possibility approach. Fuzzy Sets and Systems, 139(2), 379–394. doi:10.1016/S0165-0114(02)00484-0 Lertworasirikul, S., Fang, S.-C., Joines, J. A., & Nuttle, H. L. W. (2003b). Fuzzy data envelopment analysis DEA: A credibility approach. In J.-L. Verdegay (Ed.), Fuzzy Sets Based Heuristics for Optimization (pp. 141–158). Springer-Verlag Berlin Heidelberg. Lertworasirikul, S., Fang, S.-C., Nuttle, H. L. W., & Joines, J. A. (2003). Fuzzy BCC model for data envelopment analysis. Fuzzy Optimization and Decision Making, 2(4), 337–358. Lewin, a Y., & Seiford, L. M. (1997). Extending the frontiers of data envelopment analysis. Annals of Operations Research, 73(1997), 1–11. doi: Doi 10.1023/A:1018964708729 Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328–1332. doi:10.1016/j.fss.2005.12.003 Liu, B., & Liu, Y. (2002). Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Systems, IEEE Transactions on, 10(4), 445–450. Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3–15. doi:10.1016/j.omega.2010.12.006 Liu, S.-T. (2008). A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Computers & Industrial Engineering, 54(1), 66–76. doi:10.1016/j.cie.2007.06.035 Liu, S.-T. (2010). Measuring and categorizing technical efficiency and productivity change of commercial banks in Taiwan. Expert Systems with Applications, 37(4), 2783–2789. doi:10.1016/j.eswa.2009.09.013 Liu, S.-T., & Chuang, M. (2009). Fuzzy efficiency measures in fuzzy DEA/AR with application to university libraries. Expert Systems with Applications, 36(2), 1105–1113. doi:10.1016/j.eswa.2007.10.013 Liu, X. (2007). Parameterized defuzzification with maximum entropy weighting function—another view of the weighting function expectation method. Mathematical and Computer Modelling, 45(1-2), 177–188. doi:10.1016/j.mcm.2006.04.014 Lotfi, F. H., Jahanshahloo, G. R., Mozaffari, M. R., & Gerami, J. (2011). Finding DEA-efficient hyperplanes using MOLP efficient faces. Journal of Computational and Applied Mathematics, 235(5), 1227–1231. doi:10.1016/j.cam.2010.08.007 Lotfi, F. H., Jahanshahloo, G. R., Soltanifar, M., Ebrahimnejad, a., & Mansourzadeh, S. M. (2010). Relationship between MOLP and DEA based on output-orientated CCR dual model. Expert Systems with Applications, 37(6), 4331–4336. doi:10.1016/j.eswa.2009.11.066 Lu, J., Zhang, G., Ruan, D., & Wu, F. (2007). Multi-objective group decision making (Vol. 6). London: Imperial College Press. doi:10.1142/p505 Luenberger, D. G., & Ye, Y. (2008). Linear and Nonlinear Programming (Third Edi.). New York: Springer Science+Business Media, LLC. doi:10.1007/s13398-014-0173-7.2 Luptacik, M. (2010). Mathematical optimization and economic analysis (Vol. 36). New York: Springer. doi:10.1007/s13398-014-0173-7.2 Luptácik, M. (2010). Data Envelopment Analysis. In P. M. Pardalos & D.-Z. Du (Eds.), Mathematical Optimization and Economic Analysis (Vol. 36, pp. 135–185). New York: Springer. doi:10.1007/978-0-387-89552-9 Ma, G., & Demeulemeester, E. (2013). A multilevel integrative approach to hospital case mix and capacity planning. Computers and Operations Research, 40(9), 2198–2207. doi:10.1016/j.cor.2012.01.013 Ma, M., Kandel, A., & Friedman, M. (2000). A new approach for defuzzification. Fuzzy Sets and Systems, 111(3), 351–356. Mabuchi, S. (1993). A proposal for a defuzzification strategy by the concept of sensitivity analysis. Fuzzy Sets and Systems, 55(1), 1–14. doi:10.1016/0165-0114(93)90298-V Mahdiani, H. R., Banaiyan, A., Javadi, M. H. S., Fakhraie, S. M., & Lucas, C. (2013). Defuzzification block: New algorithms, and efficient hardware and software implementation issues. Engineering Applications of Artificial Intelligence, 26(1), 162–172. doi:10.1016/j.engappai.2012.07.001 Makui, A., Fathi, M., & Narenji, M. (2010). Interval weighted comparison matrices:– A review. International Journal of Industrial Engineering & Production Research, 20(4), 139–156. Manaf, N. H. A., & Nooi, P. S. (2009). Patient Satisfaction as An Indicator of Service Quality In Malaysian Public Hospitals. Asian Journal on Quality, 10(1), 77–87. doi:10.1108/15982688200700028 Marcon, E., Kharraja, S., Smolski, N., Luquet, B., & Viale, J. P. (2003). Determining the number of beds in the postanesthesia care unit: a computer simulation flow approach. Anesthesia and Analgesia, 96(5), 1415–1423, table of contents. doi:10.1213/01.ANE.0000056701.08350.B9 Mateo, J. R. S. C. (2012). Multi-criteria analysis. In J. R. S. C. Mateo (Ed.), Multi criteria analysis in the renewable energy industry (pp. 7–10). New York: Springer. doi:10.1007/978-1-4471-2346-0 Mehrabian, S., Alirezaee, M. R., & Jahanshahloo, G. R. (1999). A complete efficiency ranking of decision making units in data envelopment analysis. Computational Optimization and Applications, 14(1999), 261–266. Ministry of Health Malaysia. (2011a). Country health plan 2011-2015. Ministry of Health Malaysia. Ministry of Health Malaysia. (2011b). National healthcare establishments and workforce statistics (Hospital) 2008-2009. The National Healthcare Statistics Initiative (NHSI. Modarres, M., & Sadi-Nezhad, S. (2001). Ranking fuzzy numbers by preference ratio. Fuzzy Sets and Systems, 118(3), 429–436. doi:10.1016/S0165-0114(98)00427-8 Molavi, F., Aryanezhad, M. B., & Alizadeh, M. S. (2005). An efficiency measurement model in fuzzy environment, using data envelopment analysis. Journal of Industrial Engineering International, 1(1), 50–58. Moore, R. E. (1979). Methods and applications of interval analysis. Moore, R. E., Kearfortt, R. B., & Cloud, M. J. (2009). Introduction to interval analysis. Philadelphia: Society for Industrial and Applied Mathematics. doi:10.2307/2004792 Moreno-Garcia, J., Jimenez Linares, L., Rodriguez-Benitez, L., & del Castillo, E. (2013). Fuzzy numbers from raw discrete data using linear regression. Information Sciences, 233(2013), 1–14. doi:10.1016/j.ins.2013.01.023 Morey, R., Fine, D., & Loree, S. (1990). Comparing the allocative efficiencies of hospitals. Omega, 18(1), 71–83. doi:10.1016/0305-0483(90)90019-6 Murty, K. G. (2010). Optimization for Decision Making Linear and Quadratic Modelse. New York: Springer Science+Business Media, LLC. Narasimhan, R. (1980). Goal Programming in a fuzzy environmentm. Decision Sciences, 11(2), 325–336. Nasibov, E. N., & Peker, S. (2008). On the nearest parametric approximation of a fuzzy number. Fuzzy Sets and Systems, 159(11), 1365–1375. doi:10.1016/j.fss.2007.08.005 Nasibov, E. N., & Peker, S. (2011). Exponential Membership Function Evaluation based on Frequency. Asian Journal of Mathematics & Statistics, 4(1), 8–20. Nejad, A. M., & Mashinchi, M. (2011). Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number. Computers & Mathematics with Applications, 61(2), 431–442. doi:10.1016/j.camwa.2010.11.020 Nguyen, J. M., Six, P., Antonioli, D., Glemain, P., Potel, G., Lombrail, P., & Beux, P. Le. (2005). A simple method to optimize hospital beds capacity. International Journal of Medical Informatics, 74(1), 39–49. Oddoye, J. P., Jones, D. F., Tamiz, M., & Schmidt, P. (2009). Combining simulation and goal programming for healthcare planning in a medical assessment unit. European Journal of Operational Research, 193(1), 250–261. doi:10.1016/j.ejor.2007.10.029 Oddoye, J. P., Yaghoobi, M. a, Tamiz, M., Jones, D. F., & Schmidt, P. (2007). A multi-objective model to determine efficient resource levels in a medical assessment unit. Journal of the Operational Research Society, 58(12), 1563–1573. doi:10.1057/palgrave.jors.2602315 Pal, B. B., Moitra, B. N., & Maulik, U. (2003). A goal programming procedure for fuzzy multiobjective linear fractional programming problem. Fuzzy Sets and Systems, 139(2), 395–405. doi:10.1016/S0165-0114(02)00374-3 Pal, B. B., & Sen, S. (2008). A linear goal programming procedure for academic personel management problems in university system. IEEE Region 10 Colloquium and 3rd International Conference on Industrial and Information Systems, ICIIS 2008, 1–7. doi:10.1109/ICIINFS.2008.4798452 Pant, S. N., & Holbert, K. E. (2004). Fuzzy logic in decision making and signal processing. Powerzone, Arizona State University. Retrieved from https://scholarchio.wordpress.com/fuzzy-logic/ about/ Paradi, J. C., Rouatt, S., & Zhu, H. (2011). Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega, 39(1), 99–109. doi:10.1016/j.omega.2010.04.002 Peaw, T., & Mustafa, A. (2006). Incorporating AHP in DEA analysis for smartphone comparisons. In Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications (pp. 307–315). Penang, Malaysia. Pedrycz, W. (1994). Why triangular membership functions? Fuzzy Sets and Systems, 64(1), 21–30. doi:10.1016/0165-0114(94)90003-5 Peidro, D., & Vasant, P. (2011). Transportation planning with modified S-curve membership functions using an interactive fuzzy multi-objective approach. Applied Soft Computing, 11(2), 2656–2663. doi:10.1016/j.asoc.2010.10.014 Pekelman, D., & Sen, S. K. (1974). Mathematical Programming Models for the Determination of Attribute Weights. Management Science, 20(8), 1217–1229. doi:10.1287/mnsc.20.8.1217 Porembski, M., Breitenstein, K., & Alpar, P. (2005). Visualizing efficiency and reference relations in data envelopment analysis with an application to the branches of a German Bank. Journal of Productivity Analysis, 23(2), 203–221. doi:10.1007/s11123-005-1328-5 Puri, J., & Yadav, S. P. (2013). A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector. Expert Systems with Applications, 40(5), 1437–1450. doi:10.1016/j.eswa.2012.08.047 Puri, J., & Yadav, S. P. (2014a). A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Systems with Applications, 41(14), 6419–6432. doi:10.1016/j.eswa.2014.04.013 Puri, J., & Yadav, S. P. (2014b). Fuzzy mix-efficiency in Fuzzy Data Envelopment Analysis and its application. In A. Emrouznejad & M. Tavana (Eds.), Performance Measurement with Fuzzy Data Envelopment Analysis (pp. 117–155). Berlin: Springer Berlin Heidelberg. Ralescu, A., & Visa, S. (2007). Obtaining Fuzzy Sets using Mass Assignment Theory-Consistency with Interpolation. In Annual Meeting of the North American Fuzzy Information Processing Society (pp. 436–440). North American: IEEE. Ramanathan, R. (2003). An introduction to data envelopment analysis: A tool for performance measurement. New Delhi: Sage Publications Inc. Ramanathan, R. (2006). Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. Computers & Operations Research, 33(5), 1289–1307. doi:10.1016/j.cor.2004.09.020 Ramesh, R., & Zionts, S. (2013). Multiple Criteria Decision Making. In S. I. Gass & M. C. Fu (Eds.), Encyclopedia of Operations Research and Management Science (pp. 1007–1013). Boston: Springer US. doi:10.1007/978-1-4419-1153-7 Rangan, N., Grabowski, R., Aly, H. Y., & Pasurka, C. (1988). The technical efficiency of US banks. Economics Letters, 28(2), 169–175. doi:10.1016/0165-1765(88)90109-7 Ray, S. C. (2004). Data Envelopment Analysis: Theory and techniques for economic and operations research. New York: Cambridge University Press. Romero, C. (2014). Handbook of critical issues in goal programming. Oxford: Pergamon Press. doi:10.1016/0160-9327(91)90093-Q Romero, C., & Rehman, T. (2003). Multiple criteria analysis for agricultural decisions (Second Edi., Vol. 40). Amsterdam: Elsevier Science B.V. doi:10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C Rondeau, L., Ruelas, R., Levrat, L., & Lamotte, M. (1997). A defuzzification method respecting the fuzzification. Fuzzy Sets and Systems, 86(3), 311–320. doi:10.1016/S0165-0114(95)00399-1 Rouhparvar, H., & Panahi, A. (2015). A new definition for defuzzification of generalized fuzzy numbers and its application. Applied Soft Computing, 30(2015), 577–584. doi:10.1016/j.asoc.2015.01.053 Roychowdhury, S., & Pedrycz, W. (2001). A Survey of defuzzification strategies. International Journal of Intelligent Systems, 16(2001), 679–695. doi:10.1002/int.1030 Runkler, T. A. (1997). Selection of appropriate defuzzification methods using application specific properties. Fuzzy Systems, IEEE Transactions on, 5(1), 72–79. doi:10.1109/91.554449Runkler, T. A. (2013). Kernel based defuzzification. In C. Moewes & A. Nürnberger (Eds.), Computational Intelligence in Intelligent Data Analysis (pp. 61–72). Berlin: Springer. doi:10.1007/978-3-642-32378-2_5 Saati, S., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optimization and Decision Making, 1(3), 255–267. doi:10.1023/A:1019648512614 Saati, S., Zarafat Angiz, M., Memariani, A., & Jahanshahloo, G. R. (2001). A model for ranking decision making units in data envelopment analysis. Ricerca Operativa, 3, 47–59. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1, 83–98. doi:10.1504/IJSSci.2008.01759 Sakawa, M., Nishizaki, I., & Katagiri, H. (2011). Fuzzy stochastic multiobjective programming. New York: Springer. doi:Doi 10.1007/978-1-4419-1640-2_1 Saneifard, R., & Saneifard, R. (2011). Evaluation of fuzzy linear regression models by parametric distance. Australian Journal of Basic and Applied Sciences, 5(3), 261–267. Sarkis, J. (2000). A comparative analysis of DEA as a discrete alternative multiple criteria decision tool. European Journal of Operational Research, 123(3), 543–557. doi:10.1016/S0377-2217(99)00099-5 Sen, P., & Yang, J.-B. (1998). Multiple criteria decision support in engineering design. London: Springer. doi:10.1007/978-1-4471-3020-8 Sen, S., & Pal, B. B. (2013). Interval goal programming approach to multiobjective fuzzy goal programming problem with interval weights. Procedia Technology, 10(2013), 587–595. doi:10.1016/j.protcy.2013.12.399 Sengupta, J. (2012). A Pareto Model of Efficiency Dynamics. In J. Sengupta (Ed.), Dynamics of Industry Growth (pp. 27–66). New York: Springer. doi:10.1007/978-1-4614-3852-6 Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers & Mathematics with Applications, 24(8-9), 259–266. doi:10.1016/0898-1221(92)90203-T Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73–105. Sherman, H. D., & Gold, F. (1985). Bank branch operating efficiency. Journal of Banking & Finance, 9(2), 297–315. doi:10.1016/0378-4266(85)90025-1 Shi, Y., & Sen, P. (2000). A new defuzzification method for fuzzy control of power converters. Industry Applications Conference, 2000., 2(C), 1202–1209. Siddique, N. (2014). Intelligent Control: A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms. IEEE Control Systems (Vol. 11). Switzerland: Springer. doi:10.1109/37.103351 Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to fuzzy logic using MATLAB. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-35781-0 Sladoje, N., Lindblad, J., & Nyström, I. (2011). Defuzzification of spatial fuzzy sets by feature distance minimization. Image and Vision Computing, 29(2-3), 127–141. doi:10.1016/j.imavis.2010.08.007 Spronk, J. (1981). Interactive multiple goal programming. Netherlands: Springer. Srinivasan, V. (1976). Linear Programming Computational Procedures for Ordinal Regression. Journal of the ACM (JACM), 23(3), 475–487. Starczewski, J. T. (2013). Advanced concepts in fuzzy logic and systems with membership uncertainty. Studies in Fuzziness and Soft Computing (Vol. 284). doi:10.1007/978-3-642-29520-1 Stewart, T. (1996). Relationships between data envelopment analysis and multicriteria decision analysis. Journal of the Operational Research Society, 47(5), 654–665. Sueyoshi, T. (1999). DEA non-parametric ranking test and index measurement: Slack-adjusted DEA and an application to Japanese agriculture cooperatives. Omega, 27(3), 315–326. doi:10.1016/S0305-0483(98)00057-7 Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36(1-2), 59–83. doi:10.1016/0020-0255(85)90026-X Sugihara, K., Ishii, H., & Tanaka, H. (2004). Interval priorities in AHP by interval regression analysis. European Journal of Operational Research, 158(3), 745–754. doi:10.1016/S0377-2217(03)00418-1 Szczepaniak, P. S., Lisboa, P. J. G., & Kacprzyk, J. (Eds.). (2000). Fuzzy systems in medicine. EUSFLAT Conf. Springer-Verlag Berlin Heidelberg GmbH. Thanassoulis, E., Portela, M. C. S., & Despi, O. (2008). Data envelopment analysis: The mathematical programming approach to efficiency analysis. In The measurement of productive efficiency and productivity growth (pp. 251–420). Oxford University Press, Inc. doi:10.1093/acprof:oso/9780195183528.001.0001 Tiwari, A. K., Tiwari, A., Samuel, C., & Pandey, S. K. (2013). Flexibility in assignment problem using fuzzy numbers with nonlinear membership functions. International Journal of Industrial Engineering & Technology (IJIET), 3(2), 1–218 Tiwari, R. N., Dharmar, S., & Rao, J. R. (1987). Fuzzy goal programming - An additive model. Fuzzy Sets and Systems, 24(1), 27–34. doi:10.1016/0165-0114(87)90111-4 Tlig, H., & Rebai, A. (2009). A mathematical approach to solve data envelopment analysis models when Data are LR fuzzy numbers. Applied Mathematical Sciences, 3(48), 2383–2396. Toloo, M. (2013). The most efficient unit without explicit inputs: An extended MILP-DEA model. Measurement, 46(9), 3628–3634. doi:10.1016/j.measurement.2013.06.030 Toloo, M. (2014). Selecting and full ranking suppliers with imprecise data: A new DEA method. The International Journal of Advanced Manufacturing Technology, 74(5-8), 1141–1148. doi:10.1007/s00170-014-6035-9 Toloo, M., & Kresta, A. (2014). Finding the best asset financing alternative: A DEA–WEO approach. Measurement, 55, 288–294. doi:10.1016/j.measurement.2014.05.015 Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(2001), 498–509. doi:10.1016/S0377-2217(99)00407-5 Tone, K. (2002). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 143(2002), 32–41. doi:10.1016/S0377-2217(01)00324-1 Tone, K., & Tsutsui, M. (2015). How to Deal with Non-Convex Frontiers in Data Envelopment Analysis. Journal of Optimization Theory and Applications, 166(2015), 1002–1028. doi:10.1007/s10957-014-0626-3 Treesatayapun, C., Kantapanit, K., & Dumronggittigule, S. (2003). Hvdc control system based on fuzzified input perceptron. In 2003 IEEE Bologna Power Tech Conference Proceedings, (Vol. 3, pp. 502–505). doi:10.1109/PTC.2003.1304439 Triantis, K., & Girod, O. (1998). A mathematical programming approach for measuring technical efficiency in a fuzzy environment. Journal of Productivity Analysis, 10(1998), 85–102. Triantis, K. P. (1997). Fuzzy nonradial DEA measures of technical efficiency. In IIn Innovation in Technology Management-The Key to Global Leadership. PICMET’97: Portland International Conference on Management and Technology. doi:10.1109/PICMET.1997.653637 Van Leekwijck, W., & E. Kerre, E. (2001). Continuity focused choice of maxima: Yet another defuzzification method. Fuzzy Sets and Systems, 122(2), 303–314. doi:10.1016/S0165-0114(00)00025-7 Vasant, P. (2006). Fuzzy decision making of profit function in production planning using S-curve membership function. Computers & Industrial Engineering, 51(4), 715–725. doi:10.1016/j.cie.2006.08.017 Velasquez, M., & Hester, P. T. (2013). An analysis o fmulti-criteria decision making methods. International Journal of Operations Research, 10(2), 56–66. Verma, R., Biswal, M. P., & Biswas, a. (1997). Fuzzy programming technique to solve multi-objective transportation problems with some non-linear membership functions. Fuzzy Sets and Systems, 91(1), 37–43. doi:10.1016/S0165-0114(96)00148-0 Verstraete, J. (2015). Algorithm for simultaneous defuzzification under constraints : shifted mean-max. In J. M. Alonso, H. Bustince, & M. Reformat (Eds.), 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (pp. 326–332). Atlantis Press. doi:10.2991/jnmp.2006.13.4.1 Voxman, W. (2001). Canonical representations of discrete fuzzy numbers. Fuzzy Sets and Systems, 118(3), 457–466. doi:10.1016/S0165-0114(99)00053-6 Wang, X., & Kerre, E. E. (2001). Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems, 118(3), 375–385. doi:10.1016/S0165-0114(99)00062-7 Wang, Y. M., & Chin, K. S. (2011). Fuzzy data envelopment analysis: A fuzzy expected value approach. Expert Systems with Applications, 38(9), 11678–11685. doi:10.1016/j.eswa.2011.03.049 Wang, Y. M., Luo, Y., & Liang, L. (2009). Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert Systems with Applications, 36(3 PART 1), 5205–5211. doi:10.1016/j.eswa.2008.06.102 Wang, Y.-M., & Elhag, T. M. S. (2007). A goal programming method for obtaining interval weights from an interval comparison matrix. European Journal of Operational Research, 177(1), 458–471. doi:10.1016/j.ejor.2005.10.066 Wang, Y.-M., & Luo, Y. (2009). Area ranking of fuzzy numbers based on positive and negative ideal points. Computers & Mathematics with Applications, 58(9), 1769–1779. doi:10.1016/j.camwa.2009.07.064 Wang, Y.-M., Yang, J.-B., & Xu, D.-L. (2005a). A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets and Systems, 152(3), 475–498. doi:10.1016/j.fss.2004.10.020 Wang, Y.-M., Yang, J.-B., & Xu, D.-L. (2005b). Interval weight generation approaches based on consistency test and interval comparison matrices. Applied Mathematics and Computation, 167(1), 252–273. doi:10.1016/j.amc.2004.06.080 Wang, Ying- Ming, & Elhag, T. (2007). A goal programming method for obtaining interval weights from an interval comparison matrix. European Journal of Operational Research, 177(1), 458–471. doi:10.1016/j.ejor.2005.10.066 Wang, Z.-J., Wang, W.-Z., & Li, K. W. (2009). A goal programming method for generating priority weights based on interval-valued intuitionistic preference relations. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 3(July), 1309–1314. doi:10.1109/ICMLC.2009.5212264 Wang, Z.-X., Liu, Y.-J., Fan, Z.-P., & Feng, B. (2009). Ranking L–R fuzzy number based on deviation degree. Information Sciences, 179(13), 2070–2077. doi:10.1016/j.ins.2008.08.017 Wanke, P., & Barros, C. (2014). Two-stage DEA: An application to major Brazilian banks. Expert Systems with Applications, 41(5), 2337–2344. doi:10.1016/j.eswa.2013.09.031 Watada, J. (2001). Fuzzy portfolio model for decision making in investment. In Yoshida & Yuj (Eds.), Dynamical Aspects in Fuzzy Decision Making (pp. 141–162). Physica-Verlag HD. doi:10.1007/978-3-7908-1817-8_7 Wen, M., You, C., & Kang, R. (2010). A new ranking method to fuzzy data envelopment analysis. Computers & Mathematics with Applications, 59(11), 3398–3404. doi:10.1016/j.camwa.2010.02.034 Winston, W. L., & Goldberg, J. B. (2004). Operations research applications and algorithms. Boston: Duxbury press. Wu, D. (Dash), Yang, Z., & Liang, L. (2006). Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis. Applied Mathematics and Computation, 181(1), 271–281. doi:10.1016/j.amc.2006.01.037 Xexéo, G. (2002). Fuzzy Logic. Computing Science Department and Systems and Computing Engineering Program, Federal University of Rio de Janeiro. doi:10.1007/s10916-009-9377-3 Xu, R., & Zhai, X. (2012). An improved method for ranking fuzzy numbers by distance minimization. In B.-Y. Cao & X.-J. Xie (Eds.), Fuzzy Engineering and Operations Research (pp. 147–153). Berlin Heidelberg: Springer Verlag. doi:10.1007/978-3-642-28592-9 Xue, F., Tang, W., & Zhao, R. (2008). The expected value of a function of a fuzzy variable with a continuous membership function. Computers & Mathematics with Applications, 55(6), 1215–1224. doi:10.1016/j.camwa.2007.04.042 Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143–161. doi:10.1016/0020-0255(81)90017-7 Yager, R. R. (1996). Knowledge-based defuzzification. Fuzzy Sets and Systems, 80(1996), 177–185. Yager, R. R., & Filev, D. P. (1995). Defuzzification with constraints. In Z. BIEN & K. C. MIN (Eds.), Fuzzy logic and its applications to engineering, information sciences, and intelligent systems (pp. 157–166). Dordrecht, The Netherlands: Kluwer Academic Publishers. Yager, R. R., & Zadeh, L. A. (Eds.). (1992). An introduction to fuzzy logic applications in intelligent systems. New York: Springer Science & Business Media. doi:10.1007/978-94-010-9042-1 Yeh, C.-H., & Chang, Y.-H. (2009). Modeling subjective evaluation for fuzzy group multicriteria decision making. European Journal of Operational Research, 194(2), 464–473. doi:10.1016/j.ejor.2007.12.029 Yong, D., & Qi, L. (2005). A TOPSIS-based centroid–index ranking method of fuzzy numbers and its application in decision-making. Cybernetics and Systems, 36(2005), 581–595. doi:10.1080/01969722.2013.762237 Yoshida, Y., & Kerre, E. E. (2002). A fuzzy ordering on multi-dimensional fuzzy sets induced from convex cones. Fuzzy Sets and Systems, 130(3), 343–355. doi:10.1016/S0165-0114(01)00202-0 Yougbaré, J. W., & Teghem, J. (2007). Relationships between Pareto optimality in multi-objective 0–1 linear programming and DEA efficiency. European Journal of Operational Research, 183(2), 608–617. doi:10.1016/j.ejor.2006.10.026 Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. Zerafat Angiz L., M., Emrouznejad, a., & Mustafa, a. (2010). Fuzzy assessment of performance of a decision making units using DEA: A non-radial approach. Expert Systems with Applications, 37(7), 5153–5157. doi:10.1016/j.eswa.2009.12.078 Zerafat Angiz L., M., Emrouznejad, A., & Mustafa, A. (2012). Fuzzy data envelopment analysis: A discrete approach. Expert Systems with Applications, 39(3), 2263–2269. doi:10.1016/j.eswa.2011.07.118 Zhang, Q., Li, X., & Li, D. M. (2011). Weight determination based on priority preference in multiple attribute decision making with interval numbers. In Proceedings of the 2011 Chinese Control and Decision Conference, CCDC 2011 (pp. 2232–2235). doi:10.1109/CCDC.2011.5968578 Zhou, Q., Purvis, M., & Kasabov, N. (1997). A membership function selection method for fuzzy neural networks. New Zealand: University of Otago. Zhou, Z., Zhao, L., Lui, S., & Ma, C. (2012). A generalized fuzzy DEA/AR performance assessment model. Mathematical and Computer Modelling, 55(11- 12), 2117–2128. doi:10.1016/j.mcm.2012.01.017 Zhu, J. (2009). Quantitative models for performance evaluation and benchmarking: Data envelopment analysis with spreadsheets (Second Edi.). New York: Springer Science & Business Media. Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1, 45–55. Zimmermann, H. J. (1983). Fuzzy mathematical programming. Computers & Operations Research, 10(4), 291–298. doi:10.1016/0305-0548(83)90004-7 Zimmermann, H. J. (1996). Fuzzy set theory and its applications. Zimmermann, H. J. (2001). Fuzzy set theory and its applications (fourth.). New York: Springer Science+Business Media, LLC. doi:10.1007/978-94-010-0646-0 Zimmermann, H. J. (2010). Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 317–332. doi:10.1002/wics.82