A compressive concrete strength prediction model using artificial neural networks

A building is at a high risk of destruction if the compressive concrete strength does not meet the required specification. Thus, the prediction of compressive concrete strength has become an important research area. Previous prediction models are based on fix numbers of attributes. Consequently, whe...

Full description

Saved in:
Bibliographic Details
Main Author: Guoji, Zang
Format: Thesis
Language:eng
eng
Published: 2017
Subjects:
Online Access:https://etd.uum.edu.my/6556/1/s817333_01.pdf
https://etd.uum.edu.my/6556/2/s817333_02.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A building is at a high risk of destruction if the compressive concrete strength does not meet the required specification. Thus, the prediction of compressive concrete strength has become an important research area. Previous prediction models are based on fix numbers of attributes. Consequently, when the number of attributes increase or decrease, the models could not be used. Thus, a compressive concrete strength prediction model which can work with different numbers of attribute is needed. The purpose of this study is to develop compressive concrete strength prediction models using different combinations of attributes. This study includes five stages: data collection, normalization, parameters identification, model construction and evaluation. The employed data set consists of nine attributes: water, cement, fine aggregate, coarse aggregate, age, fly ash, super plasticizer, blast furnace slag and compressive concrete strength. This study produced eight prediction models where each model has different combination of attributes. It also identified appropriate weights, learning rate, momentum and number of hidden nodes for each of the proposed model, and design a general artificial neural network (ANN) architecture. Model eight of the study produced a higher correlation coefficient (i.e., 0.973) than the existing study (i.e., 0.953). This study has successfully produced eight concrete strength prediction models with good coefficient correlation. The compressive strength prediction models would benefit civil engineers as they can use the models to identify the suitability of additional materials in concrete mix.