Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach

Robust linear discriminant analysis (RLDA) methods are becoming the better choice for classification problems as compared to the classical linear discriminant analysis (LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the usual location and scale estimators which ar...

Full description

Saved in:
Bibliographic Details
Main Author: Melik, Hameedah Naeem
Format: Thesis
Language:eng
eng
Published: 2017
Subjects:
Online Access:https://etd.uum.edu.my/6810/1/s819154_01.pdf
https://etd.uum.edu.my/6810/2/s819154_02.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uum-etd.6810
record_format uketd_dc
institution Universiti Utara Malaysia
collection UUM ETD
language eng
eng
advisor Ahad, Nor Aishah
Syed Yahaya, Sharipah Soaad
topic QA273-280 Probabilities
Mathematical statistics
spellingShingle QA273-280 Probabilities
Mathematical statistics
Melik, Hameedah Naeem
Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
description Robust linear discriminant analysis (RLDA) methods are becoming the better choice for classification problems as compared to the classical linear discriminant analysis (LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the usual location and scale estimators which are the sample mean and covariance matrix. The sensitivity of these estimators towards outliers will jeopardize the classification process. To alleviate the issue, robust estimators of location and covariance are proposed. Thus, in this study, two RLDA for two groups classification were modified using two highly robust location estimators namely Modified One-Step M-estimator (MOM) and Winsorized Modified One-Step M-estimator (WMOM). Integrated with a highly robust scale estimator, Qn, in the trimming criteria of MOM and WMOM, two new RLDA were developed known as RLDAMQ and RLDAWMQ respectively. In the computation of the new RLDA, the usual mean is replaced by MOM-Qn and WMOM-Qn accordingly. The performance of the new RLDA were tested on simulated as well as real data and then compared against the classical LDA. For simulated data, several variables were manipulated to create various conditions that always occur in real life. The variables were homogeneity of covariance (equal and unequal), samples (balanced and unbalanced), dimension of variables, and the percentage of contamination. In general, the results show that the performance of the new RLDA are more favorable than the classical LDA in terms of average misclassification error for contaminated data, although the new RLDA have the shortcoming of requiring more computational time. RLDAMQ works best under balanced sample sizes while RLDAWMQ surpasses the others under unbalanced sample sizes. When real financial data were considered, RLDAMQ shows capability in handling outliers with lowest misclassification error. As a conclusion, this research has achieved its primary objective which is to develop new RLDA for two groups classification of multivariate data in the presence of outliers.
format Thesis
qualification_name other
qualification_level Master's degree
author Melik, Hameedah Naeem
author_facet Melik, Hameedah Naeem
author_sort Melik, Hameedah Naeem
title Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_short Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_full Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_fullStr Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_full_unstemmed Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_sort robust linear discriminant analysis using mom-qn and wmom-qn estimators: coordinate-wise approach
granting_institution Universiti Utara Malaysia
granting_department Awang Had Salleh Graduate School of Arts & Sciences
publishDate 2017
url https://etd.uum.edu.my/6810/1/s819154_01.pdf
https://etd.uum.edu.my/6810/2/s819154_02.pdf
_version_ 1747828118203138048
spelling my-uum-etd.68102021-05-10T06:34:39Z Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach 2017 Melik, Hameedah Naeem Ahad, Nor Aishah Syed Yahaya, Sharipah Soaad Awang Had Salleh Graduate School of Arts & Sciences Awang Had Salleh Graduate School of Arts and Sciences QA273-280 Probabilities. Mathematical statistics Robust linear discriminant analysis (RLDA) methods are becoming the better choice for classification problems as compared to the classical linear discriminant analysis (LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the usual location and scale estimators which are the sample mean and covariance matrix. The sensitivity of these estimators towards outliers will jeopardize the classification process. To alleviate the issue, robust estimators of location and covariance are proposed. Thus, in this study, two RLDA for two groups classification were modified using two highly robust location estimators namely Modified One-Step M-estimator (MOM) and Winsorized Modified One-Step M-estimator (WMOM). Integrated with a highly robust scale estimator, Qn, in the trimming criteria of MOM and WMOM, two new RLDA were developed known as RLDAMQ and RLDAWMQ respectively. In the computation of the new RLDA, the usual mean is replaced by MOM-Qn and WMOM-Qn accordingly. The performance of the new RLDA were tested on simulated as well as real data and then compared against the classical LDA. For simulated data, several variables were manipulated to create various conditions that always occur in real life. The variables were homogeneity of covariance (equal and unequal), samples (balanced and unbalanced), dimension of variables, and the percentage of contamination. In general, the results show that the performance of the new RLDA are more favorable than the classical LDA in terms of average misclassification error for contaminated data, although the new RLDA have the shortcoming of requiring more computational time. RLDAMQ works best under balanced sample sizes while RLDAWMQ surpasses the others under unbalanced sample sizes. When real financial data were considered, RLDAMQ shows capability in handling outliers with lowest misclassification error. As a conclusion, this research has achieved its primary objective which is to develop new RLDA for two groups classification of multivariate data in the presence of outliers. 2017 Thesis https://etd.uum.edu.my/6810/ https://etd.uum.edu.my/6810/1/s819154_01.pdf text eng public https://etd.uum.edu.my/6810/2/s819154_02.pdf text eng public other masters Universiti Utara Malaysia Abu-Shawiesh, M. O. A., Banik, S., & Golam Kibria, B. M. (2011). A simulation study on some confidence intervals for the population standard deviation. Statistics and Operations Research Transactions, 35(2), 83–102. Abu-Shawiesh, M. O., & Abdullah, M. B. (2001). A new robust bivariate control chart for location. Communications in Statistics-Simulation and Computation, 30(3), 513-529. Acuna, E., & Rodriguez, C. (2004). The treatment of missing values and its effect on classifier accuracy. In Classification, Clustering, and Data Mining Applications, 639-647. Ahmed, S. W., & Lachenbruch, P. A. (1977). Discriminant analysis when scale contamination is present in the initial sample. Classification and clustering, 331-353. Alfaro, J. L., & Ortega, J. F. (2008). A robust alternative to Hotelling’s T2 control chart using trimmed estimators. Quality and Reliability Engineering International, 24(5), 601-611. Alfaro, J. L., & Ortega, J. F. (2009). A comparison of robust alternatives to Hotelling’s T2 control chart. Journal of Applied Statistics, 36(11–12), 1385–1396. Ali H. (2013). Efficient and highly robust Hotelling T² Control charts using reweighted mininum vector variance. Unpublished Ph.D. thesis, Universiti Utara Malaysia. Ali, H., & Yahaya, S. S. S. (2013). On robust Mahalanobis distance issued from minimum vector variance. Far East Journal of Mathematical Sciences, 74(2), 249. Ali, H., Yahaya, S. S. S., & Omar, Z.(2013). Robust hotelling T2 control chart with consistent minimum vector variance. Mathematical Problems in Engineering, 2013(Icoqsia), 695–702. Ali, H., Yahaya, S., S. S., & Omar, Z. (2015). Enhancing minimum vector variance estimators using reweighted scheme. Far East Journal of Mathematical Sciences, 98(7), 819-830. Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16, 125–127. Alrawashdeh, M. J., Sabri, S. R. M., & Ismail, M. T. (2012). Robust linear discriminant analysis with financial ratios in special interval. Applied Mathematical Sciences, 6(121), 6021–6034. Angiulli, F., & Pizzuti, C. (2005). Outlier mining in large high-dimensional data sets. IEEE Transactions on Knowledge and Data Engineering, 17(2), 203–215. Arjmandi, M. K., & Pooyan, M. (2012). An optimum algorithm in pathological voice quality assessment using wavelet-packet-based features, linear discriminant analysis and support vector machine. Biomedical Signal Processing and Control, 7(1), 3–19. Austin, P. C., & Steyerberg, E. W. (2015). The number of subjects per variable required in linear regression analyses. Journal of clinical epidemiology, 68(6), 627-636. Ayanendranath, B., Smarajit B., & Sumitra, P. (2004). Robust discriminant analysis using weighted likelihood estimators. Journal of Statistical Computation and Simulation, 74(6), 445-460. Balakrishnama, S., & Ganapathiraju, A. (1998). Linear discriminant analysis - a brief tutorial. Institute for Signal and information Processing, 18. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data. New York: John Wiley. Beckman, R. J., & Cook, R. D. (1983). Outliers. Technometrics,25(2), 119-149. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720. Ben-Gal, I. (2005). Outliers detection. In: Maimon O. and Rockach, L. (Eds.), Data Mining and Knowledge Discovery Handbook: Heidelbery, Berlin: Springer, pp. 131-146. Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation. The Journal of Machine Learning Research, 5, 1089-1105. Bennett, P. J. (2009). Introduction to the Bootstrap and Robust Statistics, Bootstrapping PJ PSY711/712, 1-11. Betz, N. E. (1987). Use of discriminant analysis in counseling psychology research. Journal of Counseling Psychology, 34(4), 393–403. Borgen, F. H., & Seling, M. J. (1978). Uses of discriminant analysis following MANOVA: Multivariate statistics for multivariate purposes. Journal of Applied Psychology, 63(6), 689–697. Brown, B. M. & Kildea, D. G. (1978). Reduced u-statistics and the Hodges-Lehmann estimator. The Annals of Statistics, 6, (4), 828-835. Campbell, N. A. (1980). Robust procedures in multivariate analysis I robust covariance estimation. Applied Statistics,29(3), 231–237. Cacoullos, T. (2014). Discriminant analysis and applications. Academic Press. Cevikalp, H., Neamtu, M., Wilkes, M., & Barkana, A. (2005). Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1), 4–13. Chen, Z. Y., & Muirhead, R. J. (1994). A comparison of robust linear discriminant procedures using projection pursuit methods. Lecture Notes-Monograph Series, 24, 163–176. Chenouri, S., Steiner, S. H., & Mulayath, A. (2009). A multivariate robust control chart for individual observations, Journal of Quality Technology, 41(3), 259-271. Cheng, G., Li, X., Lai, P., Song, F., & Yu, J.(2016). Robust rank screening for ultrahigh dimensional discriminant analysis. Statistics and Computing, 27(2), 535–545. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. Routledge. Croux, C., & Dehon, C. (2001). Robust linear discriminant analysis using Sestimators. The Canadian Journal of Statistics, 29(3), 473–492. Croux, C., & Rousseeuw, P. J. (1992). Time-efficient algorithms for two highly robust estimators of scale. In Computational Statistics, pp. 411-428, Physica-Verlag HD. Dabney, A. R., & Storey, J. D. (2007). Normalization of two-channel microarrays accounting for experimental design and intensity-dependent relationships. Genome Biology, 8(3), R44. Damico, J. S., Nettleton, S. K., Damico, H. L., & Nelson, R. L. (2014). Discriminant validity with a direct observational assessment system: Research with previously identified groups. Clinical Linguistics & Phonetics, 28(7–8), 617–626. Davies, P.L. (1987). Asymptotic behaviour of S-estimators of multivariate location paramters and dispersion matrices. The Annals of Statistics, 15, 1269-1292. Ella, R., Van Aelst, S. & Williem, G. (2009). The minimum weighted covariance determinant estimator. Metrika, 70, 177-204. Ender, P. (2014, July). Profile Analysis. In 2014 Stata Conference (No. 1). Stata Users Group. Estoup, A., Lombaert, E., Marin, J. M., Guillemaud, T., Pudlo, P., Robert, C. P., & Cornuet, J. M. (2012). Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. Molecular ecology resources,12(5), 846-855. Feng, J., Xu, H., & Mannor, S. (2014). Distributed Robust Learning. arXiv preprint arXiv:1409.5937. Fidler, S., & Leonardis, A. (2003, June). Robust LDA classification by subsampling. In Computer Vision and Pattern Recognition Workshop, 2003. CVPRW'03. Conference on (Vol. 8, pp. 97-97). IEEE. Filzmoser, P., & Todorov, V. (2013). Robust tools for the imperfect world. Information Sciences, 245, 4-20. Fisher. R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2),179–188. Fukunaga, K. (2013). Introduction to statistical pattern recognition. Academic press. Fung, W. K. (1995). Diagnostics in linear discriminant analysis. Journal of the American Statistical Association, 90(431), 952–956. Fung, W. K. (1996). Diagnosing influential observations in quadratic discriminant analysis. Biometrics, 52(4), 1235–1241. Gao, H., & Davis, J. W. (2006). Why direct LDA is not equivalent to LDA. Pattern Recognition, 39(5), 1002–1006. Guh, R. S., Shiue, Y. R., & Yu, F. J. (2014). Real-time monitoring of the quality of multivariate processes with a SVM based classifier ensemble approach. Journal of Quality, 21(6), 427-454. Haddad, F. S. (2013). Statistical Process Control Using Modified Robust Hotelling’s T2 Control Charts. Unpublished Ph.D. thesis, Universiti Utara Malaysia. Haddad, F. S., Syed-Yahaya, S. S., & Alfaro, J. L. (2012). Alternative Hotelling’s T2 charts using winsorized modified one-step M-estimator. Quality and Reliability Engineering International,29(4), 583–593. Hampel, F. R. (2001). Robust statistics: A brief introduction and overview. In First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS., 295, 3-17. Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics, 1887-1896. Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383-393. Hampel, F. R. (1985). The Breakdown Points of the Mean Combined with Some Rejection Rules. Technometrics, 27(2), 95. Härdle, W. K., & Simar, L. (2012). Applied multivariate statistical analysis. Springer Science & Business Media. Harlow, L. L. (2014). The essence of multivariate thinking: Basic themes and methods. Routledge. Hastie, T., Buja, A., & Tibshirani, R. (1995). Penalized discriminant analysis. The Annals of Statistics, 73-102. Hawkins, D. M. (1980). Identification of Outliers. London, Chapman and Hall. Hintze, J. L. (2008). Quick start manual. PASS Power Analysis and Sample Size System, NCSS, Kaysville, Utah. Huber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,35(1), 73–101. Hubert, M., & Van Driesen, K. (2004). Fast and robust discriminant analysis. Computational Statistics and Data Analysis, 45, 301–320. Hubert, M., Rousseeuw, P. J., & Van Aelst, S. (2008). High-Breakdown Robust Multivariate Methods. Statistical Science, 23(1), 92–119. Iglewics, B., Martinez, J. (1982), Outlier Detection using robust measures of scale. Journal of Statistical Computation and Simulation, 15, 285-293. Jensen, W. A., Birch, J. B. & Woodall, W. H. (2007). High breakdown estimation methods for phase I multivariate control charts. Quality Reliability Engineering International, 23, 615-629. Jin, J. & An, J. (2011). Robust discriminant analysis and its application to identify protein coding regions of rice genes. Mathematical Biosciences, 232, 96-100. Jin, X., Zhao, M., Chow, T. W., & Pecht, M. (2014). Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Transactions on Industrial Electronics, 61(5), 2441-2451. Johnson, R. (1992). Applied Multivariate Statistical Analysis. Prentice Hall. Joossens, K. (2006). Robust Discriminant Analysis. Leuven, K. U. Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2006. Kao, L. J., Lee, C. F., & Tai, T. (2015). Discriminant analysis and factor analysis: Theory and method. Handbook of Financial Econometrics and Statistics, 2461-2476. Keselman, H. J., Wilcox, R. R., Algina, J., Othman, A. R., & Fradette, K. (2008). A comparative study of robust tests for spread: Asymmetric trimming strategies. British Journal of Mathematical & Statistical Psychology, 61, 235–253. Keselman, H. J., Wilcox, R. R., Othman, A. R., Fradette, K., & Wilcox, R. R. (2002). Trimming , transforming statistics , and bootstrapping : circumventing the biasing effects of heterescedasticity and nonnormality. Journal of Modern Applied Statistical Methods, 1(2), 288-309. Khan Mohammadi, M., Garmarudi, A. B., & De La Guardia, M. (2013). Feature selection strategies for quality screening of diesel samples by infrared spectrometry and linear discriminant analysis. Talanta, 104, 128–134. Kim, H. C., Kim, D., & Bang, S. Y. (2001). A PCA mixture model with an efficient model selection method. International Joint Conference on Neural Networks, 430–435. Kim, H. C., Kim, D., & Bang, S. Y. (2003). Face recognition using LDA mixture model. Pattern Recognition Letters, 24(15), 2815-2821. Kim, S. J., Magnani, A., & Boyd, S. (2006). Optimal kernel selection in Kernel Fisher discriminant analysis. In Proceedings of the 23rd International Conference on Machine Learning, pp. 465-472. ACM. Kim, T., & Kittler, J. (2005). Locally linear discriminant analysis for multi-modally distributed classes for face recognition with a single model image. Pattern Analysis and Machine Intelligence, IEEE Transactions, 27(3), 318–327. Klaus, B. (2013). Effect size estimation and misclassification rate based variable selection in linear discriminant analysis. Journal of Data Science, 11(2013), 537-558. Lee, S., & Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications, 40(8), 2941–2946. Li, C., Shao, Y., & Deng, N. (2015). Robust L1-norm two-dimensional linear discriminant analysis. Neural Networks, 65, 92–104. Li, M., & Yuan, B. (2005). 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527–532. Li, T., Zhu, S., & Ogihara, M. (2006). Using discriminant analysis for multi-class classification: An experimental investigation. Knowledge and Information Systems, 10(4), 453–472. Lim, Y. F., Yahaya, S. S. S., & Ali, H. (2016). Winsorization on linear discriminant analysis. In Proceedings of the 4th International Conference on Quantitative Sciences and Its Applications, 0500101-0500107. Lim, Y. F., Yahaya, S. S. S., Idris, F., Ali, H., & Omar, Z. (2014). Robust linear discriminant models to solve financial crisis in banking sectors. In Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications, 798(Icoqsia), 794–798. Loog, M., Duin R. P. W., & Haeb-Umbach R. (2001). Multiclass linear dimension reduction by weighted pairwise fisher criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(7), 762 – 766. Lopuhaa, H.P. (1989). On the relation between S- estimators and M-estimators of multivariate location and covariance. The Annals of Statistics, 17, 1662-1683. Lu, C. D., Zhang, T. Y., Du, X. Z., & Li, C. P. (2004, August). A robust kernel PCA algorithm. In Machine Learning and Cybernetics. Proceedings of 2004 International Conference, 5, 3084-3087. Lu, C., Zhang, T., Zhang, R., & Zhang, C. (2003). Adaptive robust kernel PCA algorithm. Communication, 621–624. Mahir, R. A., & Al-Khazaleh, A. M. H. (2009). New method to estimate missing data by using the asymmetrical winsorized mean in a time series. Applied Mathematical Sciences, 3(35), 1715-1726 Maronna, R. A. R. D., Martin, D., & Yohai, V. (2006). Robust statistics (pp. 978-0). John Wiley & Sons, Chichester. ISBN. Maronna, R. A., & Zamar, R. H. (2012). Robust estimates of location and dispersion for high-dimensional datasets. Technometrics. Maronna, R. A., Stahel, W. A., & Yohai, V. J. (1992). Bias-robust multivariate scatter estimators of based on projections . Journal of Multivariate Analysis, 42(1), 141-161. Maronna, R.A. (1976). Robust M-estimators of multivariate location and scatter. The Annal of Statistics, 4, 51-67. Martínez, A. M., & Kak, A. C. (2001). Pca versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228-233. McGarigal, K., Cushman, S. A., & Stafford, S. (2013). Multivariate statistics for wildlife and ecology research. Springer Science & Business Media. McLachlan, G. (2004). Discriminant analysis and statistical pattern recognition. John Wiley & Sons. Mohammadi M., Midi, H., Arasan, J. & Al-Talib, B. (2011). High breakdown estimators to robustify phase II control charts. Applied Sciences, 11 (3), 503-511 Morrison, D. F. (1976). Multivariate statistical methods. New York: McGraw Hill. Nkiruka, E., Onyeagu, S., & Okeke, J. U. (2015). Discriminant analysis by projection pursuit. Global Journal of Science Frontier Research, 15(6). Okwonu, F. Z., & Othman, A. R. (2013). Heteroscedastic variance covariance matrices for unbiased two groups linear classification methods. Applied Mathematical Sciences, 7(138), 6855–6865. Othman, A. R., Keselman, H. J., Padmanabhan, A. R., Wilcox, R. R., & Fradette, K. (2004). Comparing measures of the “ typical ” score across treatment groups. British Journal of Mathematical and Statistical Psychology. 57, 215 - 234. Pei C. W. (2002). The central limit theorem and comparing means, trimmed means, one step M-estimators and modified one step M-estimators under non normality. Southern of California, Los Angeles, California. Pena, D., & Prieto, J. F. (2001). Multivariate outlier detection and robust covariance matrix estimation. Technometrics, 3, 286-322. Peña, D., & Prieto, J F. (2001). Multivariate outlier detection and robust covariance matrix estimation. Technometrics August, 43(3), 286–310. Pires, A. M., & Branco, J. A. (2010). Projection-pursuit approach to robust linear discriminant analysis. Journal of Multivariate Analysis, 101(10), 2464–2485. Pohar, M., Blas, M., & Turk, S. (2004). Comparison of Logistic regression and linear discriminant analysis : A Simulation study. Metodoloski zvezki, 1(1), 143–161. Poulsen, J., & French, A. (2003). Discriminant function analysis (DA). Retrieved from http://userwww.sfsu.edu/~efc/classes/biol710/ discrim/discrim.pdf. Press, S. J. (2012). Applied multivariate analysis: using Bayesian and frequentist methods of inference. Courier Corporation. Randles, R. H., Brofitt, J. D, Ramberg, J. S. & Hogg. R. V. (1978). Discriminant analysis based on ranks. Journal of the American Statistical Association, 73: 379-384. Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 159-203. Raschka, S. (2014) Linear Discriminant Analysis– bit by bit, retrieved from http://sebastianraschka.com/Articles/2014_python _lda.html Reed, J. F., & Stark, D. B. (1996). Hinge estimators of location: Robust to asymmetry. Computer methods and programs in biomedicine, 49(1), 11-17. Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American statistical association, 79(388), 871-880. Rousseeuw, P.J. (1985). Multivariate estimators with high breakdown point. Mathematical Statistics and its Applications, B, 283-297. Rousseeuw, P. J. (1991). Tutorial to robust statistics. Journal of Chemometrics, 5(1), 1-20. Rousseeuw, P. J., & Croux, C. (1992). Explicit scale estimators with high breakdown point. L1-Statistical Analysis and Related Methods, 1, 77-92. Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical association, 88(424), 1273-1283. Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: John Wiley. Rousseeuw, P.J. and Van Driessen, K. (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41: 212-223. Rousseeuw, P.J., & Van Zomeren, B.C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association. 85(411), 633-651. Sajtos, L., & Mitev, A. (2007). SPSS research and data analysis handbook. Alinea, Budapest, 454-458. Santos, F., Guyomarc’h, P., & Bruzek, J. (2014). Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines. Forensic science international, 245, 204-e1. Staudte, R. G., & Sheather, S. J. (1990). Robust estimation and testing: Wiley series in probability and mathematical statistics. New York. Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. Routledge. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 111-147. Swets, D. L., & Weng, J. J. (1996). Using discriminant eigenfeatures for image retrieval. IEEE Transactions on pattern analysis and machine intelligence, 18(8), 831-836. Sajtos, L., & Mitev, A. (2007). SPSS research and data analysis handbook. Alinea, Budapest, 454-458. Santos, F., Guyomarc’h, P., & Bruzek, J. (2014). Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines. Forensic Science International, 245, 204-e1. Shao, J., & Tu, D. (2012). The jackknife and bootstrap. Springer Science & Business Media. Shao, J., Wang, Y., Deng, X., & Wang, S. (2011). Sparse linear discriminant analysis by thresholding for high dimensional data. The Annals of Statistics, 39(2), 1241-1265. Staudte, R. G., & Sheather, S. J. (1990). Robust estimation and testing: Wiley series in probability and mathematical statistics. New York. Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. Routledge. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 111-147. Swets D. L. & Weng, J. (1996). Using Discriminant Eigenfeatures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):831 – 837. Tang, E. K., Suganthan, P. N., Yao, X., & Qin, A. K. (2005). Linear dimensionality reduction using relevance weighted LDA. Pattern recognition, 38, 485–493. Teknomo, K. (2015). Discriminant Analysis Tutorial. http://people.revoledu.com/kardi/tutorial/LDA/ Tiku, M. L., & Balakrishnan, N. (1984). Robust multivariate classification procedures based on the MML estimators. Communications in Statistics-Theory and Methods, 13(8), 967-986. Todorov, V., & Pires, A. M. (2007). Comparative performance of several robust linear discriminant analysis methods. REVSTAT Statistical Journal, 5, 63-83. Torre, F., & Black, M. J. (2001). Robust principal component analysis for computer vision. In Computer Vision. ICCV 2001. Proceedings. Eighth IEEE International Conference, 1, 362-369. Uray, M. (2008). Incremental, Robust, and Efficient Linear Discriminant Analysis Learning. Published Ph.D. thesis, Graz University of Technology. Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media. Werner, M. (2003). Identification of multivariate outliers in large data sets. PhD thesis, University of Colorado, Denver. Wilcox, R. (1997). Introduction to robust estimation and hypothesis testing. Statistical modeling and decision science. Wilcox, R. & Keselman, H. J. (2003). Repeated measures ANOVA based on a modified one-step M-estimator. British Mathematical and Statistical Psychology, 56(1):15–25. Wilcox, R. (2002). Multiple comparisons among dependent groups based on a modified one -step M-estimator. Biometrical, 44, 466-477. Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: measures of central tendency. Psychological methods, 8(3), 254. Xao, O. G., Yahaya, S. S. S., Abdullah, S., & Yusof, Z. M. (2014). H-statistic with winsorized modified one-step M-estimator for two independent groups design. Germination of Mathematical Sciences Education and Research towards Global Sustainability, 1605 (1), 928-931. Yahaya, S. S. S. (2005). Robust statistical procedures for testing the equality of central tendency parameters under skewed distributions. Unpublished Ph. D. Thesis, Universiti Sains Malaysia. Yahaya, S. S. S., Ali, H., & Omar, Z. (2011). An alternative hotelling T2 control chart based on minimum vector variance (MVV). Modern Applied Science, 5(4), 132–151. Yahaya, S. S. S., Lim, Y. F., Ali, H., & Omar, Z. (2016a). Robust linear discriminant analysis. Journal of Mathematics and Statistics, 12(4), 312-316. Yahaya, S. S. S., Lim, Y. F., Ali, H., & Omar, Z. (2016b). Robust linear discriminant analysis with automatic trimmed mean. Electronic and Computer Engineering, 8(10), 1-3. Yahaya, S. S. S., Otluna, A. R., & Iiesehnan, H. J. (2004). Testing the equality of location parameters for skewed distributions using S1 with high breakdown robust scale estirnators, In Theory and Applications of Recent Robust Methods, (pp. 319-328). Birkhäuser Basel. Yahaya, S. S. S., Othman, A. R., & Keselman, H. J. (2006). Comparing the typical score across independent groups based on different criteria for trimming. Metodoloski zvezki, 3(1), 49-62. Yan, H., & Dai, Y. (2011). The comparison of five discriminant methods. In Management and Service Science (MASS), 2011 International Conference, 1-4. IEEE. Yan, Y., Ricci, E., Subramanian, R., Liu, G., & Sebe, N. (2014). Multitask linear discriminant analysis for view invariant action recognition. IEEE Transactions on Image Processing, 23(12), 5599-5611. Yang, J. & Yang, J. Y. (2003). Why can LDA be performed in PCA transformed space? Pattern Recognition, 36, 563 – 566. Yang, J., Frangi, A. F., Yang, J. Y., Zhang, D., & Jin, Z. (2005). KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on pattern analysis and machine intelligence, 27(2), 230-244. Yang, J., Jin, Z., Yang, J. Y., Zhang, D., & Frangi, A. F. (2004). Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognition, 37(10), 2097–2100. Yu, H., & Yang, J. (2001). A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 34(10), 2067–2070. Yu, J. (2011). Localized Fisher discriminant analysis based complex chemical process monitoring. AIChE Journal, 57(7), 1817-1828. Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. Proceedings Ninth IEEE International Conference on Computer Vision,1(1), 313–319. Yusof, Z. M., Abdullah, S., Yahaya, S. S. S., & Othman, A. R. (2011). Type I error rates of Ft statistic with different trimming strategies for two groups case. Modern Applied Science,5(4), 236–242. Yusof, Z. M., Othman, A. R., & Yahaya, S. S. S. (2010). Comparison of type I error rates between T1 and Ft statistics for unequal population variance using variable trimming. Malaysian Journal of Mathematical Sciences,4(2), 195–207. Zollanvari, A., & Dougherty, E. R. (2015). Generalized consistent error estimator of linear discriminant analysis. IEEETransactions on Signal Processing, 63(11), 2804–2814. Zuo, Y. (2006). The Frontiers in Statistics. In Peter Bickel on his 65th Birthday, Robust location and scatter estimators in multivariate analysis. Imperial College Press.