A multiple channel queueing model under an uncertain environment with multiclass arrivals for supplying demands in a cement industry
In recent years, cement consumption has increased in most Asian countries, including Malaysia. There are many factors which affect the supply of the increasing order demands in the cement industry, such as traffic congestion, logistics, weather and machine breakdowns. These factors hinder smooth and...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | eng eng eng |
Published: |
2018
|
Subjects: | |
Online Access: | https://etd.uum.edu.my/6931/1/DepositPermission_s95643.pdf https://etd.uum.edu.my/6931/2/s95643_01.pdf https://etd.uum.edu.my/6931/3/s95643_02.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, cement consumption has increased in most Asian countries, including Malaysia. There are many factors which affect the supply of the increasing order demands in the cement industry, such as traffic congestion, logistics, weather and machine breakdowns. These factors hinder smooth and efficient supply,
especially during periods of peak congestion at the main gate of the industry where queues occur as a result of inability to keep to the order deadlines. Basic elements, such as arrival and service rates, that cannot be predetermined must be considered under an uncertain environment. Solution approaches including conventional
queueing techniques, scheduling models and simulations were unable to formulate the performance measures of the cement queueing system. Hence, a new procedure of fuzzy subset intervals is designed and embedded in a queuing model with the consideration of arrival and service rates. As a result, a multiple channel queueing model with multiclass arrivals, (M1, M2)/G/C/2Pr, under an uncertain environment is
developed. The model is able to estimate the performance measures of arrival rates of bulk products for Class One and bag products for Class Two in the cement manufacturing queueing system. For the (M1, M2)/G/C/2Pr fuzzy queueing model, two defuzzification techniques, namely the Parametric Nonlinear Programming and Robust Ranking are used to convert fuzzy queues into crisp queues. This led to three proposed sub-models, which are sub-model 1, MCFQ-2Pr, sub-model 2, MCCQESR-2Pr and sub-model 3, MCCQ-GSR-2Pr. These models provide optimal crisp
values for the performance measures. To estimate the performance of the whole system, an additional step is introduced through the TrMF-UF model utilizing a utility factor based on fuzzy subset intervals and the α-cut approach. Consequently, these models help decision-makers deal with order demands under an uncertain
environment for the cement manufacturing industry and address the increasing quantities needed in future. |
---|