Modifying maximum likelihood test for solving singularity and outlier problems in high dimensional cases
The maximum likelihood (ML) test in the structural covariance analysis is an effective tool in statistical analysis of multivariate test. However, the performance of the classical location and scatter estimators is usually flawed by singularity and outliers’ problems in high dimensional data sets....
Saved in:
主要作者: | Hafeez, Ahmad |
---|---|
格式: | Thesis |
語言: | eng eng eng |
出版: |
2021
|
主題: | |
在線閱讀: | https://etd.uum.edu.my/9512/1/depositpermission-not%20allow_s901078.pdf https://etd.uum.edu.my/9512/2/s901078_01.pdf https://etd.uum.edu.my/9512/3/s901078_02.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Residual Methods For Solving Fractional Differential Equations With Singular Kernels
由: Abuomar, Mohammed M. A.
出版: (2023) -
A rasch model analysis of critical thinking problem solving test
由: Chai, Hui Chung
出版: (2015) -
Winsorize tree algorithm for handling outliers in classification problem
由: Ch’ng, Chee Keong
出版: (2016) -
K-means algorithm via preprocessing technique and singular value decomposition for high dimension datasets
由: Usman, Dauda
出版: (2014) -
On the maximum likelihood estimation of the parameters of mixed exponential distributions - with applications to life testing /
由: Boardman, Thomas Jackson
出版: (1968)