Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time

<p>This research was aimed to analyze the effects of attention guidance in a virtual</p><p>reality lab on students' cognitive load, experiment time consumption and academic</p><p>performance. For this purpose, the virtual rea...

Full description

Saved in:
Bibliographic Details
Main Author: Wen, PingPing
Format: thesis
Language:eng
Published: 2023
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=10196
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:10196
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic LB Theory and practice of education
spellingShingle LB Theory and practice of education
Wen, PingPing
Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
description <p>This research was aimed to analyze the effects of attention guidance in a virtual</p><p>reality lab on students' cognitive load, experiment time consumption and academic</p><p>performance. For this purpose, the virtual reality lab with and without attention</p><p>guidance for the digital camera course was designed and developed. The quasiexperimental</p><p>design was employed to collect relevant data. The experiment involved</p><p>80 students from two universities in China whose major is the digital media art. In</p><p>each university 40 students were selected as control and experimental groups</p><p>respectively. The data obtained was analyzed by using ANOVA and linear regression</p><p>statistical methods. The findings revealed that there were significant differences in</p><p>cognitive load (F (1, 78) = 33.73, p<0.05, partial eta squared = 0.30) and academic</p><p>performance (F (1, 78) =7.31, p<0.05, partial eta squared=0.09), however, there was</p><p>no significant difference in time consumption (F (1, 78) =0.01, p>0.05). In terms of</p><p>linear regression, the findings indicated that there was a significant relationship</p><p>between cognitive load and students' academic performance (F (1, 78) =15.38,</p><p>p<0.05, R2=0.17), and there was no statistical significance between cognitive load</p><p>and students' experiment completion time (F (1, 78) = 1.18, p>0.05). Overall, the</p><p>research findings indicated that students exhibited lower cognitive load and higher</p><p>academic performance in the virtual reality lab with attentional guidance.</p><p>Furthermore, the regression analyses revealed that cognitive load can negatively</p><p>predict learning outcomes (=-0.41, t=-3.92, p<0.05); academic performance</p><p>improves as cognitive load decreases. In conclusion, the teaching effects of the</p><p>virtual reality lab for the digital camera course with attention guidance are better than</p><p>virtual reality lab without attention guidance. Finally, the research findings can be a</p><p>useful guideline for virtual reality lab design in achieving a more effective learning</p><p>outcome.</p>
format thesis
qualification_name
qualification_level Doctorate
author Wen, PingPing
author_facet Wen, PingPing
author_sort Wen, PingPing
title Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
title_short Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
title_full Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
title_fullStr Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
title_full_unstemmed Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
title_sort effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Komputeran dan META-Teknologi
publishDate 2023
url https://ir.upsi.edu.my/detailsg.php?det=10196
_version_ 1804890523228438528
spelling oai:ir.upsi.edu.my:101962024-05-20 Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time 2023 Wen, PingPing LB Theory and practice of education <p>This research was aimed to analyze the effects of attention guidance in a virtual</p><p>reality lab on students' cognitive load, experiment time consumption and academic</p><p>performance. For this purpose, the virtual reality lab with and without attention</p><p>guidance for the digital camera course was designed and developed. The quasiexperimental</p><p>design was employed to collect relevant data. The experiment involved</p><p>80 students from two universities in China whose major is the digital media art. In</p><p>each university 40 students were selected as control and experimental groups</p><p>respectively. The data obtained was analyzed by using ANOVA and linear regression</p><p>statistical methods. The findings revealed that there were significant differences in</p><p>cognitive load (F (1, 78) = 33.73, p<0.05, partial eta squared = 0.30) and academic</p><p>performance (F (1, 78) =7.31, p<0.05, partial eta squared=0.09), however, there was</p><p>no significant difference in time consumption (F (1, 78) =0.01, p>0.05). In terms of</p><p>linear regression, the findings indicated that there was a significant relationship</p><p>between cognitive load and students' academic performance (F (1, 78) =15.38,</p><p>p<0.05, R2=0.17), and there was no statistical significance between cognitive load</p><p>and students' experiment completion time (F (1, 78) = 1.18, p>0.05). Overall, the</p><p>research findings indicated that students exhibited lower cognitive load and higher</p><p>academic performance in the virtual reality lab with attentional guidance.</p><p>Furthermore, the regression analyses revealed that cognitive load can negatively</p><p>predict learning outcomes (=-0.41, t=-3.92, p<0.05); academic performance</p><p>improves as cognitive load decreases. In conclusion, the teaching effects of the</p><p>virtual reality lab for the digital camera course with attention guidance are better than</p><p>virtual reality lab without attention guidance. Finally, the research findings can be a</p><p>useful guideline for virtual reality lab design in achieving a more effective learning</p><p>outcome.</p> 2023 thesis https://ir.upsi.edu.my/detailsg.php?det=10196 https://ir.upsi.edu.my/detailsg.php?det=10196 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Komputeran dan META-Teknologi <p>Achuthan, K., Brahmanandan, S., & Bose, L. S. (2015). Cognitive load management in multimedia enhanced interactive virtual laboratories. InEl-Alfy, ES., Thampi, S., Takagi, H., Piramuthu, S., Hanne, T. (Eds.), Advances in intelligent informatics (pp. 143155). Cham: Springer.</p><p>Achuthan, K., Francis, S. P., & Diwakar, S. (2017). Augmented reflective learning and knowledge retention perceived among students in classrooms involving virtual laboratories. Education Information Technologies, 22(6), 28252855. doi:10.1007/s10639-017-9626-x</p><p>Adams,A., Feng, Y., Liu, J. C., & Stauffer, E. (2021). Potentials of teaching, learning, and design with virtual reality: An interdisciplinary thematic analysis. In B. Hokanson, M. Exter, A. Grincewicz, M. Schmidt, & A. A. Tawfik (Eds.), Intersections across disciplines: Interdisciplinarity and learning (pp. 173186). Cham: Springer International Publishing.</p><p>Adams, R. K. (1989). The virtual scope: An impedance match to the beginning ECE student. Paper presented at IEEE Energy and Information Technologies in the Southeast, Columbia, SC, USA.</p><p>Ahlstrom, U., & Friedman-Berg, F. J. (2006). Using eye movement activity as a correlate of cognitive workload. International Journal of Industrial Ergonomics, 36(7), 623636. doi:10.1016/j.ergon.2006.04.002</p><p>Ainley, M., &Armatas, C. (2006). Motivational perspectives on students responses to learning in virtual learning environments.In J. Weiss, J. Nolan, J. Hunsinger, &</p><p>P. Trifonas (Eds.), The International Handbook of Virtual Learning Environments (pp. 365-394). Dordrecht: Springer Netherlands.</p><p>Alaraj, A., Lemole, M. G., Finkle, J. H., Yudkowsky, R., Wallace, A., Luciano, C., . . . Charbel, F. T. (2011). Virtual reality training in neurosurgery: Review of current statusand future applications. Surgical Neurology International, 2. doi:10.4103 / 2152-7806.80117</p><p>Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166, 104154. https://doi.org/10.1016/j.compedu.2021.104154</p><p>Alexiou, A., Bouras, C., & Giannaka, E. (2005). Virtual Laboratories in Education, Boston, MA.:Technology Enhanced Learning.</p><p>Ali, N., & Ullah, S. (2020). Review to analyze and compare virtual chemistry</p><p>laboratories for their use in education. Journal of Chemical Education, 97(10), 35633574. doi:10.1021/acs.jchemed.0c00185</p><p>Alkhaldi, T., Pranata, I., & Athauda, R. I. (2016). A review of contemporary virtual and remote laboratory implementations: Observations and findings. Journal of Computers in Education, 3(3), 329351. doi:10.1007/s40692-016-0068-z</p><p>Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Learning, Memory, Cognition, 40(6), 14991509. doi:10.1037/xlm0000002</p><p>Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2017). Executive and perceptual distraction in visual working memory. Journal of Experimental Psychology: Human Perception Performance, 43(9), 16771693. doi:10.1037/xhp0000413</p><p>Allen, R. J.,& Ueno,T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, Psychophysics, 80(7), 17311743. doi:10.3758/s13414-018-1543-6</p><p>Alpizar, D., Adesope, O. O., & Wong, R. M. (2020). A meta-analysis of signaling principle in multimedia learning environments. Educational Technology Research and Development, 68(5), 20952119. doi:10.1007/s11423-020-09748-7</p><p>Altinpulluk, H., Kilinc, H., Firat, M., & Yumurtaci, O. (2020). The influence of segmented and complete educational videos on the cognitive load, satisfaction, engagement, and academic achievement levels of learners. Journal of Computers in Education, 7(2), 155182. doi:10.1007/s40692-019-00151-7</p><p>Amadieu, F., Marin, C., & Laimay, C. (2011). The attention-guiding effect and cognitive load in the comprehension of animations. Computers in Human Behavior, 27(1), 36-40. doi:10.1016/j.chb.2010.05.009</p><p>Andersen, S. A. W., Mikkelsen, P. T., Konge, L., Cay-Thomasen, P., & Srensen, M.</p><p>S. (2016). The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial. Advances in Simulation, 1(1), 2028. doi:10.1186/s41077-016-0022-1</p><p>Ansorge, U., & Becker, S. I. (2014). Contingent capture in cueing: The role of color search templates and cue-target color relations. Psychological Research, 78(2), 209221. doi:10.1007/s00426-013-0497-5</p><p>Atchison, C. J., Bowman, L., Vrinten, C., Redd, R., Prister, P., Eaton, J. W., & Ward,</p><p>H. (2020). Perceptions and behavioural responses of the general public during the COVID-19 pandemic: A cross-sectional survey of UK Adults. MedRxiv, 2020.2004.2001.20050039. doi:10.1101/2020.04.01.20050039</p><p>Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning Instruction, 16(5), 389400. doi:10.1016/j.learninstruc.2006.09.001</p><p>Ayres, P., & Paas, F. (2007). Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory Cognition, 21(6), 695700. doi:10.1002/acp.1343</p><p>Baddeley, A. (1992). Working memory. Science, 255(5044), 556559. doi:10.1126/science.1736359</p><p>Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839. doi:10.1038/nrn1201</p><p>Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 4789).Cambridge, Massachusetts :Academic Press.</p><p>Bailey, J. O., Bailenson, J. N., & Casasanto, D. (2016). When does virtual embodiment change our minds? Presence, 25(3), 222233. doi:10.1162/PRES_a_00263</p><p>Barbieri, L., Bruno, F., & Muzzupappa, M. (2018). User-centered design of a virtual reality exhibit for archaeological museums. International Journal on Interactive Design Manufacturing, 12(2), 561571. doi:10.1007/s12008-017-0414-z</p><p>Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memoryspans. Journal of Experimental Psychology. General, 133(1), 83100. doi:10.1037/0096-3445.133.1.83</p><p>Bautista, N. U., & Boone, W. J. (2017). Exploring the impact of TeachME lab virtual classroom teaching simulation on early childhood education majors self-efficacy beliefs. Journal of Science Teacher Education, 26(3), 237262. doi:10.1007/s10972-014-9418-8</p><p>Beer, T., Meisen, T., Reinhard, R., Konovalov, S., Schilberg, D., Kuhlen, T., & Bischof,</p><p>C. (2011). The virtual production simulation platform: From collaborative distributed simulation to integrated visual analysis. In Automation,</p><p>communication and cybernetics in science and engineering 2011/2012 (pp. 383-391). Berlin:Springer.</p><p>Berg, H., & Steinsbekk, A. (2020). Is individual practice in an immersive and interactive virtual reality application non-inferior to practicing with traditional equipment in learning systematic clinical observation? A randomized controlled trial. BMC Med Educ, 20(1), 123133. doi:10.1186/s12909-020-02030-7</p><p>Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In R.E. Mayer(Eds.), The Cambridge handbook of multimedia learning (pp. 287296). New York, NY, US: Cambridge University Press.</p><p>Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., & Craig, C. (2009). Using virtual reality to analyze sports performance. IEEE Computer Graphics Application, 30(2), 1421. doi:10.1109 / MCG.2009.134</p><p>Blum, J., Rockstroh, C., & Gritz,A. S. (2020). Development and pilot test of a virtual reality respiratory biofeedback approach. Applied Psychophysiology, 45(3), 153163. doi:10.1007/s10484-020-09468-x</p><p>Boboev, L., Soliev, Z. M., & Asrorkulov, F. (2018). The project title: The virtual laboratory and quality of education. In Drummer, J., Hakimov, G., Joldoshov, M.,Khler,T.,Udartseva, S(Eds.), Vocational teacher education in central Asia (pp. 8791). Cham: Springer.</p><p>Boucheix, J.-M., & Guignard, H. (2005). What animated illustrations conditions can improve technical document comprehension in young students? Format, signaling and control of the presentation. European Journal of Psychology of Education, 20(4), 369388. doi:10.1007/BF03173563</p><p>Boucheix, J.-M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123135. doi:10.1016/j.learninstruc.2009.02.015</p><p>Boucheix, J.-M., Lowe, R. K., Putri, D. K., & Groff, J. (2013). Cueing animations: Dynamic signaling aids information extraction and comprehension. Learning instructional Science, 25, 7184. doi:10.1016/j.learninstruc.2012.11.005</p><p>Britton, B. K., Glynn, S. M., Meyer, B. J., & Penland, M. J. (1982). Effects of text structure on use of cognitive capacity during reading. Journal of Educational Psychology, 74(1), 5161. doi:10.1037/0022-0663.74.1.51</p><p>Brucker, B., Scheiter, K., & Gerjets, P. (2014). Learning with dynamic and static visualizations: Realistic details only benefit learners with high visuospatial abilities. Computers in Human Behavior, 36, 330339. doi:10.1016/j.chb.2014.03.077</p><p>Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 5361. doi:10.1207/S15326985EP3801_7</p><p>Burdea, G., & Coiffet, P. (2003). Virtual reality technology.Cambridge, Massachusetts: MIT Press.</p><p>Burnham, B. R. (2020). Evidence for early top-down modulation of attention to salient visual cues through probe detection. Attention, Perception, Psychophysics, 82(3), 10031023. doi:10.3758/s13414-019-01850-0</p><p>Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning Instruction, 20(2), 155166. doi:10.1016/j.learninstruc.2009.02.014</p><p>Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 14841525. doi:10.1016/j.visres.2011.04.012</p><p>Castro-Alonso, J. C., de Koning, B. B., Fiorella, L., & Paas, F. (2021). Five strategies for optimizing instructional materials: Instructor-and learner-managed cognitive load. Educational Psychology Review, 33(4), 13791407. doi:10.1007/s10648-021-09606-9</p><p>Cegovnik, T., Stojmenova, K., Tartalja, I., & Sodnik, J. (2020). Evaluation of different interface designs for human-machine interaction in vehicles. Multimedia Tools Applications, 79(29), 2136121388. doi:10.1007/s11042-020-08920-8</p><p>Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10(2), 151170. doi:10.1002/(SICI)1099-0720(199604)10:2<151::AID-ACP380>3.0.CO;2-U</p><p>Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition Instruction 8(4), 293332. doi:10.1207/s1532690xci0804_2</p><p>Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10(2), 151170. doi:10.1002/(SICI)1099-0720(199604)10:2<151::AID-ACP380>3.0.CO;2-U</p><p>Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993).Aneural basis for visual</p><p>search in inferior temporal cortex. Nature, 363(6427), 345347. doi:10.1038/363345a0</p><p>Chen, M.-X., & Chen, C.-H. (2020). A study of size effects of overview interfaces on user performance in virtual environments. Paper presented at the International Conference on Human-Computer Interaction.</p><p>Cheung, C.-K. (2016). The future of media literacy education in China: The way forward. In Media Literacy Education in China (pp. 173-179). : Springer.</p><p>Christofi, M., Kyrlitsias, C., Michael-Grigoriou, D., Anastasiadou, Z., Michaelidou, M., Papamichael, I., & Pieri, K. (2018). A tour in the archaeological site of choirokoitia using virtual reality: A learning performance and interest generation assessment. In Advances in digital cultural heritage (pp. 208217).Cham: Springer.</p><p>Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011).Ataxonomy of external and internal attention. Annual Review of Psychology, 62, 73101. doi:10.1146/annurev.psych.093008.100427</p><p>Cimminella, F., Sala, S. D., & Coco, M. I. (2020). Extra-foveal processing of object semantics guides early overt attention during visual search. Attention, Perception, & Psychophysics, 82(2), 655670. doi:10.3758/s13414-019-01906-1</p><p>Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning.Hoboken, New Jersey, U.S.: John Wiley & Sons</p><p>Cohen, J. (2013). Statistical power analysis for the behavioral sciences.Milton Park, Abingdon-on-Thames, Oxfordshire, England, UK: Routledge.</p><p>Costa, N., Costa, S., Pereira, E., &Arezes, P. M. (2019). Workload measuresrecent trends in the driving context. In Occupational and environmental safety and health (pp. 419-430).Cham: Springer.</p><p>Cotfas, P. A., Cotfas, D. T., & Gerigan, C. (2015). Simulated, hands-on and remote laboratories for studying the solar cells. Paper presented at the 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION).</p><p>Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of</p><p>mental storage capacity. Behavioral and Brain Sciences, 24(1), 87114. doi:10.1017/S0140525X01003922</p><p>Crooks, S. M., Cheon, J., Inan, F.,Ari, F., & Flores, R. (2012). Modality and cueing in multimedia learning: Examining cognitive and perceptual explanations for the modality effect. Computers in Human Behavior, 28(3), 10631071. doi:10.1016/j.chb.2012.01.010</p><p>Csikar, E., & Stefaniak, J. (2021). The use of heuristics in adaptive narratives to inform decision-making practices. TechTrends, 65(1), 90100. doi:10.1007/s11528-020-00558-5</p><p>Daineko, Y. A., Ipalakova, M. T., & Bolatov, Z. Z. (2017). Employing information technologies based on. NET XNA framework for developing a virtual physical laboratory with elements of 3D computer modeling. Programming Computer Software, 43(3), 161171. doi:10.1134/S0361768817030045</p><p>Darius, P. S. H., Gundabattini, E., & Solomon, D. G. (2021). A survey on the effectiveness of online teaching-learning methods for university and college students. The Institution of Engineers (India): Series B. doi:10.1007/s40031-021-00581-x</p><p>Darrah, M., Humbert, R., Finstein, J., Simon, M., & Hopkins, J. (2014).Are virtual labs as effective as hands-on labs for undergraduate physics?Acomparative study at two major universities. Journal of Science Education and Technology, 23(6), 803814. doi:10.1007/s10956-014-9513-9</p><p>de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science, 38(2), 105134. doi:10.1007/s11251-009-9110-0</p><p>de Jong, T., Linn, M. C., & Zacharia,Z.C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305308. doi:10.1126 / science.1230579</p><p>De Koning, B. B.,Tabbers, H. K., Rikers, R. M., & Paas, F. (2007).Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory Cognition instruction, 21(6), 731746. doi:10.1002/acp.1346</p><p>De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010a). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111122.</p><p>doi:10.1016/j.learninstruc.2009.02.010</p><p>De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010b). Learning by generating vs. receiving instructional explanations: Two approaches to enhance attention cueing in animations. Computers Education, 55(2), 681691. doi:10.1016/j.compedu.2010.02.027</p><p>De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2011). Attention cueing in an instructional animation: The role of presentation speed. Computers in Human Behavior, 27(1), 4145. doi:10.1016/j.chb.2010.05.010</p><p>De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21(2), 113140. doi:10.1007/s10648-009-9098-7</p><p>Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193222. doi:10.1146/annurev.ne.18.030195.001205</p><p>Di, X., & Zheng, X. (2022). A meta-analysis of the impact of virtual technologies on students spatial ability. Educational Technology Research and Development, 70(1), 7398. doi:10.1007/s11423-022-10082-3</p><p>Dick, W., Carey, L., & Carey, J. (2009). The systematic design of instruction, 7th Ed. United States ofAmerica: Pearson Education.</p><p>Dionisio, M., & Nisi, V. (2021). Leveraging transmedia storytelling toengage tourists in the understanding of the destinations local heritage. Multimedia Tools and Applications, 80(26), 34813-34841. doi:10.1007/s11042-021-10949-2</p><p>Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11(6), 467473. doi:10.1111/1467-9280.00290</p><p>Du, X., Dai, M.,Tang, H., Hung,J.-L., Li, H., & Zheng, J. (2022).Amultimodal analysis of college students collaborative problem solving in virtual experimentation activities: a perspective of cognitive load. Journal of Computing in Higher Education. doi:10.1007/s12528-022-09311-8</p><p>Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433458.</p><p>Edwards, B. I., Bielawski, K. S., Prada,R., & Cheok,A. D. (2019). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality, 23(4), 363373. doi:10.1007/s10055-018-0345-4</p><p>El Kabtane, H., El Adnani, M., Sadgal, M., & Mourdi, Y. (2020). Virtual reality and augmented reality at the service of increasing interactivity in MOOCs. Education and Information Technologies, 25(4), 28712897. doi:10.1007/s10639-019-10054-w</p><p>Eliseu, S., Lopes, M. M., Ribeiro, J. P., & Oliveira, F. (2020). Learning and creativity through a curatorial practice using virtual reality, Cham: Springer.</p><p>Encalada, W. L., Costales, P. M., Machado, S. P. C., & Yungn, J. G. (2020). Virtual laboratories in virtual learning environments. Paper presented at The International Conference onAdvances in Emerging Trends and Technologies.</p><p>Enns, J. T., Austen, E. L., Di Lollo, V., Rauschenberger, R., & Yantis, S. (2001). New objects dominate luminance transients in setting attentional priority. Journal of Experimental Psychology: Human Perception and Performance, 27(6), 12871302. doi:10.1037/0096-1523.27.6.1287</p><p>Fei, L. T., Yan, W. H., Yin, Z., Fang, L. F., Tao, C. J., Hua, H. Z., & Qiang, L. (2018). Attentional choice in perceptual scenes and working memory representation:A unified perspective. Advances in Psychological Science, 26(4), 625635. doi:10.3724/SP.J.1042.2018.00625</p><p>Fernndez-Avils, D., Dotor, D., Contreras, D., & Salazar, J. C. (2016). Virtual labs: A new tool in the education: Experience of Technical University of Madrid. Paper presented at the 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV).</p><p>Fiorini, L., Tabeau, K., DOnofrio, G., Coviello, L., De Mul, M., Sancarlo, D., . . . Cavallo, F. (2020). Co-creation of an assistive robot for independent living: Lessons learned on robot design. International Journal on Interactive Design Manufacturing, 14(2), 491-502. doi:10.1007/s12008-019-00641-z</p><p>Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, 22(8), 11261141. doi:10.1002/acp.1426</p><p>Fischer, S., & Schwan, S. (2010). Comprehending animations: Effects of spatial cueing versus temporal scaling. Learning and Instruction, 20(6), 465475. doi:10.1016/j.learninstruc.2009.05.005</p><p>Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 3745. doi:10.1016/j.cognition.2017.12.002</p><p>Foerster, R. M., & Schneider, W. X. (2020). Oculomotor capture by search-irrelevant features in visual working memory: on the crucial role of targetdistractor similarity. Attention, Perception, & Psychophysics, 82(5), 23792392. doi:10.3758/s13414-020-02007-0</p><p>Foreman, C., Hilditch, M., Rockliff, N., & Clarke, H. (2020). A Comparison of Student Perceptions of Physical and Virtual Engineering Laboratory Classes. In K. Gravett, N. Yakovchuk, & I. M. Kinchin (Eds.), Enhancing Student-Centred Teaching in Higher Education: The Landscape of Student-Staff Research Partnerships (pp. 151-167). Cham: Springer International Publishing.</p><p>Forster, Y., Hergeth, S., Naujoks, F., Krems, J. F., & Keinath, A. (2020). Self-report measures for the assessment of human-machine interfaces in automated driving. Cognition, Technology Work, 22(4), 703720. doi:10.1007/s10111-019-00599-8</p><p>Frederiksen, J. G., Srensen, S. M. D., Konge, L., Svendsen, M. B. S., Nobel-Jrgensen, M., Bjerrum, F., &Andersen, S.A. W. (2020). Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surgical Endoscopy, 34(3), 12441252. doi:10.1007/s00464-019-06887-8</p><p>Furley, P., & Memmert, D. (2013). Whom should I pass to? The more options the more attentional guidance from working memory. PLOS ONE, 8(5), e62278. doi:10.1371/journal.pone.0062278</p><p>Fuxing, W., Zhaohui, D., & Zongkui, Z. (2013). Attention guidance in multimedia learning: The role of cueing. Advances in Psychological Science, 21(8), 1430-1440.</p><p>Gao, S., Yan, S., Zhao, H., & Nathan, A. (2021). User experience evaluation. Touch-based human-machine interaction, 91-108. doi:10.1007/978-3-030-68948-3_6</p><p>Gao, Z., Yu, S., Zhu, C., Shui, R., Weng, X., Li, P., & Shen, M. (2016). Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Scientific Reports, 6(1), 22822. doi:10.1038/srep22822</p><p>Ge, Y.-P., Unsworth, L., & Wang, K.-H. (2017). The effects of explicit visual cues in</p><p>reading biological diagrams. International Journal of Science Education, 39(5),</p><p>605626. doi:10.1080/09500693.2017.1297549</p><p>Geng, L. (2015). Teaching exploration and reform of program design course for digital media art students. Paper presented at the 2015 10th International Conference on Computer Science & Education (ICCSE).</p><p>Gevins,A., & Smith,M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1-2), 113131. doi:10.1080/14639220210159717</p><p>Ghergulescu, I., Lynch,T., Bratu, M., Moldovan,A., Muntean, C. H., & Muntean, G. M. (2018). STEM education with atomic structure virtual lab for learners with special education needs. EDULEARN18 Proceedings, 1, 87478752.</p><p>Glaser, M., & Schwan, S. (2020). Combining verbal and visual cueing: Fostering learning pictorial content by coordinating verbal explanations with different types of visual cueing. Instructional Science, 48(2), 159182. doi:10.1007/s11251-020-09506-5</p><p>Gopher, D., & Braune, R. (1984). On the psychophysics of workload: Why bother with subjective measures? Human Factors, 26(5), 519532. doi:10.1177/001872088402600504</p><p>Grant, E. R., & Spivey, M. J. (2003). Eye Movements and Problem Solving: Guiding Attention Guides Thought. Psychological Science, 14(5), 462-466. doi:10.1111/1467-9280.02454</p><p>Grecucci, A., Soto, D., Rumiati, R. I., Humphreys, G. W., & Rotshtein, P. (2010). The interrelations between verbal working memory and visual selection of emotional faces. Journal of Cognitive Neuroscience, 22(6), 11891200. doi:10.1162/jocn.2009.21276</p><p>Greer, D. L., Crutchfield, S. A., & Woods, K. L. (2013). Cognitive theory of multimedia learning, instructional design principles, and students with learning disabilities in computer-based and online learning environments. Journal of Education, 193(2), 4150. doi:10.1177/002205741319300205</p><p>Grivokostopoulou, F., Kovas, K., & Perikos, I. (2020). The effectiveness of embodied pedagogical agents and their impact on students learning in virtual worlds. Applied Sciences, 10(5). doi:10.3390/app10051739</p><p>Gunalp, P., Moossaian, T., & Hegarty, M. (2019). Spatial perspective taking: Effects of social, directional, and interactive cues. Memory & Cognition, 47(5),</p><p>10311043. doi:10.3758/s13421-019-00910-y</p><p>Guo, P. (2019). The design and implementation of virtual simulation photography laboratory. Education Modernization, 6(28), 115117. doi:10.16541/j.cnki.2095-8420.2019.28.046</p><p>Harada,Y.,& Ohyama, J.(2022). Quantitative evaluation of visual guidance effects for 360-degree directions. Virtual Reality, 26(2), 759770. doi:10.1007/s10055-021-00574-7</p><p>Harris, D. J., Hardcastle, K. J., Wilson, M. R., & Vine, S. J. (2021). Assessing the learning and transfer of gaze behaviours in immersive virtual reality. Virtual Reality, 25(4), 961973. doi:10.1007/s10055-021-00501-w</p><p>Harris, S. R., Kemmerling, R. L., & North, M. M. (2002). Brief virtual reality therapy for public speaking anxiety. Cyberpsychology Behavior, 5(6), 543550. doi:10.1089/109493102321018187</p><p>Harris, A. M., Becker, S. I., & Remington, R. W. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, Psychophysics, 77(7), 23052321. doi:10.3758/s13414-015-0927-0</p><p>Harris, D., Wilson, M., & Vine, S. (2020). Development and validation of a simulation workload measure: The simulation task load index (SIM-TLX). Virtual Reality, 24(4), 557566. doi:10.1007/s10055-019-00422-9</p><p>Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. Paper presented at the Proceedings of the human factors and ergonomics society annual meeting.</p><p>Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology (Vol. 52, pp. 139183): Elsevier.</p><p>Hernndez-de-Menndez, M., Vallejo Guevara, A., & Morales-Menendez, R. (2019). Virtual reality laboratories: A review of experiences. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(3), 947966. doi:10.1007/s12008-019-00558-7</p><p>Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive science, 30(3), 581-592. doi.org/10.1207/s15516709cog0000_70</p><p>Hew, K. F., & Cheung, W. S. (2010). Use of three-dimensional (3-D) immersive virtual</p><p>worlds in K-12 and higher education settings:A review of the research. British Journal of Educational Technology, 41(1), 3355. doi:10.1111/j.1467-8535.2008.00900.x</p><p>Hinderks, A., Schrepp, M., Mayo, F. J. D., Escalona, M. J., & Thomaschewski, J. (2019). Developing a UX KPI based on the user experience questionnaire. Computer Standards Interfaces,65, 3844. doi:10.1016/j.csi.2019.01.007</p><p>Hinojo-Lucena, F.-J., Aznar-Daz, I., Cceres-Reche, M.-P., Trujillo-Torres, J.-M., & Romero-Rodrguez, J.-M. (2020). Virtual reality treatment for public speaking anxiety in students. Advancements and results in personalized medicine. Journal of Personalized Medicine, 10(1). doi:10.3390/jpm10010014</p><p>Hitch, G. J., Hu, Y.,Allen, R. J., & Baddeley,A. D. (2018). Competition for the focus of attention in visual working memory: Perceptual recency versus executive control. Annals of the New York Academy of Sciences, 1424(1), 6475. doi:10.1111/nyas.13631</p><p>Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 2854. doi:10.1002/sce.10106</p><p>Hhner, N., Mints, M. O., Rodewald, J., Pfeiffer, A., Kutzner, K., Burghardt, M., . . . Ferdinand, P. (2020). Integrating virtual reality in a lab based learning Environment. Paper presented at the International Conference on Virtual Reality andAugmented Reality.</p><p>Hollingworth, A., Matsukura, M., & Luck, S. J. (2013a). Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm. Journal of Vision, 13(4), 1-18. doi:10.1167/13.13.4</p><p>Hollingworth, A., Matsukura, M., & Luck, S. J. (2013b). Visual working memory modulates rapid eye movements to simple onset targets. Psychological Science, 24(5), 790796. doi:10.1177/0956797612459767</p><p>Homer, B. D., Plass, J. L., & Blake, L. (2008). The effects of video on cognitive load and social presence in multimedia-learning. Computers in Human Behavior, 24(3), 786-797. doi:10.1016/j.chb.2007.02.009</p><p>Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 423442. doi:10.1037/0096-1523.32.2.423</p><p>Hu, J. S., Lu, J., Tan, W. B., & Lomanto, D. (2016). Training improves laparoscopic tasks performance and decreases operator workload. Surgical Endoscopy, 30(5), 17421746. doi:10.1007/s00464-015-4410-8</p><p>Iachini,T., Coello, Y., Frassinetti, F., Senese, V. P., Galante, F., & Ruggiero, G. (2016). Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. Journal of Environmental Psychology, 45, 154164. doi:10.1016/j.jenvp.2016.01.004</p><p>Ibrahim, M., Antonenko, P. D., Greenwood, C. M., & Wheeler, D. (2012). Effects of segmenting, signalling, and weeding on learning from educational video. Learning, Media and Technology, 37(3), 220-235. doi:10.1080/17439884.2011.585993</p><p>Jaafar, W. A., & Nur, S. (2009). Applying virtual rehearsal principle in developing a Persuasive Multimedia Learning Environment (PMLE). Paper presented at the International Visual Informatics Conference.</p><p>Jagodzinski, P., Wolski, R.(2015). Assessment of application technology of natural user interfaces in the creation of a virtual chemical laboratory. Science Education and Technology, 24(1), 1628. doi:10.1007/s10956-014-9517-5</p><p>Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computers in Human Behavior, 32, 4753. doi:10.1016/j.chb.2013.11.013</p><p>Jamet, E., Gavota, M., & Quaireau, C. (2008).Attention guiding in multimedia learning. Learning and Instruction, 18(2), 135145. doi:10.1016/j.learninstruc.2007.01.011</p><p>Janonis, A., Kiudys, E., Girdiuna, M., Blaauskas, T., Paulauskas, L., & Andrejevas,</p><p>A. (2020). Escape the lab: Chemical experiments in virtual reality. Paper presented at the International Conference on Information and Software Technologies.</p><p>Jeung, H. J., Chandler, P., & Sweller, J. (1997). The role of visual indicators in dual sensory mode instruction. Educational Psychology, 17(3), 329345. doi:10.1080/0144341970170307</p><p>Jiang, K., & Bannister, M. (2008). Using a cutting the cake peer assessment method in a leadership in information networking and telecommunications course. Journal of Business Leadership: Research, Practice, Teaching (20052012), 4(1), 8186.</p><p>Jiang, Z. Q., & Lee, D. H. (2010). Exploring new system of China digital media design related undergraduate education. International Journal of Contents, 6(1), 3540. doi:10.5392/IJoC.2010.6.1.035</p><p>Johnson, A. M., Ozogul, G., Moreno, R., & Reisslein, M. (2013). Pedagogical agent signaling of multiple visual engineering representations:The caseof the young female agent. Journal of Engineering Education, 102(2), 319337. doi:10.1002/jee.20009</p><p>Johnson, A. M., Ozogul, G., & Reisslein, M. (2015). Supporting multimedia learning with visual signalling and animated pedagogical agent: moderating effects of prior knowledge. Journal of Computer Assisted Learning, 31(2), 97-115. doi.org/10.1111/jcal.12078</p><p>Johnson, D., Damian, D., & Tzanetakis, G. (2020). Evaluating the effectiveness of mixed reality music instrumentlearning with the theremin. Virtual Reality, 24(2), 303317. doi:10.1007/s10055-019-00388-8</p><p>Johnston, J. C., McCann, R. S., & Remington, R. W. (1995). Chronometric evidence for two types of attention. Psychological Science, 6(6), 365369. doi:10.1111/j.1467-9280.1995.tb00527.x</p><p>Juliano, J. M., Schweighofer, N., & Liew, S.-L. (2022). Increased cognitive load in immersive virtual reality during visuomotor adaptation is associated with</p><p>decreased long-term retention and context transfer. Journal of</p><p>NeuroEngineering and Rehabil itation, 19(1), 106120.</p><p>doi:10.1186/s12984-022-01084-6</p><p></p><p>Kahneman, D. (1973). Attention and effort(Vol. 1063, pp. 218-226). Englewood Cliffs, NJ: Prentice-Hall.</p><p>Kailas, G., & Tiwari, N. (2021). An empirical measurement tool for overall listening experience of immersive audio. Paper presented at the 2021 IEEE International Conference on Consumer Electronics (ICCE).</p><p>Kalet, A. L., Song, H. S., Sarpel, U., Schwartz, R., Brenner, J., Ark, T. K., & Plass, J. (2012). Just enough, but not too much interactivity leads to better clinical skills performance after a computer assisted learning module. Medical Teacher, 34(10), 833839. doi:10.3109/0142159X.2012.706727</p><p>Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13(4), 351371.doi:10.1002/(SICI)1099-0720(199908)13:4<351::AID-ACP589>3.0. CO;2-6 Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory Cognition, 13(4), 351-371. doi:10.1002/(SICI)1099-0720(199908)13:4<351::AID-ACP589>3.0.CO;2-6</p><p>Kapici, H. O.,Akcay, H., & de Jong,T. (2019). Using hands-on and virtual laboratories alone or together-Which works better for acquiring knowledge and skills? Journal of Science Education and Technology, 28(3), 231250. doi:10.1007/s10956-018-9762-0</p><p>Keeney-Kennicutt, W.,& Winkelmann, K. (2013). What can students learn from virtual labs? Committee Comput. Chemical Edu.</p><p>Kehrwald, B. A., & Bentley, B. P. (2020). Understanding and identifying cognitive load in networked learning. In N. B. Dohn, P. Jandric, T. Ryberg, & M. de Laat (Eds.), Mobility, data and learner agency in networked learning (pp. 103115). Cham: Springer International Publishing.</p><p>Keller, T., Gerjets, P., Scheiter, K., & Garsoffky, B. (2006). Information visualizations for knowledge acquisition: The impact of dimensionality and color coding. Computers in Human Behavior, 22(1), 4365. doi:10.1016/j.chb.2005.01.006</p><p>Khlaisang, J., & Songkram, N. (2019). Designing a virtual learning environment system for teaching twenty-first century skills to higher education students in ASEAN. Technology, Knowledge and Learning, 24(1), 4163. doi:10.1007/s10758-017-9310-7</p><p>Kirschner, P.A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning.Learning and Instruction, 12(1), 1-10. doi.org/10.1016/S0959-4752(01)00014-7</p><p>Kim, B.,Yang,E., Choi, N., Kim, S., & Ryu, J. (2020). Effects of auditory feedbackand task difficulty on the cognitive load and virtual presence in a virtual reality dental simulation. The Journal of the Korean Dental Association, 58(11), 670682.</p><p>Koning, D., Tabbers, H. K., Rikers, R. M., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21(2), 113140. doi:10.1007/s10648-009-9098-7</p><p>Krassmann, A. L., Melo, M., Peixoto, B., Pinto, D., Bessa, M., & Bercht, M. (2020).</p><p>Learning in virtual reality: Investigating the effects of immersive tendencies and sense of presence. Paper presented at the International Conference on Human-Computer Interaction.</p><p>Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65(11), 911930. doi:10.1016/j.ijhcs.2007.06.005</p><p>Kumar,S. N.,Lenin Fred,A.,Padmanabhan,P.,Gulyas, B.,Dyson, C.,Melba Kani, R., & Ajay Kumar, H. (2021). Multimedia-based learning tools and its scope, applications for virtual learning environment. In A. Deyasi, S. Mukherjee, A. Mukherjee, A. K. Bhattacharjee, & A. Mondal (Eds.), Computational intelligence in digital pedagogy (pp. 4763). Singapore: Springer Singapore.</p><p>Lamb, R., & Etopio, E. A. (2020). Virtual reality:Atool for preservice science teachers to put theory into practice. Journal of Science Education and Technology, 29(4), 573585. doi:10.1007/s10956-020-09837-5</p><p>Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction and evaluation of a user experience questionnaire. Paper presented at the Symposium of the Austrian HCI and usability engineering group.</p><p>Law, E. L.-C., Roto, V., Hassenzahl, M., Vermeeren, A. P., & Kort, J. (2009).</p><p>Understanding, scoping and defining user experience: A survey approach.</p><p>Paper presented at the Proceedings of the SIGCHI conference on human</p><p>factors in computing systems.</p><p>Lee,G. I., & Lee, M. R. (2018). Can a virtual reality surgicalsimulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads. Surgical Endoscopy, 32(1), 6272. doi:10.1007/s00464-017-5634-6</p><p>Lee, H., Jung, J., Lee, H.-K., & Yang, H. S. (2021). Discipline vs guidance: comparison of visual engagement approaches in immersive virtual environments. Multimedia Tools and Applications, 80(20), 31239-31261. doi:10.1007/s11042-020-10267-z</p><p>Leonard, C. J., Balestreri,A., & Luck, S. J. (2015). Interactions between space-based and feature-based attention. Journal of Experimental Psychology: Human Perception Performance, 41(1), 11. doi:10.1037/xhp0000011</p><p>Li, Y., Tennent, P., & Cobb, S. (2018). Appropriate control methods for mobile virtual</p><p>exhibitions. Paper presented at the International Conference on VR</p><p>Technologies in Cultural Heritage.</p><p>Liberatore, M. J., & Wagner, W. P. (2021). Virtual, mixed, and augmented reality: A systematic review for immersive systems research. Virtual Reality, 127. doi:10.1007/s10055-020-00492-0</p><p>Lin, D., Zhao, Q., Luan, H., & Hou, Y. (2020).Application of virtual simulation platform in basic medical teaching. InJain, V., Patnaik, S., Popen.iu Vladicescu, F., Sethi, I. (Eds.),Recent trends in intelligent computing, communication and devices (Vol. 1006, pp. 205-211). Singapore: Springer.</p><p>Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650658. doi:10.1016/j.compedu.2010.10.007</p><p>Linton, P. M., Plamondon, B. D., Dick, A., Bittner, A. C., & Christ, R. E. (1989). Operator workload for military system acquisition. In G. R. McMillan, D. Beevis,</p><p>E. Salas,M. H. Strub,R. Sutton,& L. Van Breda (Eds.), Applications of Human Performance Models to System Design (pp. 21-45). Boston, MA: Springer US.</p><p>Liu, T.-C., Lin, Y.-C., & Kuo, Y.-C. (2019). Using arrow-lines to integrate pictorial and textual information in electronic slideshow assisted lecturing 1. In Tindall-Ford, S.,Agostinho, S.,& Sweller,J. (Eds.), Advances in Cognitive Load Theory (pp. 55-65). UK: Routledge.</p><p>Liu,T.-C.,Lin,Y.-C., Wang,T.-N.,Yeh, S.-C., & Kalyuga, S. (2021). Studying the effect of redundancy in a virtual reality classroom. Educational Technology Research and Development, 69(2), 11831200. doi:10.1007/s11423-021-09991-6</p><p>Liu, X. (2013). Construction and management of virtual experiment system. Paper presented at the 2012 International Conference on Information Technology and Management Science (ICITMS 2012) Proceedings, Berlin, Heidelberg.</p><p>Loman, N. L., & Mayer, R. E. (1983). Signaling techniques that increase the understandability of expository prose. Journal of Educational Psychology, 75(3), 402412. doi:10.1037/0022-0663.75.3.402</p><p>Longo, L., & Orru, G. (2018). An evaluation of the reliability, validity and sensitivity of three human mental workload measures under different instructional conditions in third-level education. Paper presented at the International Conference on Computer Supported Education.</p><p>Lorentz, L., Simone, M., Zimmermann, M., Studer, B., Suchan, B., Althausen, A., . . .</p><p>Lendt, M. (2021). Evaluation of a VR prototype for neuropsychological rehabilitation of attentional functions. Virtual Reality, 113. doi:10.1007/s10055-021-00534-1</p><p>Lowe, R., & Boucheix, J.-M. (2011). Cueing complex animations: Does direction of attention foster learning processes? Learning and Instruction, 21(5), 650-663. https://doi.org/10.1016/j.learninstruc.2011.02.002</p><p>Luo, H., Koszalka, T., & Zuo, M. (2016). Investigating the effects of visual cues in multimedia instruction using eye tracking. Paper presented at the International Conference on Blended Learning.</p><p>Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 7-es. doi:10.1145/1132960.1132961</p><p>Mach, S., Grndling, J. P., Schmalfu, F., & Krems, J. F. (2018). How to assess mental workload quick and easy at work: A method comparison. Paper presented at the Congress of the International ErgonomicsAssociation.</p><p>Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719735. doi:10.1037/edu0000473</p><p>Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 11411164. doi:10.1007/s11423-018-9581-2</p><p>Makransky, G., & Petersen, G. B. (2021). The cognitive affective model of immersive learning (CAMIL):Atheoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33(3), 937958. doi:10.1007/s10648-020-09586-2</p><p>Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225236. doi:10.1016/j.learninstruc.2017.12.007</p><p>Manouchou, E., Stavroulia, K.-E., Ruiz-Harisiou, A., Georgiou, K., Sella, F., & Lanitis,</p><p>A. (2016). A feasibility study on using virtual reality for understanding deficiencies of high school students. Paper presented at the 2016 18th Mediterranean Electrotechnical Conference (MELECON).</p><p>Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of Educational Psychology, 88(1), 4963. doi:10.1037/0022-0663.88.1.49</p><p>Mason, D. (2013). Design, implementation and evaluation of virtual learning environments. Online Information Review, 37(2), 201-218. doi:10.1108/OIR-04-2013-0071</p><p>Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93(2), 377389. doi:10.1037/0022-0663.93.2.377</p><p>Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension. Journal of Educational Psychology, 99(3), 640652. doi:10.1037/0022-0663.99.3.640</p><p>Mayer, R. E. (1992). Thinking, problem solving, cognition, 2nd ed. New York, NY, US: W H Freeman/Times Books/ Henry Holt & Co.</p><p>Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 119. doi:10.1207/s15326985ep3201_1</p><p>Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational Research, 31(7), 611623. doi:10.1016/S0883-0355(99)00027-0</p><p>Mayer, R. E. (2002). Multimedia learning. In B. H. Ross (Eds.),Psychology of learning and motivation (Vol. 41, pp. 85-139), Cambridge, Massachusetts: Academic Press.</p><p>Mayer, R. E. (2005). The Cambridge handbook of multimedia learning.Cambridge, England: Cambridge University Press.</p><p>Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning instruction, 20(2), 167171. doi:10.1016/j.learninstruc.2009.02.012</p><p>Mayer, R. E. (2017). Using multimedia for e-learning. Journal of Computer Assisted Learning, 33(5), 403423. doi:10.1111/jcal.12197</p><p>Mayer, R. E., & Fiore, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning, 2nd ed. (pp. 279315). New York, NY, US: Cambridge</p><p>University Press.</p><p>Mayer, R. E., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 4352. doi:10.1207/S15326985EP3801_6</p><p>Mercer, L., Prusinkiewicz, P., & Hanan, J. (1990). The concept and design of a virtual laboratory. Graphics Interface. Halifax, Nova Scotia, 90, 149155. doi:10.5555/93267.93304</p><p>Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 2940. doi:10.1016/j.compedu.2013.07.033</p><p>Mihelj, M., Novak, D., & Begus, S. (2014). Interaction with a virtual environment. In M. Mihelj, D. Novak, & S. Begu (Eds.), Virtual reality technology andaApplications (pp. 205211). Dordrecht: Springer Netherlands.</p><p>Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environments: A ten-year review of empirical research (19992009). Computers & Education, 56(3), 769780. doi:10.1016/j.compedu.2010.10.020</p><p>Moofarry, J. F., Cano, K.A. S., Lozano, D. F. S., & Garca, J. F. C. (2019). Selection of Mental Tasks for Brain-Computer Interfaces Using NASA-TLX Index. Paper presented at the International Conference onApplied Technologies.</p><p>Moon, J., & Ryu, J. (2021). The effects of social and cognitive cues on learning comprehension, eye-gaze pattern, and cognitive load in video instruction. Journal of Computing in Higher Education, 33(1), 3963. doi:10.1007/s12528-020-09255-x</p><p>Moreno, R., & Mayer, R. E. (1999). Visual presentations in multimedia learning: Conditions that overload visual working memory. Paper presented at the International Conference onAdvances in Visual Information Systems.</p><p>Moro, C., tromberga, Z., Raikos,A., & Stirling,A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical Sciences Education, 10(6), 549559. doi:10.1002/ase.1696</p><p>Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87(2), 319334. doi:10.1037/0022-0663.87.2.319</p><p>Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618. doi:10.1016/j.compedu.2019.103618</p><p>Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449461. doi:10.1016/j.tics.2017.03.010</p><p>Naccache, B., Mesquida, L., Raynaud, J.-P., & Revet, A. (2021). Smartphone application for adolescents with anorexia nervosa: An initial acceptability and user experience evaluation. BMC Psychiatry, 21(1), 1-14. doi:10.1186/s12888-021-03478-7</p><p>Nagy,A. L., & Winterbottom, M. (2000). The achromatic mechanism and mechanisms tuned to chromaticity and luminance in visual search. Journal of the Optical Society of America A, 17(3), 369379. doi:10.1364/JOSAA.17.000369</p><p>Nikulin, C., Lopez, G., Pionez, E., Gonzalez, L., & Zapata, P. (2019). NASA-TLX for predictability and measurability of instructional design models: Case study in design methods. Educational Technology Research Development, 67(2), 467493. doi:10.1007/s11423-019-09657-4</p><p>Norman, D., & Nielsen, J. (2016). The definition of user experience (UX). Nielsen Norman Group Publication, 1, 2.1.</p><p>Nuthmann, A., de Groot, F., Huettig, F., & Olivers, C. N. L. (2019). Extrafoveal attentional capture by object semantics. PLOS ONE, 14(5), e0217051. doi:10.1371/journal.pone.0217051</p><p>O'Donnell, R. D., & Eggemeier,F. T. (1986). Workload assessment methodology. In K.</p><p>R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance, Vol. 2: Cognitive processes and performance. (pp. 149). Oxford, England: John Wiley & Sons.</p><p>Ojeda-Castelo, J. J., Piedra-Fernandez, J. A., & Iribarne, L. (2021). A device-interaction model for users with special needs. Multimedia Tools Applications 80(5), 66756710. doi:10.1007/s11042-020-10026-0</p><p>Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology, 32(5), 12431265.</p><p>Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human</p><p>Behavior, 26(1), 110117. doi:10.1016/j.chb.2009.09.001</p><p>Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445453. doi:10.1016/j.compedu.2009.03.002</p><p>zgen, D. S.,Afacan,Y., & Srer, E. (2019). Usability of virtual reality for basic design education:Acomparative study with paper-based design. International Journal of Technology Design Education,121. doi:10.1007/s10798-019-09554-0</p><p>zgen, D. S.,Afacan,Y., & Srer, E. (2021). Usability of virtual reality for basic design education:Acomparative study with paper-based design. International Journal of Technology and Design Education, 31(2), 357377. doi:10.1007/s10798-019-09554-0</p><p>Paas, F., & Ayres, P. (2014). Cognitive load theory: A broader view on the role of memory in learning and education. Educational Psychology Review, 26(2), 191195. doi:10.1007/s10648-014-9263-5</p><p>Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 14. doi:10.1207/S15326985EP3801_1</p><p>Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 6371. doi:10.1207/S15326985EP3801_8</p><p>Paas, F., & van Merrinboer, J. J. G. (2020). Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Current Directions in Psychological Science, 29(4), 394398. doi:10.1177/0963721420922183</p><p>Paas, F. G., & Van Merrinboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122133. doi:10.1037/0022-0663.86.1.122</p><p>Paas, F. G. W. C. (1992). Training strategies for attaining transfer of problem-solving skill in statistics:Acognitive-load approach. Journal of Educational Psychology, 84(4), 429434. doi:10.1037/0022-0663.84.4.429</p><p>Paas, F. G. W. C., & Van Merrinboer, J. J. G. (1993). The efficiency of instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Human Factors, 35(4), 737743.</p><p>doi:10.1177/001872089303500412</p><p>Paas, F. G. W. C., & Van Merrinboer,J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351371. doi:10.1007/BF02213420</p><p>Papachristos, N. M., Ntalakas, G., Vrellis, I., & Mikropoulos, T. A. (2018). A virtual environment for training in culinary education: Immersion and user experience. In Mikropoulos, T. (Eds.), Research on e-Learning and ICT in education (pp. 367-380).Cham: Springer.</p><p>Pappa, G., Ioannou, N., Christofi, M., & Lanitis, A. (2018). Preparing student mobility through a VR application for cultural education. In Ioannides, M., Martins, J., arnic, R., Lim, V. (Eds.), Advances in digital cultural heritage (pp. 218-227).Cham: Springer.</p><p>Park, L. S., Pan, F., Steffens, D., Young, J., & Hong, J. (2021). Are surgeons working smarter or harder? A systematic review comparing the physical and mental demands of robotic and laparoscopic or open surgery. World Journal of Surgery, 115. doi:10.1007/s00268-021-06055-x</p><p>Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785797. doi:10.1037/edu0000241</p><p>Parong, J., & Mayer, R. E. (2021). Cognitive and affective processes for learning science in immersive virtual reality. Journal of Computer Assisted Learning, 37(1), 226241. doi:10.1111/jcal.12482</p><p>Parsons, S. (2016). Authenticity in virtual reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138157. doi:10.1016/j.edurev.2016.08.001</p><p>Pellas, N., Mystakidis, S., & Kazanidis, I. (2021). Immersive virtual reality in K-12 and higher education: A systematic review of the last decade scientific literature. Virtual Reality, 25(3), 835861. doi:10.1007/s10055-020-00489-9</p><p>Plewan, T., & Rinkenauer, G. (2021). Visual search in virtual 3D space:The relation of multiple targets and distractors. Psychological Research, 112. doi:10.1007/s00426-020-01392-3</p><p>Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 325. doi:10.1080/00335558008248231</p><p>Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrovic, V. M., & Jovanovic, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309327. doi:10.1016/j.compedu.2016.02.002</p><p>Qian, Q., Song, M., Shinomori, K., & Wang, F. (2012). The functional role of alternation advantage in the sequence effect of symbolic cueing with nonpredictive arrow cues. Attention, Perception, & Psychophysics, 74(7), 14301436. doi:10.3758/s13414-012-0337-5</p><p>Raskar, R., & Tumblin, J. (2009). Computational photography: Mastering new techniques for lenses, lighting, and sensors. United States:AK Peters, Ltd.</p><p>Rauschenberger,M., Schrepp, M., Prez Cota, M., Olschner,S., & Thomaschewski, J. (2013). Efficient measurement of the user experience of interactive products. How to use the user experience questionnaire (UEQ). Example: Spanish language version. doi:10.9781/ijimai.2013.215</p><p>Reeves, S. M., & Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineering courses:a Systematic review,20092019. Journal of Science Education and Technology, 30(1), 1630. doi:10.1007/s10956-020-09866-0</p><p>Regodic, M., Brdosi, Z., Diakov, G., Galijaevic, M., Freyschlag, C. F., & Freysinger,</p><p>W. (2021). Visual display for surgical targeting: Concepts and usability study. International Journal of Computer Assisted Radiology Surgery, 112. doi:10.1007/s11548-021-02355-8</p><p>Reimers, F. M., & Schleicher,A. (2020). A framework to guide an education response to the COVID-19 pandemic of 2020. OECD. Retrieved Apri, 14(2020), 20202004.</p><p>Reisslein, J., Johnson,A. M., & Reisslein, M. (2015). Color coding of circuit quantities in introductory circuit analysis instruction. IEEE Transactions on Education, 58(1), 7-14. doi:10.1109/TE.2014.2312674</p><p>Rizzo, L., Dondio, P., Delany, S. J., & Longo, L. (2016). Modeling mental workload via rule-based expert system: A comparison with NASA-TLX and workload profile. Paper presented at the IFIP International Conference on Artificial Intelligence Applications and Innovations.</p><p>Salomon, G. (1983). The differential investment of mental effort in learning from different sources. Educational Psychologist, 18(1), 4250. doi:10.1080/00461528309529260</p><p>Salvato, G., De Maio, G., & Bottini, G. (2017). Exploring biased attention towards body-related stimuli and its relationship with body awareness. Scientific Reports, 7(1), 17234. doi:10.1038/s41598-017-17528-2</p><p>Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332339. doi:10.1038/nrn1651</p><p>Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 36, 11-26. doi.org/10.1016/j.learninstruc.2014.11.002</p><p>Schlegel, M. (1995). A handbook of instructional and training program design. New York: ERIC Document Reproduction Service.</p><p>Schneider, S., Beege, M., Nebel, S., & Rey, G. D. (2018). A meta-analysis of how signaling affects learning with media. Educational Research Review, 23, 124. doi:10.1016/j.edurev.2017.11.001</p><p>Schnotz, W., & Lowe, R. (2008). A unified view of learning from animated and static graphics. In Schnotz, W., & Lowe, R. (Eds.), Learning with animation: Research implications for design. (pp. 304356). New York, NY, US: Cambridge University Press.</p><p>Schrepp, M., Hinderks,A., & Thomaschewski, J. (2017). Construction of a benchmark for the user experience questionnaire (UEQ). International Journal of Interactive Multimedia and Artificial Intelligence, 4(4), 40-44. doi:10.9781/ijimai.2017.445</p><p>Schwebel, D. C., Combs, T., Rodriguez, D., Severson, J., & Sisiopiku, V. (2016). Community-based pedestrian safety training in virtual reality:Apragmatic trial. Accident Analysis Prevention, 86, 915. doi:10.1016/j.aap.2015.10.002</p><p>Seiler, S. (2013). Current trends in remote and virtual lab engineering. Where are we in 2013? International Journal of Online Biomedical Engineering, 9(6), 1216. doi:10.3991/ijoe.v9i6.2898</p><p>Senthamarai, S. (2018). Interactive teaching strategies. Journal of Applied Advanced Research, 3(S1), 3638. doi:10.21839/jaar.2018.v3iS1.166</p><p>Seo, J. H., Malone, E., Beams, B., & Pine, M. (2021). Toward constructivist approach using virtual reality in anatomy education. In Uhl, JF., Jorge, J., Lopes, D.S., Campos, P.F. (Eds.), Digital Anatomy (pp. 343366). Cham: Springer.</p><p>Seufert, T., & Brnken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology, 20(3), 321-331. doi.org/10.1002/acp.1248</p><p>Shahdloo, M., elik, E., & ukur, T. (2020). Biased competition in semantic representation during natural visual search. NeuroImage, 216, 116383. doi:10.1016/j.neuroimage.2019.116383</p><p>Sharhorodska, O., & Iquira, D. (2019). Interaction of low cost mobile virtual reality environmentsUsing metaphor in an astronomy laboratory. Paper presented at the International Conference on Human-Computer Interaction.</p><p>Shin, D.,& Park,S. (2019). 3D learning spaces andactivities fostering userslearning, acceptance, and creativity. Journal of Computing in Higher Education, 31(1), 210228. doi:10.1007/s12528-019-09205-2</p><p>Shin, D.-H. (2017). The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality. Telematics and Informatics, 34(8), 18261836. doi:10.1016/j.tele.2017.05.013</p><p>Shin, D.-H., An, H., & Kim, J. H. (2016). How the second screens change the way people interact and learn: The effects of second screen use on information processing. Interactive Learning Environments, 24(8), 20582079. doi:10.1080/10494820.2015.1076851</p><p>Shin, D.-H., & Chung, K.-m. (2017). The effects of input modality and story-based knowledge on users' game experience. Computers in Human Behavior, 68, 180189. doi:10.1016/j.chb.2016.11.030</p><p>Shnai, I. (2018). Digital learning design: From ideation via TRIZ to implementation. In Koziolek, S., Chechurin, L., Collan, M. (Eds.), Advances and Impacts of the Theory of Inventive Problem Solving (pp. 1-16). Cham: Springer.</p><p>Sidhu, M. S. (2014). Integration of visual cues in an augmented reality application for enhancing the learning of engineering concepts. Paper presented at the Proceedings of the International Conference on Science, Technology and Social Sciences (ICSTSS) 2012.</p><p>Skuballa, I. T., Schwonke, R., & Renkl, A. (2012). Learning from narrated animations with different support procedures: Working memory capacity matters. Applied Cognitive Psychology, 26(6), 840-847. doi.org/10.1002/acp.2884</p><p>Skulmowski, A., & Rey, G. D. (2018). Embodied learning: Introducing a taxonomy based on bodily engagement and task integration. Cognitive Research:</p><p>Principles and Implications, 3(1), 6. doi:10.1186/s41235-018-0092-9</p><p>Skulmowski, A., & Rey, G. D. (2020a). The realism paradox: Realism can act as a form of signaling despite being associated with cognitive load. Human Behavior and Emerging Technologies, 2(3), 251258. doi:10.1002/hbe2.190</p><p>Skulmowski, A., & Rey, G. D. (2020b). Subjective cognitive load surveys lead to divergent results for interactive learning media. Human Behavior and Emerging Technologies, 2(2), 149157. doi:10.1002/hbe2.184</p><p>Skulmowski, A., & Rey, G. D. (2021). Realism as a retrieval cue: Evidence for concreteness-specific effects of realistic, schematic, and verbal components of visualizations on learning and testing. Human Behavior and Emerging Technologies, 3(2), 283-295. doi:10.1002/hbe2.209</p><p>Skulmowski,A., & Xu, K. M. (2022). Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educational Psychology Review, 34(1), 171196. doi:10.1007/s10648-021-09624-7</p><p>Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 35493557. doi:10.1098/rstb.2009.0138</p><p>Slater,M., & Wilbur, S. (1997).Aframework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603616. doi:10.1162/pres.1997.6.6.603</p><p>Song, N. (2017). Design and development of virtual experiment platform for photographic technology network. Industrial Design, 7, 4041.</p><p>Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248. doi:10.1037/0096-1523.31.2.248</p><p>Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342348. doi:10.1016/j.tics.2008.05.007</p><p>Soto,D.,Humphreys, G. W.,& Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46(6), 10101018. doi:10.1016/j.visres.2005.09.008</p><p>Southgate, E., Smith, S. P., Cividino, C., Saxby, S., Kilham, J., Eather, G., . . . Bergin,</p><p>C. (2019). Embedding immersive virtual reality in classrooms: Ethical, organisational and educational lessons in bridging research and practice. International Journal of Child-Computer Interaction, 19, 1929. doi:10.1016/j.ijcci.2018.10.002</p><p>Stavroulia, K.-E., Christofi, M., Zarraonandia, T., Michael-Grigoriou, D., & Lanitis, A. (2019). Virtual reality environments (VREs) for training and learning. InDaz, P., Ioannou, A., Bhagat, K., Spector, J. (Eds.), Learning in a Digital World(pp. 195-211). Singapore: Springer.</p><p>Steinke, M., Huk, T., & Floto, C. (2003). Helping teachers developing computer animations for improving learning in science education. Paper presented at the Society for Information Technology & Teacher Education International Conference.</p><p>Su, C.-H., & Cheng, T.-W. (2019). A sustainability innovation experiential learning modelfor virtualreality chemistrylaboratory:An empirical study with PLS-SEM and IPMA. Sustainability, 11(4). doi:10.3390/su11041027</p><p>Su, K.-W., Chen, S.-C., Lin, P.-H., & Hsieh, C.-I. (2020). Evaluating the user interface and experience of VR in the electronic commerce environment: A hybrid approach. Virtual Reality, 24(2), 241254. doi:10.1007/s10055-019-00394-w</p><p>Su, Y. (2011). Development and application of the virtual intelligent digital camera teaching system. In Jin, D., Lin, S. (Eds.), Advances in Multimedia, Software Engineering and Computing Vol. 2 (pp. 521527). Berlin, Heidelberg: Springer.</p><p>Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257285. doi:10.1016/0364-0213(88)90023-7</p><p>Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In Mayer,R.E(Eds.),The Cambridge Handbook of Multimedia Learning(pp.19-30). Cambridge, England: Cambridge University Press.</p><p>Sweller, J. (2008). Cognitive load theory and the use of educational technology. Educational Technology, 48(1), 3235.</p><p>Sweller, J. (2011). Chapter twoCognitive load theory. In J. P. Mestre & B. H. Ross (Eds.), Psychology of learning and motivation (Vol. 55, pp. 3776): Academic Press.</p><p>Sweller, J. (2021). Instructional design. In T. K. Shackelford & V. A.</p><p>Weekes-Shackelford (Eds.), Encyclopedia of evolutionary psychological</p><p>science (pp. 41594163). Cham: Springer International Publishing.</p><p>Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional Design. Educational Psychology Review, 10(3), 251296. doi:10.1023/A:1022193728205</p><p>Tabbers, H. K., & de Koeijer, B. (2010). Learner control in animated multimedia instructions. Instructional Science, 38(5), 441-453. doi:10.1007/s11251-009-9119-4</p><p>Tabbers, H. K., Martens, R. L., & Van Merrinboer, J. J. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. British Journal of Educational Psychology, 74(1), 7181. doi:10.1348/000709904322848824</p><p>Tan, S. (2019). An analysis of the teaching methods of basic photography courses in colleges and universities. Collection, 1, 165167.</p><p>Tarng, W., Tsai, C.-F., Lin, C.-M., Lee, C.-Y., & Liou, H.-H. (2015). Development of an educational virtual transmission electron microscope laboratory. Virtual Reality, 19(1), 3344. doi:10.1007/s10055-014-0253-1</p><p>Taylor, D., Hallett, T., Lowe, P., & Sanders, P. (2015). Digital photography complete course. London, England, U.K: DK Publishing.</p><p>Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 7799. doi:10.1016/j.actpsy.2010.02.006</p><p>Theeuwes, J. (2019). Goal-driven, stimulus-driven, and history-driven selection. Current Opinion in Psychology, 29, 97101. doi:10.1016/j.copsyc.2018.12.024</p><p>Theeuwes, J., & Burger, R. (1998).Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 13421353. doi:10.1037/0096-1523.24.5.1342</p><p>Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3(4), 257. doi:10.1037/1076-898X.3.4.257</p><p>Treisman, A. (1988). Feature analysis in early vision: Evidence from search asymmetry. Psychological Review, 95, 1548.</p><p>Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97136. doi:10.1016/0010-0285(80)90005-5</p><p>Tugtekin, U., & Odabasi, H. F. (2022). Do interactive learning environments have an effect on learning outcomes, cognitive load and metacognitive judgments? Education and Information Technologies, 27(5), 7019-7058.doi:10.1007/s10639-022-10912-0</p><p>Turatto, M., & Galfano, G. (2000). Color, form and luminance capture attention in visual search. Vision Research, 40(13), 16391643. doi:10.1016/S0042-6989(00)00061-4</p><p>Turatto, M., & Galfano, G. (2001). Attentional capture by color without any relevant attentional set. Perception & Psychophysics, 63(2), 286297. doi:10.3758/BF03194469</p><p>Turatto, M., Galfano, G., Gardini, S., & Mascetti, G. G. (2004). Stimulus-driven attentional capture: An empirical comparison of display-size and distance methods. The Quarterly Journal of Experimental Psychology Section A, 57(2), 297324. doi:10.1080/02724980343000242</p><p>Tysz, C. (2010). The effect of the virtual laboratory on students' achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 3753.</p><p>Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human-Computer Studies, 57(4), 247-262. doi.org/10.1006/ijhc.2002.1017</p><p>Ullah, S., Ali, N., & Rahman, S. U. (2016). The effect of procedural guidance on students skill enhancement in a virtual chemistry laboratory. Journal of Chemical Education, 93(12), 20182025. doi:10.1021/acs.jchemed.5b00969</p><p>Van Gog, T. (2014). The signaling (or cueing) principle in multimedia learning. In The Cambridge handbook of multimedia learning, 2nd ed. (pp. 263278). New York, NY, US: Cambridge University Press.</p><p>Van Merrinboer, J. J., & Ayres, P. (2005). Research on cognitive load theory and its design implications for e-learning. Educational Technology Research, 53(3), 513. doi:10.1007/BF02504793</p><p>van Merrinboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147177. doi:10.1007/s10648-005-3951-0</p><p>Wallgrn, J. O., Bagher, M. M., Sajjadi, P., & Klippel, A. (2020, 2226 March). A comparison of visual attention guiding approaches for 360 image-based VR tours.Paper presented atthe 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).</p><p>Wang, C. (2020). Application of virtual simulation technology in the field of journalism and communication education in colleges and universities. New Media Research, 1. doi:10.19400/j.cnki.cn10-1407/g2.2020.01.021</p><p>Wang, J., Guo, D., & Jou, M. (2015). A study on the effects of model-based inquiry pedagogy on students inquiry skills in a virtual physics lab. Computers in Human Behavior, 49, 658669. doi:10.1016/j.chb.2015.01.043</p><p>Wang, P., Bai, X., Billinghurst, M., Zhang, S., Wei, S., Xu, G., . . . Zhang, J. (2020). 3DGAM: Using 3D gesture and CAD models for training on mixed reality remote collaboration. Multimedia Tools Applications, 126. doi:10.1007/s11042-020-09731-7</p><p>Wang, Y., Dang, J., Yong, J., Wang, W., & Yue, B. (2019). Construction of practical teaching system for integration of specialism and innovation based on virtual simulation technology. Paper presented at the National Conference on Computer Science Technology and Education.</p><p>Wattanasin, W., Piriyasurawong, P., & Chatwattana, P. (2019). Engineering project-based learning model using virtual laboratory mix augmented reality to enhance engineering and innovation skills. Paper presented at the International Conference on Interactive Collaborative Learning.</p><p>Wickens, C. D., & Liu, Y. (1988). Codes and modalities in multiple resources: A success and a qualification. Human Factors, 30(5), 599616. doi:10.1177/001872088803000505</p><p>Wilson, G. F. (1993). Air-to-ground training missions:A psychophysiological workload analysis. Ergonomics, 36(9), 10711087. doi:10.1080/00140139308967979</p><p>Wilson, G. F., & Russell, C. A. (2003). Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Human Factors, 45(4), 635644. doi:10.1518/hfes.45.4.635.27088</p><p>Wilson, T. D. (2015). Role of image and cognitive load in anatomical multimedia. In Chan, L., Pawlina, W. (Eds.), Teaching anatomy (pp. 237-246).Cham: Springer.</p><p>Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345376. doi:10.1207/s15326985ep2404_2</p><p>Wolf, J., Wolfer, V., Halbe, M., Maisano, F., Lohmeyer, Q., & Meboldt, M. (2021). Comparing the effectiveness of augmented reality-based and conventional instructions during single ECMO cannulation training. International Journal of Computer Assisted Radiology Surgery 11711180. doi:10.1007/s11548-021-02408</p><p>Wolf, T. (2009). Assessing student learning in a virtual laboratory environment. IEEE Transactions on Education, 53(2), 216222. doi:10.1109 / TE.2008.2012114</p><p>Wouters, P., Paas, F., & van Merrinboer, J. J. (2008). How to optimize learning from animated models: A review of guidelines based on cognitive load. Review of Educational Research, 78(3), 645675. doi:10.1037/edu0000285</p><p>Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Technology, 51(6), 1991-2005. doi:10.1111/bjet.13023</p><p>Wu, H., Luo, W., Pan, N., Nan, S., Deng, Y., Fu, S., & Yang, L. (2019). Understanding freehand gestures: A study of freehand gestural interaction for immersive VR shopping applications. Human-centric Computing and Information Sciences, 9(1), 43. doi:10.1186/s13673-019-0204-710.1186/s13673-019-0204-7</p><p>Wu, X. (2011). Research on the application of virtual reality technology in the course of modern educational technology. Audio-Visual Education in China, 3, 96100. doi:10.12738/estp.2018.5.037</p><p>Xie, B., & Salvendy, G. (2000). Prediction of mental workload in single and multiple tasks environments. International Journal of Cognitive Ergonomics, 4(3), 213242. doi:10.1207/S15327566IJCE0403_3</p><p>Xie, H., Mayer, R. E., Wang, F., & Zhou, Z. (2019). Coordinating visual and auditory cueing in multimedia learning. Educational Psychology, 111(2), 235255. doi:10.1037/edu0000285</p><p>Yang, F.-Y., Chang, C.-Y., Chien, W.-R., Chien, Y.-T., & Tseng, Y.-H. (2013). Tracking learners' visual attention during a multimedia presentation in a real classroom. Computers & Education, 62, 208220. doi:10.1016/j.compedu.2012.10.009</p><p>Yang, H. (2018). The effects of attention cueing on English reading on mobile phones. Frontiers of Education in China, 13(3), 315345.</p><p>doi:10.1007/s11516-018-0016-y</p><p>Yang, H. y. (2016). The effects of attention cueing on visualizers' multimedia learning. Educational Technology Society, 19(1), 249262.</p><p>Yang, O., Shiping, Y., Yabo, D., & Miaoliang, Z. (2007). Web-based interactive virtual laboratory system for digital circuit experiment. InIskander, M. (Eds.), Innovations in e-learning, instruction technology, assessment, and engineering education (pp. 305-309). Dordrecht: Springer.</p><p>Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 661676. doi:10.1037/0096-1523.25.3.661</p><p>Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95107. doi:10.1037/0096-1523.20.1.95</p><p>Yin,L., Zhao,Y.,& Wang, Q. (2020). Design of photographic lighting placement virtual platform based on multimedia technology. InYang, CT., Pei, Y., Chang, JW. (Eds.),Innovative Computing (pp. 1263-1270). Singapore: Springer.</p><p>Yung, H. I., & Paas, F. (2015). Effects of cueing by a pedagogical agent in an instructional animation: A cognitive load approach. Educational Technology Society, 18(3), 153160. doi:10.1037/t15489-000</p><p>Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences, 1339(1), 154. doi:10.1111/nyas.12606</p><p>Zhang, B., Zhang, J. X., Kong, L., Huang, S.,Yue, Z., & Wang, S. (2010). Guidance of visual attention from working memory contents depends on stimulus attributes. Neuroscience Letters, 486(3), 202206. doi:10.1016/j.neulet.2010.09.052</p><p>Zhang, K., & Chen, D. (2016). Design and research of virtual simulation experiment teaching resource. Disciplines Exploration(7X), 3334. doi:10.16400/j.cnki.kjdkx.2016.07.017</p><p>Zhao, J., Lin, L., Sun, J., & Liao, Y. (2020). Using the summarizing strategy to engage learners: Empirical evidence in an immersive virtual reality environment. The Asia-Pacific Education Researcher, 110. doi:10.1007/s40299-020-00499-w</p><p>Zhao, Y. (2019). Construction of virtual simulation laboratory in higher vocational</p><p>colleges. Paper presented at the Application of Intelligent Systems in Multi-modal InformationAnalytics.</p><p>Zhu, S., Wang, W., & Zhou, X. (2008). The preliminary exploration of experimental district for digital media education integrated arts and technology. Paper presented at the 2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design.</p><p>Zilles Borba, E., Corra, A. G., de Deus Lopes, R., & Zuffo, M. (2020). Usability in virtual reality: Evaluating user experience with interactive archaeometry tools in digital simulations. Multimedia Tools and Applications, 79(5), 34253447. doi:10.1007/s11042-019-07924-3</p><p></p>