Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles
<p>This study aimed to improve the optical properties of reduced graphene oxide- and carbon</p><p>nanotubes-coated tellurite glass doped with erbium oxide nanoparticles denoted as</p><p>ZBTEr(NPs)-rGO and ZBTEr(NPs)-CNTs. Two sets...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2023
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=10513 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:10513 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
QC Physics |
spellingShingle |
QC Physics Azlina Yahya Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles |
description |
<p>This study aimed to improve the optical properties of reduced graphene oxide- and carbon</p><p>nanotubes-coated tellurite glass doped with erbium oxide nanoparticles denoted as</p><p>ZBTEr(NPs)-rGO and ZBTEr(NPs)-CNTs. Two sets of glass series were synthesized by</p><p>melt-quenched technique with chemical composition of (0.47(1-y))TeO2+(0.2(1-</p><p>y))B2O3+(0.29(1-y))+ZnO+Er2O3(y) wherein, y = 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05</p><p>mol% Er2O3 nanoparticles. Tellurite-based glass was deposited with rGO and CNTs onto</p><p>the glass surfaces by spray-coated technique. The physical, morphological, structural, and</p><p>optical properties of ZBTEr(NPs)-rGO and ZBTEr(NPS)-CNTs glasses were characterized</p><p>via densimeter, scanning electron microscopy (SEM), energy dispersive X-ray (EDX),</p><p>transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transforminfrared</p><p>(FT-IR), micro-Raman spectroscopy, ultraviolet-visible (UV-Vis)</p><p>spectrophotometer, and photoluminescence. SEM micrographs revealed morphological</p><p>structures of rGO and CNTs on the glass surfaces meanwhile, EDX spectra disclosed</p><p>elemental composition of rGO and CNTs. TEM images proved existence of Er(NPs) with</p><p>average size (~23.53 nm) in glass matrix. XRD pattern verified amorphous nature of</p><p>glasses. FT-IR spectra evaluated the presence of non-bridging oxygens (NBOs) with TeO4,</p><p>TeO3, and BO3 functional groups meanwhile, Raman spectra demonstrated good quality of</p><p>rGO and CNTs. The refractive index value was increased (2.402-2.775) for ZBTEr(NPs)-</p><p>rGO meanwhile, (2.432-2.542) for ZBTEr(NPs)-CNTs. The optical bandgap energy value</p><p>was improved (1.913-2.931 eV) for ZBTEr(NPs)-rGO and (2.513-2.875 eV) ZBTEr(NPs)-</p><p>CNTs meanwhile, non-linear trend of Urbach energy (0.118-0.408 eV) for ZBTEr(NPs)-</p><p>rGO and (0.158-0.375 eV) for ZBTEr(NPs)-CNTs. Judd-Ofelts intensity parameters</p><p>showed 2>6>4 trend for ZBTEr(NPs)-rGO whilst, 2>4>6 trend for ZBTEr(NPs)-</p><p>CNTs. Radiative parameters and branching ratio proved 2H11/24I15/2 transition showed</p><p>highest radiative transition value, resulting in a strong green emission. Luminescence</p><p>spectra exhibited two emission peaks assigned to 2H11/24I15/2 and 4S3/24I15/2 transitions.</p><p>In conclusion, the rGO and CNTs deposition enhanced the optical properties of glass</p><p>materials. Implication of this study offers a new milestone in the glass coatings field for</p><p>improving current fiber optics.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Azlina Yahya |
author_facet |
Azlina Yahya |
author_sort |
Azlina Yahya |
title |
Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles |
title_short |
Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles |
title_full |
Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles |
title_fullStr |
Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles |
title_full_unstemmed |
Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles |
title_sort |
structural, intensity parameters and luminescence analysis of rgo-/cnts-coated tellurite glass doped with erbium nanoparticles |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2023 |
url |
https://ir.upsi.edu.my/detailsg.php?det=10513 |
_version_ |
1804890564647190528 |
spelling |
oai:ir.upsi.edu.my:105132024-06-25 Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles 2023 Azlina Yahya QC Physics <p>This study aimed to improve the optical properties of reduced graphene oxide- and carbon</p><p>nanotubes-coated tellurite glass doped with erbium oxide nanoparticles denoted as</p><p>ZBTEr(NPs)-rGO and ZBTEr(NPs)-CNTs. Two sets of glass series were synthesized by</p><p>melt-quenched technique with chemical composition of (0.47(1-y))TeO2+(0.2(1-</p><p>y))B2O3+(0.29(1-y))+ZnO+Er2O3(y) wherein, y = 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05</p><p>mol% Er2O3 nanoparticles. Tellurite-based glass was deposited with rGO and CNTs onto</p><p>the glass surfaces by spray-coated technique. The physical, morphological, structural, and</p><p>optical properties of ZBTEr(NPs)-rGO and ZBTEr(NPS)-CNTs glasses were characterized</p><p>via densimeter, scanning electron microscopy (SEM), energy dispersive X-ray (EDX),</p><p>transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transforminfrared</p><p>(FT-IR), micro-Raman spectroscopy, ultraviolet-visible (UV-Vis)</p><p>spectrophotometer, and photoluminescence. SEM micrographs revealed morphological</p><p>structures of rGO and CNTs on the glass surfaces meanwhile, EDX spectra disclosed</p><p>elemental composition of rGO and CNTs. TEM images proved existence of Er(NPs) with</p><p>average size (~23.53 nm) in glass matrix. XRD pattern verified amorphous nature of</p><p>glasses. FT-IR spectra evaluated the presence of non-bridging oxygens (NBOs) with TeO4,</p><p>TeO3, and BO3 functional groups meanwhile, Raman spectra demonstrated good quality of</p><p>rGO and CNTs. The refractive index value was increased (2.402-2.775) for ZBTEr(NPs)-</p><p>rGO meanwhile, (2.432-2.542) for ZBTEr(NPs)-CNTs. The optical bandgap energy value</p><p>was improved (1.913-2.931 eV) for ZBTEr(NPs)-rGO and (2.513-2.875 eV) ZBTEr(NPs)-</p><p>CNTs meanwhile, non-linear trend of Urbach energy (0.118-0.408 eV) for ZBTEr(NPs)-</p><p>rGO and (0.158-0.375 eV) for ZBTEr(NPs)-CNTs. Judd-Ofelts intensity parameters</p><p>showed 2>6>4 trend for ZBTEr(NPs)-rGO whilst, 2>4>6 trend for ZBTEr(NPs)-</p><p>CNTs. Radiative parameters and branching ratio proved 2H11/24I15/2 transition showed</p><p>highest radiative transition value, resulting in a strong green emission. Luminescence</p><p>spectra exhibited two emission peaks assigned to 2H11/24I15/2 and 4S3/24I15/2 transitions.</p><p>In conclusion, the rGO and CNTs deposition enhanced the optical properties of glass</p><p>materials. Implication of this study offers a new milestone in the glass coatings field for</p><p>improving current fiber optics.</p> 2023 thesis https://ir.upsi.edu.my/detailsg.php?det=10513 https://ir.upsi.edu.my/detailsg.php?det=10513 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Aarts, L., Jaeqx, S., Ende, B. M. Van Der, & Meijerink, A. (2011). Downconversion for the Er3+, Yb3+ couple in KPb2Cl A low-phonon frequency host. Journal of Luminescence, 131, 608613.</p><p></p><p>Abdel-Baki, M., & El-Diasty, F. (2007). Optical properties of oxide glasses containing transition metals : Case of titanium- and chromium-containing glasses. Current Opinion in Solid State and Materials Science, 10(56), 217229.</p><p></p><p>Abid, Sehrawat, P., Islam, S. S., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature , Defect States and Quantum Efficiency. Scientific Reports, 8(1).</p><p></p><p>Afroozeh, A. (2021). Dependence of linear and non-linear optical properties to sp3 domains level and edges length in graphene-based nanomaterials. Optik, 226, 165903.</p><p></p><p>Ahmadi, F., Hussin, R., & Ghoshal, S. K. (2016). Judd-Ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids, 448, 4351.</p><p></p><p>Ahmed, E. M., Youssif, M. I., & Elzelaky, A. A. (2019). Structural, thermal and photoemission properties of erbium doped phosphate glass. Ceramics International, 45(18), 2401424021.</p><p></p><p>Akbari, E., Akbari, I., & Ebrahimi, M. R. (2019). sp2/ sp3 bonding ratio dependence of the band-gap in graphene oxide. The European Physical Journal B, 92(4).</p><p></p><p>Al-azzawi, A. A., Almukhtar, A. A., Hamida, B. A., Das, S., Dhar, A., & Paul, M. C. (2019). Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. Results in Physics, 13, 102186.</p><p></p><p>Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45, 1443914448.</p><p></p><p>Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y. S. (2019). Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3 Bi2O3 ZnO CaO glasses. Ceramics International, 45(16), 2072420732.</p><p></p><p>Al-Harbi, N., Sayyed, M. I., Al-Hadeethi, Y., Kumar, A., Elsafi, M., Mahmoud, K. A., Khandaker, M. U., & Bradley, D. A. (2021). A novel CaOK2ONa2OP2O5 glass systems for radiation shielding applications. Radiation Physics and Chemistry, 188,</p><p>109645.</p><p></p><p>Alalawi, A., Al-Buriahi, M. S., Sayyed, M. I., Akyildirim, H., Arslan, H., Zaid, M. H. M., & Tonguc, B. T. (2020). Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceramics International, 46(11), 1730017306.</p><p></p><p>Ali, E., Hadis, D., Hamzeh, K., Mohammad, K., Nosratollah, Z., Abolfazl, A., Mozhgan, A., Younes, H., & Woo, J. S. (2014). Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Research Letters, 9, 393.</p><p></p><p>Alvarez-Ramos, M. E., Alvarado-Rivera, J., Zayas, M. E., Caldio, U., & Hernndez-Paredes, J. (2018). Yellow to orange-reddish glass phosphors: Sm3+, Tb3+and Sm3+/Tb3+ in zinc tellurite-germanate glasses. Optical Materials, 75, 8893.</p><p></p><p>Amiar Rodin, N. L., & Sahar, M. R. (2018). Erbium doped sodium magnesium boro-tellurite glass: Stability and Judd-Ofelt analysis. Materials Chemistry and Physics, 216, 177185.</p><p></p><p>Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., & Arifin, R. (2013). Synthesis and characterization of Dy3+ doped zinc-lead-phosphate glass. Optical Materials, 35, 11031108.</p><p></p><p>Antidormi, A., Roche, S., & Colombo, L. (2020). Impact of oxidation morphology on reduced graphene oxides upon thermal annealing. JPhys Materials, 3(1).</p><p></p><p>Aradhana, D. M., Dissanayake, S., Cifuentes, M. P., & Humphrey, M. G. (2018). Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coordination Chemistry Reviews, 375, 489513.</p><p></p><p>Arora, N., & Sharma, N. N. (2014). Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials, 50, 135150.</p><p></p><p>Arranz-Mascars, P., Godino-Salido, M. L., Lpez-Garzn, R., Garca-Gallarn, C., Chamorro-Mena, I., Lpez-Garzn, F. J., Fernndez-Garca, E., & Gutirrez-Valero, M. D. (2020). Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface. ACS Omega, 5(30), 1884918861.</p><p></p><p>Asokamani, R., & Manjula, R. (1989). Correlation between electronegativity and superconductivity. Physica Review B, 39(7), 42174221.</p><p></p><p>Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., & D. Malhotra, B. (2017). Biomaterials Science Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science, 5, 901952.</p><p></p><p>Awang, A., Ghoshal, S. K., Sahar, M. R., & Arifin, R. (2015). Gold nanoparticles assisted structural and spectroscopic modification in Er3+-doped zinc sodium</p><p>tellurite glass. Optical Materials, 42, 495505.</p><p></p><p>Azizighannad, S., & Mitra, S. (2018). Stepwise reduction of Graphene Oxide (GO) and its effects on chemical and colloidal properties. Scientific Reports, 8, 10083.</p><p></p><p>Azlan, M. N., & Halimah, M. K. (2018). Role of Nd3+ nanoparticles on enhanced optical efficiency in borotellurite glass for optical fiber. Results in Physics, 11, 5864.</p><p></p><p>Azlan, M. N., Halimah, M. K., Baki, S. O., & Mohamad, D. W. (2015). Green Emission of Tellurite Based Glass Containing Erbium Oxide Nanoparticles. Journal of Nanomaterials.</p><p></p><p>Azlan, M. N., Halimah, M. K., El-Mallawany, R., Faznny, M. F., & Eevon, C. (2017). Optical properties of zinc borotellurite glass system doped with erbium and erbium nanoparticles for photonic applications. Journal of Materials Science: Materials in Electronics, 28(5), 43184327.</p><p></p><p>Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211218.</p><p></p><p>Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., & El-mallawany, R. (2019). Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Materials Chemistry and Physics, 236.</p><p></p><p>Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., Umar, S. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 8288.</p><p></p><p>Ba, H., Sutter, C., Papaefthimiou, V., Zafeiratos, S., Bahouka, A., Lafue, Y., Nguyen-Dinh, L., Romero, T., & Pham-Huu, C. (2020). Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon, 167, 169180.</p><p></p><p>Bachvarova-nedelcheva, A., Iordanova, R., Ganev, S., & Dimitriev, Y. (2018). Glass formation and structural studies of glasses in the TeO-ZnO-Bi2O3NbO5 system. Journal of Non-Crystalline Solids.</p><p></p><p>Bacon, R. (1960). Growth, structure, and properties of graphite whiskers. Journal of Applied Physics, 31(2), 283290.</p><p></p><p>Balda, R., Hakmeh, N., Barredo-zuriarrain, M., Merdrignac-Conacec, O., Garca-Revilla, S., Arriandiaga, M. A., & Fernndez, J. (2016). Influence of Upconversion Processes in the Optically-Induced Inhomogeneous Thermal Behavior of Erbium-Doped Lanthanum Oxysulfide Powders. Materials, 9(5), 353.</p><p></p><p>Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2(3), 463470.</p><p></p><p>Belosludtseva, A. A., Bobenko, N. G., Egorushkin, V. E., Korusenko, P. M., Melnikova, N. V., & Nesov, S. N. (2021). Oxygen functionalization and electronic band gap control in the disordered multi-walled carbon nanotubes. Synthetic Metals, 280, 116866.</p><p></p><p>Bengisu, M. (2015). Borate glasses for scientific and industrial applications: a review. Journal of Materials Science, 51, 21992242.</p><p></p><p>Bhardwaj, S., Shukla, R., Sanghi, S., Agarwal, A., & Pal, I. (2014). Spectroscopic properties of Sm3+ doped lead bismosilicate glasses using Judd-Ofelt theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 117, 191197.</p><p></p><p>Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical Basicity and Polarizability of Nd3+-Doped Bismuth Borate Glasses. New Journal of Glass and Ceramics, 5, 4452.</p><p></p><p>Bodelot, L., Pavic, L., Hallais, S., Charliac, J., & Lebental, B. (2019). Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: in-situ characterization. Scientific Reports, 9(1), 5513.</p><p></p><p>Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611622.</p><p></p><p>Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149(0), 249259.</p><p></p><p>Buddhudu, S., & Bryant, F. J. (1989). OPTICAL TRANSITIONS OF Er3+:La202S AND Er3+:Y202S. Journal of the Less-Common Metals, 147, 213225.</p><p></p><p>Bulus, I., Hussin, R., Ghoshal, S. K., Tamuri, A. R., & Jupri, S. A. (2019). Enhanced elastic and optical attributes of boro-telluro-dolomite glasses : Role of CeO2 doping. Ceramics International, 45, 1864818658.</p><p></p><p>Bunaciu, A. A., Udristioiu, E. gabriela, & Aboul-Enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45(4), 289299.</p><p></p><p>Bunch, J. S., Verbridge, S. S., Alden, J. S., Zande, A. M. Van Der, Parpia, J. M., Craighead, H. G., & Mceuen, P. L. (2008). Impermeable Atomic Membranes from 2008. Nano Letters, 8(8), 24582462.</p><p></p><p>Cmara, J. G., da Silva, D. M., Kassab, L. R. P., de Arajo, C. B., & Gomes, A. S. L. (2021). Random laser emission from neodymium doped zinc tellurite glass-powder presenting luminescence concentration quenching. Journal of Luminescence, 233, 117936.</p><p></p><p>Cao, R., Lu, Y., Tian, Y., Huang, F., Guo, Y., Xu, S., & Zhang, J. (2016). 2 m emission properties and nonresonant energy transfer of Er3+ and Ho3+ codoped silicate glasses. Scientific Reports, 6(1), 111.</p><p></p><p>Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics, 49(10), 44244442.</p><p></p><p>Chan, K. F., Mohd Zaid, M. H., Liza, S., Mamat, M. S., Matori, K. A., Endot, N. A., Tanemura, M., & Yaakob, Y. (2021). Tuning the optical bandgap of multi-walled carbon nanotube-modified zinc silicate glass-ceramic composites. Ceramics International, 47(14), 2010820116.</p><p></p><p>Chaudhary, K. T., Rizvi, Z. H., Bhatti, K. A., Ali, J., & Yupapin, P. P. (2013). Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. Journal of Nanomaterials, 113.</p><p></p><p>Cheng, C., Li, S., Thomas, A., Kotov, N. A., & Haag, R. (2017). Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 117(3), 18261914.</p><p></p><p>Chien, C. T., Li, S. S., Lai, W. J., Yeh, Y. C., Chen, H. A., Chen, I. S., Chen, L. C., Chen, K. H., Nemoto, T., Isoda, S., Chen, M., Fujita, T., Eda, G., Yamaguchi, H., Chhowalla, M., & Chen, C. W. (2012). Tunable photoluminescence from graphene oxide. Angewandte Chemie - International Edition, 51(27), 66626666.</p><p></p><p>Chimalawong, P., Kirdsiri, K., Kaewkhao, J., & Limsuwan, P. (2012). Investigation on the physical and optical properties of Dy3+ doped soda-lime-silicate glasses. Procedia Engineering, 32, 690698.</p><p></p><p>Chopra, N., Kaur, S., Kaur, M., Singla, S., Marwaha, R., Sharma, G., & Heer, M. S. (2018). Optical, Physical and Structural Properties of Er3+ Doped Low-Phonon Energy Vitreous Matrix: ZnO-B2O3-TeO2. Physica Status Solidi (A), 215(13), 1700934.</p><p></p><p>Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291312.</p><p></p><p>Dato, A., & Frenklach, M. (2010). Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors. New Journal of Physics, 12(12), 125013.</p><p>De Silva, K. K. H., Huang, H. H., Joshi, R. K., & Yoshimura, M. (2017). Chemical reduction of graphene oxide using green reductants. Carbon, 119, 190199.</p><p></p><p>Deopa, N., & Rao, A. S. (2017). Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Optical Materials, 72, 3139.</p><p></p><p>Devreese, J. T. (2003). Polarons. Digital Encyclopedia of Applied Physics, 383412.</p><p></p><p>Dideikin, A. T., & Vul, A. Y. (2019). Graphene oxide and derivatives: The place in graphene family. Frontiers in Physics, 6.</p><p></p><p>Dimitrov, V., & Komatsu, T. (2013). Electronic polarizability, optical basicity and single bond strength of oxide glasses. Journal of Chemical Technology and Metallurgy, 48(6), 549554.</p><p></p><p>Dimitrov, V., & Sakka, S. (1996). Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79(3), 17411745.</p><p></p><p>Ding, N., Diao, J., Zhang, D., Zheng, T., & Lv, J. (2020). Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 m laser application. Ceramics International, 46, 2563325637.</p><p></p><p>Divina, R., Marimuthu, K., Sayyed, M. I., Tekin, H. O., & Agar, O. (2019). Physical, structural, and radiation shielding properties of B2O3MgOK2OSm2O3 glass network modified with TeO2. Radiation Physics and Chemistry, 160, 7582.</p><p></p><p>Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization : An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 93369344.</p><p></p><p>Dubois, S. M., Zanolli, Z., Declerck, X., & Charlier, J. (2009). Electronic properties and quantum transport in Graphene-based nanostructures. The European Physical Journal B, 72(1), 124.</p><p></p><p>Edwards, R. S., & Coleman, K. S. (2013). Graphene synthesis : relationship to applications. Nanoscale, 5(1), 3851.</p><p></p><p>Effendy, N., Sidek, H. A. A., Halimah, M. K., & Zaid, M. H. M. (2021). Enhancement on thermal , elastic and optical properties of new formulation tellurite glasses : Influence of ZnO as a glass modifier. Materials Chemistry and Physics, 273, 125156.</p><p></p><p>El-diasty, F., Wahab, F. A. A., & Abdel-baki, M. (2006). Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions. Journal of Applied Physics, 100, 093511.</p><p></p><p>El-Mallawany, R., El Adawy, A., Gamal, A., & Rammah, Y. S. (2021). Experimental and theoretical elastic moduli of sodiumzinctellurite glasses. Optik, 243, 167330.</p><p></p><p>El-Mallawany, Raouf. (2017). Introduction to tellurite glasses. Springer Series in Materials Science, 254, 113.</p><p></p><p>Elkhoshkhany, N., Essam, O., & Embaby, A. M. (2018). Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO. Materials Chemistry and Physics, 214, 489498.</p><p></p><p>Elkhoshkhany, N., Marzouk, S., El-Sherbiny, M., & Ahmed, A. (2019). Properties of tellurite glass doped with ytterbium oxide for optical applications. Journal of Materials Science: Materials in Electronics, 30(7), 69636976.</p><p></p><p>Emiru, T. F., & Ayele, D. W. (2016). Controlled synthesis , characterization and reduction of graphene oxide : A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 7479.</p><p></p><p>Eom, G., Oh, C., Moon, J., Kim, H., Kim, M. K., Kim, K., Seo, J. W., Kang, T., & Lee, H. J. (2019). Highly sensitive and selective detection of dopamine using overoxidized polypyrrole/sodium dodecyl sulfate-modified carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 848, 113295.</p><p></p><p>Fang, M., Xiong, X., Hao, Y., Zhang, T., & Wang, H. (2019). Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. Journal of Materials Science & Technology, 35(9), 19891995.</p><p></p><p>Fang, M., Xiong, X., Hao, Y., Zhang, T., Wang, H., Cheng, H., & Zeng, Y. (2019). Preparation of Highly Conductive Graphene-coated Glass Fibers by Sol-gel and Dip-coating Method. Journal of Materials Science & Technology, 35(9), 19891995.</p><p></p><p>Fatemi, S. M., & Foroutan, M. (2015). Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. Journal of Nanostructure in Chemistry, 6(1), 2940.</p><p></p><p>Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of Lanthanum Oxide on Optical Properties of Zinc Borotellurite Glass System. Journal of Optoelectronics and Biomedical Materials, 8(2), 4959.</p><p></p><p>Fitzpatrick, M. E., Fry, A. T., Holdway, P., Kandil, F. A., Shackleton, J., & Suominen, L. (2005). Determination of Residual Stresses by X-ray Diffraction. National Physical Laboratory, 1309(52).</p><p></p><p>Gaafar, M. S., & Marzouk, S. Y. (2017). JuddOfelt analysis of spectroscopic properties of Er3+ doped TeO2-BaO-ZnO glasses. Journal of Alloys and Compounds, 723,</p><p>10701078.</p><p></p><p>Ganesh, E. N. (2013). Single Walled and Multi Walled Carbon Nanotube Structure. Synthesis and Applications, 2(4), 311320.</p><p></p><p>Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., & Purohit, L. P. (2019). Study of zinc doped tellurite glasses using XRD, UV-Vis and FTIR. Materials Today: Proceedings, 17, 329337.</p><p></p><p>Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403408.</p><p></p><p>Gaur, M., Misra, C., Yadav, A. B., Swaroop, S., Maolmhuaidh, F. O., Bechelany, M., & Barhoum, A. (2021). Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials, 14, 5978.</p><p></p><p>Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183191.</p><p></p><p>Gifford, B. J., He, X., Kim, M., Kwon, H., Saha, A., Sifain, A. E., Wang, Y., Htoon, H., Kilina, S., Doorn, S. K., & Tretiak, S. (2019). Optical Effects of Divalent Functionalization of Carbon Nanotubes. Chemistry of Materials, 31(17), 69506961.</p><p></p><p>Goh, S. X. L., Goh, E. X. Y., & Lee, H. K. (2021). Sodium dodecyl sulfate-multi-walled carbon nanotubes-coated-membrane solid phase extraction of glucocorticoids in aqueous matrices. Talanta, 221, 121624.</p><p></p><p>Gomaa, H. M., Yahia, I. S., & Zahran, H. Y. (2021). Correlation between the static refractive index and the optical bandgap: Review and new empirical approach. Physica B: Physics of Condensed Matter, 620, 413246.</p><p></p><p>Gomes, J. F., Lima, A. M. O., Sandrini, M., Medina, A. N., Steimacher, A., Pedrochi, F., & Barboza, M. J. (2017). Optical and spectroscopic study of erbium doped calcium borotellurite glasses. Optical Materials, 66, 211219.</p><p></p><p>Greenwood, G. . (1956). The growth of dispersed precipitates in solutions. Acta Metallurgica, 4(3), 243248.</p><p></p><p>Grobert, N. (2007). Carbon nanotubes importance of clean CNT material for the success of future applications . Review Literature And Arts Of The Americas, 10(12), 2835.</p><p></p><p>Guo, J., Qi, H., Song, Z., Ni, J., Wang, C., Wang, W., & Peng, G. (2020). A Comparative Study of Thermal Impact on Erbium Doped Distributed Feedback Fiber Laser Output Power. IEEE Photonics Journal, 12(2), 1502009.</p><p></p><p>Gupta, N., Khanna, A., Hirdesh, Dippel, A. C., & Gutowski, O. (2020). Structure of bismuth tellurite and bismuth niobium tellurite glasses and Bi2Te4O11 anti-glass by high energy X-ray diffraction. RSC Advances, 10(22), 1323713251.</p><p></p><p>Gupta, V., Sharma, N., Singh, U., Arif, M., & Singh, A. (2017). Synthesis and characterization of graphene oxide. Optik.</p><p></p><p>Halimah, M. K., Faznny, M. F., Azlan, M. N., & Sidek, H. A. A. (2017). Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results in Physics, 7, 581589.</p><p></p><p>Halimah, M. K., Hamza, A. M., Muhammad, F. D., Chan, K. T., Umar, S. A., Umaru, I., & Geidam, I. G. (2019). Effect of erbium nanoparticles on structural and spectroscopic properties of bio-silica borotellurite glasses containing silver oxide. Materials Chemistry and Physics, 236, 121795.</p><p></p><p>Hamza, A. M., Halimah, M. K., Muhammad, F. D., & Chan, K. T. (2019). Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. Journal of Luminescence, 207, 497506.</p><p></p><p>Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T., Usman, A., Faznny, M. F., Zaitizila, I., & Tafida, R. A. (2019). Structural, optical and thermal properties of Er3+-Ag codoped bio-silicate borotellurite glass. Results in Physics, 14, 102457.</p><p></p><p>Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36(7), 914944.</p><p></p><p>Hasan, T., Senger, B. J., Ryan, C., Culp, M., Gonzalez-rodriguez, R., Coffer, J. L., & Naumov, A. V. (2017). Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Scientific Reports, 7(1).</p><p></p><p>Hasim, N., & Rohani, M. S. (2017). The effect of Nd3+ composition on Judd-ofelt analysis of lithium niobate tellurite glasses codoped with Er3+. Solid State Phenomena, 268 SSP, 191197.</p><p></p><p>Huang, Y., Sutter, E., Shi, N. N., Zheng, J., Yang, T., Englund, D., Gao, H., & Sutter, P. (2015). Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. ACS Nano, 9(11), 1061210620.</p><p></p><p>Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339.</p><p></p><p>Hussein, K. I., Alqahtani, M. S., Alzahrani, K. J., Alqahtani, F. F., Zahran, H. Y., Alshehri, A. M., Yahia, I. S., Reben, M., & Yousef, E. S. (2022). The Effect of ZnO, MgO, TiO2, and Na2O Modifiers on the Physical, Optical, and Radiation Shielding</p><p>Properties of a TeTaNb Glass System. Materials, 15(5).</p><p></p><p>Ibrahim, A., Klopocinska, A., Horvat, K., & Hamid, Z. A. (2021). Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers, 13(17).</p><p></p><p>Iezid, M., Goumeidane, F., Abidi, A., Poulain, M., Legouera, M., Syam Prasad, P., Sroda, M., & Venkateswara Rao, P. (2021). Judd-Ofelt analysis and luminescence studies of Er3+ doped halogeno-antimonate glasses. Optical Materials, 120, 111422.</p><p></p><p>Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 5658.</p><p></p><p>Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. International Journal of Environmental Science and Technology, 363(6430), 603605.</p><p></p><p>Ikram, R., Jan, B. M., & Ahmad, W. (2020). An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, 9(5), 1158711610.</p><p></p><p>Ishtiaq, U., Aref, A., Muhsan, A. S., Rashid, A., & Hamdi, S. S. (2022). High strength glass beads coated with CNT/rGO incorporated urethane coating for improved crush resistance for effective hydraulic fracturing. Journal of Petroleum Exploration and Production Technology.</p><p></p><p>Jacobs, R. R., & Weber, M. J. (1976). Dependence of the 4F3/2 . 4111/2 Induced-Emission Cross Section for Nd3+ on Glass Composition. IEEE Journal of Quantum Electronics, 12(2), 102111.</p><p></p><p>Jia, C., Zhang, X., Matras-Postolek, K., Huang, B., & Yang, P. (2018). Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure towards efficient full solar-spectrum photocatalysis. Carbon, 139, 415426.</p><p></p><p>Jimnez-prez, J. L., Gutirrez-fuentes, R., Lpez-gamboa, G., & Snchez-ramrez, J. F. (2018). Measurement of optical nonlinear refractive index response of graphene nanoparticles dispersed in an aqueous solution by Z scan technique. Optical Materials, 84, 236241.</p><p></p><p>Jimenez, J. A., Sendova, M., & Manchini, M. (2020). Thermal and spectroscopic characterization of copper and erbium containing aluminophosphate glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117546.</p><p></p><p>Jin, Y., Zheng, Y., Podkolzin, S. G., & Lee, W. (2020). Band gap of reduced graphene oxide tuned by controlling functional groups. Journal of Materials Chemistry C,</p><p>8(14), 48854894.</p><p></p><p>Jlassi, I., Elhouichet, H., & Ferid, M. (2011). Thermal and optical properties of tellurite glasses doped erbium. Journal of Materials Science, 46(3), 806812.</p><p></p><p>Jlassi, I., Elhouichet, H., Ferid, M., & Barthou, C. (2010). JuddOfelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5. Journal of Luminescence, 130(12), 23942401.</p><p></p><p>Johari, P., & Shenoy, V. B. (2011). Modulating optical properties of graphene oxide: Role of prominent functional groups. ACS Nano, 5(9), 76407647.</p><p></p><p>Jrgensen, Chr Klixbll, & Judd, B. R. (1964). Hypersensitive pseudoquadrupole transitions in lanthanides. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 8(3), 281290.</p><p></p><p>Jrgensen, Christian K., & Reisfeld, R. (1983). Judd-Ofelt parameters and chemical bonding. Journal of The Less-Common Metals, 93, 107112.</p><p></p><p>Judd, B. R. (1962). Optical absorption intensities of rare-earth ions. Physical Review, 127(3), 750761.</p><p></p><p>Julien, C., Massot, M., Balkanski, W., Krol, A., & Nazarewicz, W. (1989). Infrared studies of the structure of borate glasses. Materials Science and Engineering B, 3(3), 307312.</p><p></p><p>Jupri, S. A., Ghoshal, S. K., Omar, M. F., & Yusof, N. N. (2018). Spectroscopic traits of holmium in magnesium zinc sulfophosphate glass host: Judd-Ofelt evaluation. Journal of Alloys and Compounds, 753, 446456.</p><p></p><p>Kasik, I., Matejec, V., Hayer, M., Kamradek, M., Podrazky, O., Mrazek, J., Peterka, P., & Honzatko, P. (2020). Glass materials for optical fibers. Ceramics - Silikaty, 64(1), 2934.</p><p></p><p>Kaur, S., Pandey, O. P., Jayasankar, C. K., & Chopra, N. (2021). Effect of gamma irradiation on physical, optical, spectroscopic and structural properties of Er3+-doped vitreous zinc borotellurite. Journal of Luminescence, 235, 118031.</p><p></p><p>Khan, M. A., Amjad, R. J., Ahmad, M. A., Sattar, A., Hussain, S., Yasmeen, S., & Dousti, M. R. (2019). Structural and Optical Study of Erbium Doped Borophosphate Glasses. Optik - International Journal for Light and Electron Optics, 163707.</p><p></p><p>Khan, S., Ali, J., Harsh, Husain, M., & Zulfequar, M. (2016). Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 81, 320325.</p><p>Khosravi, M., Badehian, H. A., & Habibinejad, M. (2021). Optical properties of double walled carbon nanotubes. Journal of Electron Spectroscopy and Related Phenomena, 248, 147058.</p><p></p><p>Kim, C. Bin, Lee, J., Cho, J., & Goh, M. (2018). Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation. Carbon, 139, 386392.</p><p></p><p>Kochmann, S., Hirsch, T., & Wolfbeis, O. S. (2012). The pH dependence of the total fluorescence of graphite oxide. Journal of Fluorescence, 22(3), 849855.</p><p></p><p>Konstantinidis, M., Lalla, E. A., Lopez-reyes, G., Rodrguez-mendoza, U. R., Lymer, E. A., Freemantle, J., & Daly, M. G. (2021). Statistical learning for the estimation of Judd-Ofelt parameters : A case study of Er3+ : Doped tellurite glasses. Journal of Luminescence, 235, 118020.</p><p></p><p>Krupke, W. F. (1966). Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals. Physical Review, 145(1), 325337.</p><p></p><p>Kruskopf, M., Pierz, K., Pakdehi, D. M., Stosch, R., Bakin, A., & Schumacher, H. W. (2018). A morphology study on the epitaxial growth of graphene and its buffer layer. Thin Solid Films.</p><p></p><p>Kudin, K. N., Ozbas, B., Schniepp, H. C., Prudhomme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 3641.</p><p></p><p>Kurzen, H., Bovigny, L., Bulloni, C., & Daul, C. (2013). Electronic structure and magnetic properties of lanthanide3+ cations. Chemical Physics Letters, 574, 129132.</p><p></p><p>Labhane, P. K., Patle, L. B., Huse, V. R., Sonawane, G. H., & Sonawane, S. H. (2016). Synthesis of reduced graphene oxide sheets decorated by zinc oxide nanoparticles: Crystallographic, optical, morphological and photocatalytic study. Chemical Physics Letters, 661, 1319.</p><p></p><p>Lachheb, R., Herrmann, A., Assadi, A. A., Damak, K., Rssel, C., & Malej, R. (2018). Judd Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses. Journal of Luminescence.</p><p></p><p>Lakshmi, Y. A., Swapna, K., Rama, K. S., Reddy, K., Venkateswarlu, M., Mahamuda, S., & Rao, A. S. (2019). Structural, optical and NIR studies of Er3+ ions doped bismuth boro tellurite glasses for luminescence materials applications. Journal of Luminescence, 211, 3947.</p><p></p><p>Lalla, E. A., Konstantinidis, M., De Souza, I., Daly, M. G., Martn, I. R., Lavn, V., & Rodrguez-Mendoza, U. R. (2020). Judd-Ofelt parameters of RE3+-doped fluorotellurite glass (RE3+= Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, and Tm3+). Journal of Alloys and Compounds, 845, 156028.</p><p></p><p>Lalla, E. A., Lozano-Gorrn, A. D., Konstantinidis, M., Daly, M., Leon-Luis, S. F., Lavn, V., & Rodrguez-Mendoza, U. R. (2019). Optical temperature sensor based on Sm3+ emissions in a fluorotellurite glass. Optical Fiber Technology, 47, 178186.</p><p></p><p>Lamichhane, A., & Ravindra, N. M. (2020). Energy gap-refractive index relations in perovskites. Materials, 13(8), 116.</p><p></p><p>Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2018). Review on graphene and its derivatives : Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 18, 13.</p><p></p><p>Lee, K. H., Kim, T. H., Kim, Y. S., Jung, Y. J., Na, Y. H., & Ryu, B. K. (2008). Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization. Korean Journal of Materials Research, 18(5), 235240.</p><p></p><p>Lesniak, M., Mach, G., Starzyk, B., Baranowska, A., Bik, M., Kochanowicz, M., Zmojda, J., Miluski, P., Sitarz, M., & Dorosz, D. (2020). Investigation of the structure in oxyfluoride TeO2P2O5 based glasses with the various BaF2 content. Journal of Molecular Structure, 1217, 128452.</p><p></p><p>Lesniak, M., Szal, R., Starzyk, B., Gajek, M., Kochanowicz, M., Zmojda, J., Miluski, P., Dorosz, J., Sitarz, M., & Dorosz, D. (2019). Influence of barium oxide on glass-forming ability and glass stability of the telluritephosphate oxide glasses. Journal of Thermal Analysis and Calorimetry, 138(6), 42954302.</p><p></p><p>Li, Z., Zhang, W., & Xing, F. (2019). Graphene Optical Biosensors. International Journal of Molecular Sciences, 20(10), 2461.</p><p></p><p>Liang, L., Mo, Z., Ju, B., Xia, C., Hou, Z., & Zhou, G. (2021). Visible and Near-Infrared emission properties of Yb3+/Pr3+ co-doped lanthanum aluminum silicate glass. Journal of Non-Crystalline Solids, 557, 120578.</p><p></p><p>Linda, D., Duclre, J. R., Hayakawa, T., Dutreilh-Colas, M., Cardinal, T., Mirgorodsky, A., Kabadou, A., & Thomas, P. (2013). Optical properties of tellurite glasses elaborated within the TeO2-Ti2O-Ag2O and TeO2-ZnO-Ag2O ternary systems. Journal of Alloys and Compounds, 561, 151160.</p><p></p><p>Liu, W., & Speranza, G. (2021). Tuning the Oxygen Content of Reduced Graphene Oxide and Effects on Its Properties. ACS Omega, 6(9), 61956205.</p><p></p><p>Liu, X., Li, S., Tan, C., Gao, C., Liu, Y., Ye, H., & Zhang, G. (2022). Coalescence kinetics and microstructure evolution of Cu nanoparticles sintering on substrates: a molecular dynamics study. Journal of Materials Research and Technology, 17, 11321145.</p><p></p><p>Liu, Z., She, J., & Peng, B. (2021). Spectroscopic properties of Er3+-doped fluoroindate glasses. Journal of Rare Earths.</p><p></p><p>Lundie, M., Sljivancanin, Z., & Tomic, S. (2015). Electronic and optical properties of reduced graphene oxide. Journal of Materials Chemistry C, 3, 76327641.</p><p></p><p>Lunt, A. J. G., Chater, P., & Korsunsky, A. M. (2018). On the origins of strain inhomogeneity in amorphous materials. Scientific Reports, 8(1).</p><p></p><p>Ma, C., Wang, C., Gao, B., Adams, J., Wu, G., & Zhang, H. (2019). Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Applied Physics Reviews, 6(4), 041304.</p><p></p><p>Machado, T. M., Falci, R. F., Silva, I. L., Anjos, V., Bell, M. J. V, & Silva, M. A. P. (2019). Erbium 1.55 m luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses Tamires. Materials Chemistry and Physics, 224, 7378.</p><p></p><p>Madani, S. Y., Mandel, A., & Seifalian, A. M. (2013). A concise review of carbon nanotubes toxicology. Nano Reviews, 4, 21521.</p><p></p><p>Maheshvaran, K., Arunkumar, S., Sudarsan, V., Natarajan, V., & Marimuthu, K. (2013). Structural and luminescence studies on Er3+/Yb3+ co-doped boro-tellurite glasses. Journal of Alloys and Compounds, 561, 142150.</p><p></p><p>Mahmood, H., Vanzetti, L., Bersani, M., & Pegoretti, A. (2018). Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Composites Part A: Applied Science and Manufacturing, 107, 112123.</p><p></p><p>Mandal, S. K., Dutta, K., Pal, S., Mandal, S., Naskar, A., Pal, P. K., Bhattacharya, T. S., Singha, A., Saikh, R., De, S., & Jana, D. (2019). Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Materials Chemistry and Physics, 223, 456465.</p><p></p><p>Manning, S., Ebendorff-heidepriem, H., & Monro, T. M. (2012). Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Optical Materials Express, 2(2), 305308.</p><p></p><p>Mao, X., Zhu, L., Liu, H., Chen, H., Li, W., Cao, R., & Li, W. (2021). Cu/graphene composite coatings electrodeposited in a directly dispersed graphene solution after electrochemical exfoliation with enhanced oxidation resistance. Journal of Alloys</p><p>and Compounds, 882, 160706.</p><p></p><p>Marcano, D. C., Kosynkin, D. V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8).</p><p></p><p>Marczewska, A., & Sroda, M. (2018). Spectroscopic and thermal study of a new glass from TeO2Ga2O3GeO2 system. Journal of Molecular Structure, 1164, 100108.</p><p></p><p>Mariyappan, M., Arunkumar, S., & Marimuthu, K. (2019). Judd-Ofelt analysis and NIR luminescence investigations on Er3+ ions doped B2O3Bi2O3Li2OK2O glasses for photonic applications. Physica B: Condensed Matter, 572, 2735.</p><p></p><p>Mariyappan, M., Arunkumar, S., & Marimuthu, K. (2019). Physical, structural and optical studies on Er3+ ions doped zinc bismuth borate glasses for photonic applications. AIP Conference Proceedings, 2115, 15.</p><p></p><p>Marturi, N. (2013). Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. Micro and Nanotechnologies/Microelectronics. Universit de Franche-Comt,.</p><p></p><p>Marzouk, S. Y., Azooz, M. A., & Batal, H. A. El. (2021). Judd-Ofelt analysis of spectroscopic measurements of Er3+ doped boro-zincate glasses. Journal of Molecular Structure, 1243, 130925.</p><p></p><p>Maslov, V. G., Svitenkov, A. I., & Krzhizhanovskaya, V. V. (2016). Abnormally high oscillator strengths of the graphene nanoribbons electronic spectrum: quantum chemistry calculations. RSC Advances.</p><p></p><p>Mawlud, S. Q., Ameen, M. M., Sahar, R., Ashur, Z., Mahraz, S., & Ahmed, K. F. (2017). Spectroscopic properties of Sm3+ doped sodium-tellurite glasses : Judd-Ofelt analysis. Optical Materials, 69, 318327.</p><p></p><p>Mclaughlin, J. C., Tagg, S. L., Zwanziger, J. W., & Hae, D. R. (2000). The structure of tellurite glass : a combined NMR , neutron diffraction , and X-ray diffraction study. Journal of Non-Crystalline Solids, 274, 18.</p><p></p><p>McSherry, M., Fitzpatrick, C., & Lewis, E. (2004). An optical fiber sensor for the detection of germicidal UV irradiation using narrowband luminescent coatings. IEEE Sensors Journal, 4(5), 619626.</p><p></p><p>Meyyappan, M., Delzeit, L., Cassell, A., & Hash, D. (2003). Carbon nanotube growth by PECVD: A review. Plasma Sources Science and Technology, 12(2), 205216.</p><p></p><p>Minitha, C. R., Anithaa, V. S., Subramaniam, V., & Rajendra Kumar, R. T. (2018). Impact of Oxygen Functional Groups on Reduced Graphene Oxide-Based Sensors</p><p>for Ammonia and Toluene Detection at Room Temperature. ACS Omega, 3(4), 41054112.</p><p></p><p>Mohammed, H., Kumar, A., Bekyarova, E., Al-Hadeethi, Y., Zhang, X., Chen, M., Ansari, M. S., Cochis, A., & Rimondini, L. (2020). Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Frontiers in Bioengineering and Biotechnology, 8.</p><p></p><p>Mohan, V. B., Souri, H., Jayaraman, K., & Bhattacharyya, D. (2018). Mechanical properties of thin films of graphene materials: A study on their structural quality and functionalities. Current Applied Physics.</p><p></p><p>Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1(6), 16.</p><p></p><p>Morigaki, K., & Ogihara, C. (2006). Amorphous Semiconductors: Structure, Optical, and Electrical Properties. Springer Handbook of Electronic and Photonic Materials, 565580.</p><p></p><p>Mott, N. F., Davis, E. A., & Weiser, K. (1972). Electronic Processes in Non-Crystalline Materials. Physics Today, 25(12), 55.</p><p></p><p>Mu, J., Gao, F., Cui, G., Wang, S., Tang, S., & Li, Z. (2021). A comprehensive review of anticorrosive graphene-composite coatings. Progress in Organic Coatings, 157(66), 106321.</p><p></p><p>Mun, S. C., Park, J. J., Park, Y. T., Kim, D. Y., Lee, S. W., Cobos, M., Ye, S. J., Macosko, C. W., & Park, O. O. (2017). High electrical conductivity and oxygen barrier property of polymer- stabilized graphene thin films. Carbon, 125, 492499.</p><p></p><p>Munisudhakar, B., Raju, C. N., Babu, M. R., Reddy, N. M., & Moorthy, L. R. (2019). Materials Today : Proceedings Luminescence characteristics of Nd3+ doped bismuth borate glasses for photonic applications. Materials Today: Proceedings.</p><p></p><p>Muruganandi, G., Saravanan, M., Vinitha, G., Jessie Raj, M. B., & Sabari Girisun, T. C. (2018). Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications. Optical Materials, 75, 612618.</p><p></p><p>Narayan, R., & Kim, S. O. (2015). Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2(1), 20.</p><p></p><p>Naumov, A. V. (2017). Graphene Oxide: Fundamentals and Applications. John Wiley & Sons.</p><p></p><p>Nazhirah, S. N. M., Ghoshal, S. K., Arifin, R., & Hamzah, K. (2021). Effects of bimetallic nanoparticles Ag and TiO2 embedment on tellurite zincsilicate glass:</p><p>Self-cleaning characteristics. Surfaces and Interfaces, 25, 101236.</p><p></p><p>Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny, M. F., Hazlin, M. A., & Zaitizila, I. (2018). The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. Journal of Non-Crystalline Solids, 490, 3543.</p><p></p><p>Necolau, M. I., & Pandele, A. M. (2020). Recent advances in graphene oxide-based anticorrosive coatings: An overview. Coatings, 10, 1149.</p><p></p><p>Noguera, O., Mirgorodsky, A. P., Smirnov, M. B., & Thomas, P. (2003). Vibrational and structural properties of glass and crystalline phases of TeO2. Journal of Non-Crystalline Solids, 330, 5060.</p><p></p><p>Norizan, M. N., Moklis, M. H., Ngah Demon, S. Z., Halim, N. A., Samsuri, A., Mohamad, I. S., Knight, V. F., & Abdullah, N. (2020). Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances, 10(71), 4370443732.</p><p></p><p>Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Veen, M. H. Van Der, Hofkens, J., Heyns, M. M., Gendt, S. De, & Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 21(43), 435203.</p><p></p><p>Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666669.</p><p></p><p>Nurhafizah, M. D., Suriani, A. B., Mohamed, A., & Soga, T. (2020). Effect of voltage applied for graphene oxide/latex nanocomposites produced via electrochemical exfoliation and its application as conductive electrodes. Diamond & Related Materials, 101(107624).</p><p></p><p>Ofelt, G. S. (1962). Intensities of crystal spectra of rare-earth ions. The Journal of Chemical Physics, 37(3), 511520.</p><p></p><p>Omidvar, A., RashidianVaziri, M. R., & Jaleh, B. (2018). Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 103, 239245.</p><p></p><p>Pach-Zawada, K., Lesniak, M., Filipecka, K., Golis, E., Yousef, E. S., Pawlik, P., Dorosz, D., Sitarz, M., & Filipecki, J. (2021). Structural studies of tellurite glasses from the 70TeO2-5XO-10P2O510ZnO5PbF2 system (X = Ba, W, Sr, Cd) doped with erbium ions. Journal of Molecular Structure, 1224, 128787.</p><p></p><p>Papadakis, I., Bakandritsos, A., Swain, A. K., Szabo, T., & Couris, S. (2020). Effects of Size and Oxidation on the Nonlinear Optical Response and Optical Limiting of</p><p>Graphene Oxide Sheets. Journal of Physical Chemistry C, 124, 1126511273.</p><p></p><p>Park, S. J., Ok, J. G., Park, H. J., Lee, K. T., Lee, J. H., Kim, J. D., Cho, E., Baac, H. W., Kang, S., Guo, L. J., & Hart, A. J. (2018). Modulation of the effective density and refractive index of carbon nanotube forests via nanoimprint lithography. Carbon, 129, 814.</p><p></p><p>Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 4547.</p><p></p><p>Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. J. Am. Chem. Soc., 54(9), 35703582.</p><p></p><p>Pavani, P. G., Sadhana, K., & Mouli, V. C. (2011). Optical , physical and structural studies of boro-zinc tellurite glasses. Physica B: Physics of Condensed Matter, 406(67), 12421247.</p><p></p><p>Pei, S., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50(9), 32103228.</p><p></p><p>Pepe, Y., Erdem, M., Sennaroglu, A., & Eryurek, G. (2019). Enhanced gain bandwidth of Tm3+ and Er3+ doped tellurite glasses for broadband optical amplifier. Journal of Non-Crystalline Solids, 522, 119501.</p><p></p><p>Perebeinos, V., Tersoff, J., & Avouris, P. (2005). Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Physical Review Letters, 94(2), 36.</p><p></p><p>Piao, Y., Tondare, V. N., Davis, C. S., Gorham, J. M., Petersen, E. J., Gilman, J. W., Scott, K., Vladr, A. E., & Hight Walker, A. R. (2021). Comparative study of multiwall carbon nanotube nanocomposites by Raman, SEM, and XPS measurement techniques. Composites Science and Technology, 208, 108753.</p><p></p><p>Pirouz, A. A., Karjiban, R. A., Bakar, F. A., & Selamat, J. (2018). A novel adsorbent magnetic graphene oxide modified with Chitosan for the simultaneous reduction of mycotoxins. Toxins, 10(9), 361.</p><p></p><p>Pisarski, W. A., Kowalska, K., Kuwik, M., Polak, J., Pietrasik, E., Goryczka, T., & Pisarska, J. (2020). Novel multicomponent titanate-germanate glasses: Synthesis, structure, properties, transition metal, and rare earth doping. Materials, 13(19), 113.</p><p></p><p>Prabhu, N. S., Hegde, V., Sayyed, M. I., Sakar, E., & Kamath, S. D. (2019). Investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system. Infrared Physics and</p><p>Technology, 98, 715.</p><p></p><p>Price, R. J., Ladislaus, P. I., Smith, G. C., & Davies, T. J. (2019). A novel bottom-up synthesis of few- and multi-layer graphene platelets with partial oxidation via cavitation. Ultrasonics - Sonochemistry, 56, 466473.</p><p></p><p>Purkait, T., Singh, G., Kumar, D., Singh, M., & Dey, R. S. (2018). High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Scientific Reports, 8(640), 113.</p><p></p><p>Qian, L., Xie, Y., Zhang, S., & Zhang, J. (2020). Band Engineering of Carbon Nanotubes for Device Applications. Matter, 3(3), 664695.</p><p></p><p>Queiroz, M. N., Dantas, N. F., Brito, D. R. N., Barboza, M. J., Steimacher, A., & Pedrochi, F. (2019). Optical and Spectroscopic Investigation of Sm3+-Doped Calcium Borotellurite Glasses. Journal of Electronic Materials.</p><p></p><p>Rathinavel, S., Priyadharshini, K., & Panda, D. (2021). A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 268, 115095.</p><p></p><p>Reddy, R. R., & Nazeer, A. Y. (1995). Relationship between refractive index, optical electronegativities and electronic polarizability in alkali halides, IIIV, IIVI group semiconductors. Crystal Research and Technology, 30(2), 263266.</p><p></p><p>Reddy, R. R., Nazeer Ahammed, Y., Abdul Azeem, P., Rama Gopal, K., & Rao, T. V. R. (2001). Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. Journal of Non-Crystalline Solids, 286(3), 169180.</p><p></p><p>Renteria, J. D., Ramirez, S., Malekpour, H., Alonso, B., Centeno, A., Zurutuza, A., Cocemasov, A. I., Nika, D. L., & Balandin, A. A. (2015). Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature. Advanced Functional Materials, 25(29), 46644672.</p><p></p><p>Richards, B. D. O., & Jha, A. (2017). Lasers utilising tellurite glass-based gain media. Springer Series in Materials Science, 254, 101130.</p><p></p><p>Rodrguez-Gonzlez, J. A., Rubio-Gonzlez, C., & Prez-Snchez, A. (2021). Deposition of carbon nanotubes onto glass fibers using ultrasound standing waves. Frontiers of Materials Science, 15(3), 471475.</p><p></p><p>Ronda, C. (2007). Luminescence (From Theory to Applications).</p><p></p><p>Ronda, C., & Srivastava, A. (2006). Luminescence science and display materials. Electrochemical Society Interface, 15(1), 5557.</p><p></p><p>Sadik, S. A., Durak, F. E., & Altuncu, A. (2020). Widely tunable erbium doped fiber ring laser based on loop and double-pass EDFA design. Optics and Laser Technology, 124, 105979.</p><p></p><p>Sahoo, S., Sahoo, G., Mun, S., & Sekhar, C. (2022). Review article A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. Journal of Energy Storage, 53(April), 105212.</p><p></p><p>Sahu, S., & Rout, G. C. (2017). Band gap opening in graphene : a short theoretical study. International Nano Letters, 7(2), 8189.</p><p></p><p>Said Mahraz, Z. A., Sahar, M. R., & Ghoshal, S. K. (2015). Enhanced luminescence from silver nanoparticles integrated Er3+-doped boro-tellurite glasses: Impact of annealing temperature. Journal of Alloys and Compounds, 649, 11021109.</p><p></p><p>Saifuddin, N., Raziah, A. Z., & Junizah, A. R. (2013). Carbon nanotubes: A review on structure and their interaction with proteins. Journal of Chemistry.</p><p></p><p>Sailaja, P., Mahamuda, S., Swapna, K., Venkateswarlu, M., Gupta, M., & Rao, A. S. (2021). Broadband NIR emission at 1.53 m in trivalent erbium ions doped SrO-Al2O3-B2O3-BaCl2-10TeO2 glasses for optical fiber and NIR laser applications. Journal of Non-Crystalline Solids, 567, 120937.</p><p></p><p>Sajna, M. S., Perumbilavil, S., Prakashan, V. P., Sanu, M. S., Joseph, C., Biju, P. R., & Unnikrishnan, N. V. (2018). Enhanced resonant nonlinear absorption and optical limiting in Er3+ ions doped multicomponent tellurite glasses. Materials Research Bulletin.</p><p></p><p>Saraswati, A., Marzuki, A., Fausta, D. E., Suryanti, V., & Singgih, G. A. (2021). Borate Glasses for Low Loss Optical Fibre. Journal of Physics: Conference Series, 1912(1).</p><p></p><p>Sayyed, M. I., Zaid, M. H. M., Effendy, N., Matori, K. A., Sidek, H. A. A., Lacomme, E., Mahmoud, K. A., & AlShammari, M. M. (2020). The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. Journal of Materials Research and Technology, 9(4), 84298438.</p><p></p><p>Schniepp, H. C., Li, J., Mcallister, M. J., Sai, H., Herrera-alonso, M., Adamson, D. H., Prud, R. K., Car, R., Saville, D. A., & Aksay, I. A. (2006). Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B Letetrs, 2, 85358539.</p><p></p><p>Shakeri, M. S., & Rezvani, M. (2011). Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions. Spectrochimica Acta Part A:</p><p>Molecular and Biomolecular Spectroscopy, 79, 19201925.</p><p></p><p>Shang, J., Ma, L., Li, J., Ai, W., Yu, T., & Gurzadyan, G. G. (2012). The origin of fluorescence from graphene oxide. Scientific Reports, 2, 18.</p><p></p><p>Sharma, N., Arif, M., Monga, S., Shkir, M., Mishra, Y. K., & Singh, A. (2020). Investigation of bandgap alteration in graphene oxide with different reduction routes. Applied Surface Science, 513, 145396.</p><p></p><p>Sharma, N., Tomar, S., Shkir, M., Kant Choubey, R., & Singh, A. (2019). Study of Optical and Electrical Properties of Graphene Oxide. Materials Today: Proceedings, 36, 730735.</p><p></p><p>Shen, C., Jia, Y., Yan, X., Zhang, W., Li, Y., Qing, F., & Li, X. (2018). Effects of Cu contamination on system reliability for graphene synthesis by chemical vapor deposition method. Carbon, 127, 676680.</p><p></p><p>Shen, X., Cheng, G., Zhang, L., & Wei, W. (2020). Fabrication of a hybrid-cladding tellurite glass fiber doped with Tm3+ and Ho3+. Journal of Luminescence, 227, 117540.</p><p></p><p>Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y., Odkhuu, D., Tsogbadrakh, N., Lee, H., & Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. Royal Society of Chemistry, 7, 1397913984.</p><p></p><p>Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., Choi, J. Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 19871992.</p><p></p><p>Silva, A. A., Pinheiro, R. A., Rodrigues, A. C., Baldan, M. R., Trava-Airoldi, V. J., & Corat, E. J. (2018). Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Applied Surface Science.</p><p></p><p>Silva, L. M. C., Gonalves, B. S., Braga, J. de O., de Souza, T. C., de Castro, V. G., Silva, G. G., Lacerda, G. R. B. S., Matencio, T., Barbosa, T. C., Viana, C. M., Houmard, M., & Nunes, E. H. M. (2021). Preparation of titania-reduced graphene oxide composite coatings with electro- and photosensitive properties. Applied Surface Science, 538, 148029.</p><p></p><p>Singh, V., Seshadri, M., Singh, N., & Mohapatra, M. (2019). Radiative properties of Er3+ doped and Er3+/Yb3+ co-doped Sr3Al2O6 phosphors : exploring the usefulness as a phosphor material. Journal of Materials Science: Materials in Electronics.</p><p></p><p></p><p>Singh V , Joung D , Zhai L , Das S , Khondaker SI, S. S. (2011). Graphene based materials : Past , present and future. Progress in Materials Science, 56, 11781271.</p><p></p><p>Slobodian, O. M., Lytvyn, P. M., Nikolenko, A. S., Naseka, V. M., Khyzhun, O. Y., Vasin, A. V., Sevostianov, S. V., & Nazarov, A. N. (2018). Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy. Nanoscale Research Letters, 13.</p><p></p><p>Smith, A. T., Marie, A., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis , properties , and applications of graphene oxide/ reduced graphene oxide and their nanocomposites. Nano Materials Science.</p><p></p><p>Smith, K. C. A., Wells, O. C., & McMullan, D. (2008). The fiftieth anniversary of the first applications of the scanning electron microscope in materials research. Physics Procedia, 1(1), 312.</p><p></p><p>Sreedhar, V. B., Krishnaiah, K. V., Rasool, S. K. N., Venkatramu, V., & Jayasankar, C. K. (2019). Raman and photoluminescence studies of europium doped zinc-fluorophosphate glasses for photonic applications. Journal of Non-Crystalline Solids, 505, 115121.</p><p></p><p>Sreeja, V. G., & Anila, E. I. (2019). Studies on the effect of reduced graphene oxide on nonlinear absorption and optical limiting properties of potassium doped zinc oxide thin film by Z - scan technique. Thin Solid Films, 685, 161167.</p><p></p><p>Sreeja, V. G., Vinitha, G., Reshmi, R., Anila, E. I., & Jayaraj, M. K. (2017). Effect of reduction time on third order optical nonlinearity of reduced graphene oxide. Optical Materials, 66, 460468.</p><p></p><p>Stambouli, W., Elhouichet, H., & Ferid, M. (2012). Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. Journal of Molecular Structure, 1028, 3943.</p><p></p><p>Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 15581565.</p><p></p><p>Stanworth, J. E. (1952). Tellurite Glasses. Nature, 169(4301), 581582.</p><p></p><p>Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsure. Berichte Der Deutschen Chemischen Gesellschaft.</p><p></p><p>Sun, G. (2010). Intersubband approach to silicon based lasers-circumventing the indirect bandgap limitation. Advances in Optics and Photonics, 3(1), 53.</p><p></p><p>Sundaram, R. S., Burghard, M., Gmez-Navarro, C., Chuvilin, A., Kaiser, U., Kurasch, S., Meyer, J. C., & Kern, K. (2010). Atomic Structure of Reduced Graphene Oxide. Nano Letters, 10(4), 11441148.</p><p></p><p>Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Mamat, M. H., Malek, M. F., Ahmad, M. K., Rosmi, M. S., & Tanemura, M. (2017). Electrical enhancement of radiation-vulcanized natural rubber latex added with reduced graphene oxide additives for supercapacitor electrodes. Journal of Materials Science, 52(11), 66116622.</p><p></p><p>Taherunnisa, S. K., Krishna Reddy, D V SambasivaRao, T Rudramamba, K S Zhydachevskyy, Y A Suchocki, A., Piasecki, M., & Rami Reddy, M. (2019). Effect of up-conversion luminescence in Er3+ doped phosphate glasses for developing Erbium-Doped Fibre Amplifiers (EDFA) and G-LEDs. Optical Materials: X, 100034.</p><p></p><p>Tanabe, S., Ohyagi, T., Soga, N., & Hanada, T. (1992). Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Physical Review B, 46(6), 33053310.</p><p></p><p>Tanabe, S., Ohyagi, T., Todoroki, S., Hanada, T., & Soga, N. (1993). Relation between the O6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses. Journal of Applied Physics, 73(12), 84518454.</p><p></p><p>Tang, S., Wu, W., Xie, X., Li, X., & Gu, J. (2017). Band gap opening of bilayer graphene by graphene oxide support doping. Royal Society of Chemistry, 7, 98629871.</p><p></p><p>Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., & Botiz, I. (2020). Reduced graphene oxide today. Journal of Materials Chemistry C, 8, 11981224.</p><p></p><p>Thombre, D. B. (2016). The Estimation of Oxide Polarizability and Basicity using Electronegativity for B2O3 : M2O Glass System (M = Li , Na , K , Rb). International Journal of Innovative Research in Science, Engineering and Technology, 5(2), 12301236.</p><p></p><p>Tian, J., Wu, S., Yin, X., & Wu, W. (2019). Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Applied Surface Science, 496, 143696.</p><p></p><p>Tiedje, T., Colbow, K. M., Gao, Y., Dahn, J. R., Reimers, J. N., & Houghton, D. C. (1992). Role of Coulomb repulsion in 4f orbitals in electrical excitation of rare-earth impurities in semiconductors. Applied Physics Letters, 61(11), 12961297.</p><p></p><p>Tiwari, H., & Dhondiyal, C. C. (2021). Physical and optical analysis of Sm3+ doped zinc phosphate glass. Materials Today: Proceedings.</p><p></p><p>Tzounis, L., Zappalorto, M., Panozzo, F., Tsirka, K., Maragoni, L., Paipetis, A. S., & Quaresimin, M. (2019). Highly conductive ultra-sensitive SWCNT-coated glass fiber reinforcements for laminate composites structural health monitoring. Composites Part B: Engineering, 169, 3744.</p><p></p><p>Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability , optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids.</p><p></p><p>Ural, N. (2021). The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 13(1), 197218.</p><p></p><p>Usman, A., Halimah, M. K., Latif, A. A., Diana, F., & Abubakar, A. I. (2018). Influence of Ho3+ ions on structural and optical properties of zinc borotellurite glass system. Journal of Non-Crystalline Solids.</p><p></p><p>Walsh, B. M., Barnes, N. P., Bartolo, B. Di, & Walsh, B. M. (1998). Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4. Journal of Applied Physics, 83(5), 27722787.</p><p></p><p>Wan, Q., Wang, H., Li, S., & Wang, J. (2018). Journal of Colloid and Interface Science 3 , 3-tetramethylurea solution. Journal of Colloid And Interface Science, 526, 167173.</p><p></p><p>Wan, R., Wang, P., Li, S., & Ma, Y. (2021). 2.86 m emission and fluorescence enhancement through controlled precipitation of ZnTe nanocrystals in DyF3 doped multicomponent tellurite oxyfluoride glass. Journal of Non-Crystalline Solids, 564, 120842.</p><p></p><p>Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 16, 120.</p><p></p><p>Wang, M., Li, Z., Hou, K., Wang, J., & Yang, S. (2020). Balancing oxygen-containing groups and structural defects for optimizing macroscopic tribological properties of graphene oxide coating. Applied Surface Science, 516, 146122.</p><p></p><p>Wang, Q., Wen, J., Luo, Y., Peng, G.-D., Pang, F., Chen, Z., & Wang, T. (2020). Enhancement of lifetime in Er-doped silica optical fiber by doping Yb ions via atomic layer deposition. Optical Materials Express, 10(2), 397.</p><p></p><p>Wang, W., Tuo, T., & Jiang, C. (2020). Enhancing near-infrared luminescence of Ln3+ (Yb3+/Er3+)-doped germanium tellurite glasses by coating with graphene. Optical and Quantum Electronics, 52(6), 18.</p><p></p><p></p><p>Wang, X. Y., Narita, A., & Mllen, K. (2017). Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2(1).</p><p></p><p>Wang, X., Zhi, L., & Mullen, K. (2008). Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 8(1), 323327.</p><p></p><p>Watt, M. R., & Gerhardt, R. A. (2020). Factors that affect network formation in carbon nanotube composites and their resultant electrical properties. Journal of Composites Science, 4(3), 100.</p><p></p><p>Wei, C., Hu, J., & Menyuk, C. R. (2016). Comparison of Loss in Silica and Chalcogenide Negative Curvature Fibers as the Wavelength Varies. Frontiers in Physics, 4(30).</p><p></p><p>Wen, H., Zhang, J., Yao, Q., Liu, L., Dong, W., Li, J., & Wang, J. (2019). Thermal, Optical Characterization and Judd-Ofelt Analyis of Nd3+-Doped BaO-TeO2-B2O3 Glasses. Materials and Technology, 53(3), 305309.</p><p></p><p>Woehrle, G. H., Hutchison, J. E., zkar, S., & Finke, R. G. (2006). Analysis of nanoparticle transmission electron microscopy data using a public- domain image-processing program, Image. Turkish Journal of Chemistry, 30(1), 113.</p><p></p><p>Woo, Y. S. (2019). Transparent conductive electrodes based on graphene-related materials. Micromachines, 10(1), 2428.</p><p></p><p>Xiao, J., Zhan, H., Wang, X., Xu, Z. Q., Xiong, Z., Zhang, K., Simon, G. P., Liu, J. Z., & Li, D. (2020). Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nature Nanotechnology, 15(8), 683689.</p><p></p><p>Xie, S., Li, W., Pan, Z., Chang, B., & Lianfeng, S. (2000). Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids, 61(7), 11531158.</p><p></p><p>Yan, S., Pu, S., Zhang, Y., Yuan, M., & Zhang, C. (2021). Sensing properties of graphene-oxide-functionalized single-modeno-coresingle-mode fiber structure. Results in Physics, 25, 104310.</p><p></p><p>Yang, S., Lohe, M. R., Mllen, K., & Feng, X. (2016). New-Generation Graphene from Electrochemical Approaches: Production and Applications. Advanced Materials, 28(29), 62136221.</p><p></p><p>Yang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., & Pan, T. (2015). Bottom-up Fabrication of Graphene on Silicon/ Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 5(1).</p><p></p><p>Yang, Zhongmin, Xu, S., Hu, L., & Jiang, Z. (2004). Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses. Journal of the</p><p>Optical Society of America B, 21(5), 951.</p><p></p><p>Yang, Zhoufei, Tian, J., Yin, Z., Cui, C., Qian, W., & Wei, F. (2019). Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 141, 467480.</p><p></p><p>Yanmaz, E., Dogan, M., & Turhan, Y. (2021). Effect of sodium dodecyl sulfate on thermal properties of polyvinyl alcohol (PVA)/modified single-walled carbon nanotube (SWCNT) nanocomposites. Diamond and Related Materials, 115.</p><p></p><p>Yao, J. H., Elder, K. R., Guo, H., & Grant, M. (1993). Theory and simulation of Ostwald ripening. Physical Review B, 47(21).</p><p></p><p>Yilbas, B. S., Ibrahim, A., Ali, H., Khaled, M., & Laoui, T. (2018). Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface. Applied Surface Science, 442, 213223.</p><p></p><p>Yu, F., Song, P., Wu, D., Birks, T., Bird, D., & Knight, J. (2019). Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photonics, 4(8), 080803.</p><p></p><p>Yu, M. F., Files, B. S., Arepalli, S., & Ruoff, R. S. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 84(24), 55525555.</p><p></p><p>Yuan, J., Zheng, G., Ye, Y., Chen, Y., Deng, T., Xiao, P., Ye, Y., & Wang, W. (2021). Enhanced 1.5 m emission from Yb3+/Er3+-codoped tungsten tellurite glasses for broadband near-infrared optical fiber amplifiers and tunable fiber lasers. RSC Advances, 11(45), 2799227999.</p><p></p><p>Yuliantini, L., Djamal, M., Hidayat, R., Boonin, K., Yasaka, P., & Kaewnuam, E. (2019). Optical and X-ray induced luminescence of Sm3+ -doped borotellurite and fluoroborotellurite glasses : A comparative study. Journal of Luminescence, 213, 1928.</p><p></p><p>Yusof, N. N., Ghoshal, S. K., Ari, R., Awang, A., Tewari, H. S., & Hamzah, K. (2017). Self-cleaning and spectral attributes of erbium doped sodium-zinc-tellurite glass : Role of titania nanoparticles. Journal of Non-Crystalline Solids.</p><p></p><p>Yusof, N. N., Ghoshal, S. K., & Azlan, M. N. (2017). Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. Journal of Alloys and Compounds, 724, 10831092.</p><p></p><p>Zachariasen, W. H. (1932). The Atomic Arrangement in Glass. Journal of the American Chemical Society, 54(10), 38413851.</p><p></p><p>Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Influence of manganese doping on elastic and structural properties of silica borotellurite glass. Journal of Non-Crystalline Solids, 492, 5055.</p><p></p><p>Zanane, H., Velzquez, M., Denux, D., Duclre, J. R., Cornette, J., Kermaoui, A., Kellou, H., Lahaye, M., & Buffire, S. (2020). Judd-Ofelt analysis and crystal field calculations of Er3+ ions in new oxyfluorogermanotellurite glasses and glass-ceramics. Optical Materials, 100, 109640.</p><p></p><p>Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 126.</p><p></p><p>Zhang, F., Bi, Z., Huang, A., & Xiao, Z. (2015). Luminescence and Judd-Ofelt analysis of the Pr3+ doped fluorotellurite glass. Journal of Luminescence, 160(37), 8589.</p><p></p><p>Zhang, L., Xia, Y., Shen, X., Yang, R., & Wei, W. (2018). Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses. Optical Materials, 75, 16.</p><p></p><p>Zhang, X., Shao, X., & Liu, S. (2012). Dual Fluorescence of Graphene Oxide: A Time-Resolved Study. The Journal of Physical Chemistry A, 116(27), 73087313.</p><p></p><p>Zhang, Ya nan, Xie, W. ge, Wang, J., & Wang, P. (2018). Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer. Optical Materials, 75, 666672.</p><p></p><p>Zhang, Yifan, Sheng, L., Fang, Y., An, K., Yu, L., Liu, Y., & Zhao, X. (2017). Synthesis of 3C-SiC nanowires from a graphene / Si configuration obtained by arc discharge method Abstract SiC nanowires were fabricated by heat-treating a graphene/ Si configuration without. Chemical Physics Letters.</p><p></p><p>Zhang, Yu, Xia, L., Li, C., Ding, J., Li, J., & Zhou, Y. (2021). Enhanced 2.7 m mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Optics and Laser Technology, 138, 106913.</p><p></p><p>Zhang, Yu, Xia, L., Shen, X., Li, J., Yang, G., & Zhou, Y. (2021). Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass. Journal of Luminescence, 236, 118078.</p><p></p><p>Zhao, G., Liu, H. Y., Du, X., Zhou, H., Mai, Y. W., Jia, Y. Y., & Yan, W. (2021). Glass fibres coated with flame synthesised carbon nanotubes to enhance interface properties. Composites Communications, 24, 100623.</p><p></p><p>Zhao, X., Wang, X., Lin, H., & Wang, Z. (2008). Average electronegativity, electronic polarizability and optical basicity of lanthanide oxides for different coordination</p><p>numbers. Physica B: Condensed Matter, 403(1011), 17871792.</p><p></p><p>Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., & Dong, S. (2009). Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry - A European Journal, 15(25), 61166120.</p><p></p><p>Zhou, Y., Cheng, X., Huang, F., Sha, Z., Han, Z., Chen, J., Yang, W., Yu, Y., Zhang, J., Peng, S., Wu, S., Rider, A., Dai, L., & Wang, C. H. (2021). Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon, 172, 272282.</p><p></p><p>Zhu, Y., Shen, X., Su, X., Zhou, M., Zhou, Y., Li, J., & Yang, G. (2019). Concentration dependent structural , thermal and luminescence properties in Er3+ /Tm3+ doped tellurite glasses. Journal of Non-Crystalline Solids, 507, 1929.</p><p></p><p>Zimmermann, H. M. (2010). Basics of Optical Emission and Absorption. [Springer Series in Optical Sciences] Integrated Silicon Optoelectronics, 148.</p><p></p><p></p><p></p> |