Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution

This research aimed to evaluate the potential of razor clam (Ensis directus) shell, afishery waste material, as an adsorbent for the removal of heavy metals and dyes from aqueoussolution. This research is divided into three parts, namely characterisation studies, adsorptionstudies and desorption stu...

Full description

Saved in:
Bibliographic Details
Main Author: Lila Elamari Mohamed Areibat
Format: thesis
Language:zsm
Published: 2018
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=21
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:21
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language zsm
topic TD Environmental technology
Sanitary engineering
spellingShingle TD Environmental technology
Sanitary engineering
Lila Elamari Mohamed Areibat
Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
description This research aimed to evaluate the potential of razor clam (Ensis directus) shell, afishery waste material, as an adsorbent for the removal of heavy metals and dyes from aqueoussolution. This research is divided into three parts, namely characterisation studies, adsorptionstudies and desorption studies. Several analytical instruments such as scanning electron microscope(SEM), energy dispersive x-ray (EDX) spectrometer and Fourier transform infrared (FTIR)spectrometer were used to characterise the adsorbent. In this study, three metal ions (Cd(II),Cu(II) and Pb(II)) and four dyes (Congo red (CR), methylene blue (MB), Rhodamine B (RB) and methylorange (MO)) were used as contaminants. A series of adsorption tests were carried out as a functionof solution pH, adsorbent dosage and initial adsorbate concentration. The adsorption capacity ofrazor clam shell for metal ions and dyes from aqueous solutions was evaluated in both single andmix systems. The desorption study was performed using hydrochloric acid, acetic acid and sodiumhydroxide as desorption agents. The adsorption efficiency of the proposed adsorbent was comparedwith olive tree derived activated carbon, a commercial adsorbent for water treatment in Libya.Research findings showed that the surface morphology of razor clam shell changed after metal ionsand dyes uptake, indicate a relevant adsorbate-adsorbent interaction. With an exception of MB, theadsorption of contaminants studied was more favourable at acidic pH media. The Freundlich andLangmuir isotherm models were employed to correlate the adsorption equilibrium data. Based onLangmuir isotherm model, the maximum adsorption capacities of razor clam shell were calculated as103 mg/g, 98 mg/g and 357 mg/g for Cd(II), Cu(II) and Pb(II) ions, respectively. Meanwhile, themaximum adsorption capacities for CR, MB, MO and RB were determined as 115 mg/g, 24 mg/g, 9 mg/gand 1.16 mg/g, respectively. In conclusion, the presence of carbonate functional group on thesurface of razor clam shell was beneficial for adsorption mechanism. In implication, theapplication of razor clam shell as a low-cost adsorbent could reducethe operational cost for water treatment in developing countries.
format thesis
qualification_name
qualification_level Master's degree
author Lila Elamari Mohamed Areibat
author_facet Lila Elamari Mohamed Areibat
author_sort Lila Elamari Mohamed Areibat
title Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
title_short Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
title_full Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
title_fullStr Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
title_full_unstemmed Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
title_sort evaluation pf razor clam (ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2018
url https://ir.upsi.edu.my/detailsg.php?det=21
_version_ 1747832862268194816
spelling oai:ir.upsi.edu.my:212020-02-17 Evaluation pf razor clam (Ensis directus) shell as an adsorbent for removal of heavy metals and dyes from aqueous solution 2018 Lila Elamari Mohamed Areibat TD Environmental technology. Sanitary engineering This research aimed to evaluate the potential of razor clam (Ensis directus) shell, afishery waste material, as an adsorbent for the removal of heavy metals and dyes from aqueoussolution. This research is divided into three parts, namely characterisation studies, adsorptionstudies and desorption studies. Several analytical instruments such as scanning electron microscope(SEM), energy dispersive x-ray (EDX) spectrometer and Fourier transform infrared (FTIR)spectrometer were used to characterise the adsorbent. In this study, three metal ions (Cd(II),Cu(II) and Pb(II)) and four dyes (Congo red (CR), methylene blue (MB), Rhodamine B (RB) and methylorange (MO)) were used as contaminants. A series of adsorption tests were carried out as a functionof solution pH, adsorbent dosage and initial adsorbate concentration. The adsorption capacity ofrazor clam shell for metal ions and dyes from aqueous solutions was evaluated in both single andmix systems. The desorption study was performed using hydrochloric acid, acetic acid and sodiumhydroxide as desorption agents. The adsorption efficiency of the proposed adsorbent was comparedwith olive tree derived activated carbon, a commercial adsorbent for water treatment in Libya.Research findings showed that the surface morphology of razor clam shell changed after metal ionsand dyes uptake, indicate a relevant adsorbate-adsorbent interaction. With an exception of MB, theadsorption of contaminants studied was more favourable at acidic pH media. The Freundlich andLangmuir isotherm models were employed to correlate the adsorption equilibrium data. Based onLangmuir isotherm model, the maximum adsorption capacities of razor clam shell were calculated as103 mg/g, 98 mg/g and 357 mg/g for Cd(II), Cu(II) and Pb(II) ions, respectively. Meanwhile, themaximum adsorption capacities for CR, MB, MO and RB were determined as 115 mg/g, 24 mg/g, 9 mg/gand 1.16 mg/g, respectively. In conclusion, the presence of carbonate functional group on thesurface of razor clam shell was beneficial for adsorption mechanism. In implication, theapplication of razor clam shell as a low-cost adsorbent could reducethe operational cost for water treatment in developing countries. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=21 https://ir.upsi.edu.my/detailsg.php?det=21 text zsm closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abbas, A., Murtaza, S., & Munir, M. (2011). Removal of congo red from aqueoussolutions with Raphanus sativus peels and activated carbon: A comparative study. American EurasianJournal of Agricultural and Environmental Sciences, 10(5), 802-809.Abbas, A., Murtaza, S., Shahid, K., Munir, M., Ayub, R., & Akber, S. (2012).Comparative study of adsorptive removal of congo red and brilliant green dyes from water usingpeanut shell. Middle-East Journal of Scientific Research, 11(6), 828-832.Abdel-Khalek, M. A., Abdel Rahman, M. K., & Francis, A. A. (2017). Exploring the adsorptionbehaviour of cationic and anionic dyes on industrial waste shells of egg. Journal of EnvironmentalChemical Engineering, 5, 319-327.Aboua, K. N., Yobouet, Y. A., Yao, K. B., Goné, D. L., & Trokourey, A. (2015).Investigation of dye adsorption onto activated carbon from shells of Macoré fruit. Journal ofEnvironmental Management, 156, 10-14.Abugeddida, R. A. (2014). Analysis of the exports in the Libyan iron and steel company (LISCO). WEIInternational Academic Conference Proceedings, Antalya, Turkey, 19-24.Acemiolu, B. (2004). Adsorption of congo red from aqueous solution onto calcium- rich fly ash.Journal of Colloid and Interface Science, 274, 371-379.Ackacha, M. A., & Meftah, S. A. (2013). Elimination of Cu (II) cations from water media using cleanadsorbent as application of green chemistry: Acacia tortilis seeds. Journal of Clean EnergyTechnologies, 1(1), 57-61.Ahmaruzzaman, A. (2011). Industrial wastes as low-cost potential adsorbents for the treatment ofwaste water laden with heavy metals. Advances of Colloid and Interface Science, 166, 36-59.Ahmed, M. J. K., & Ahmaruzzaman, M. (2016). A review on potential usage of industrial wastematerials for binding heavy metals ions from aqueous solutions. Journal of Water ProcessEngineering, 10, 39-47.Ahmed, T. F., Sushil, M., & Krishna, M. (2012). Impact of dye industrial effluent onphysicochemical characteristics of Kshipra River, Ujjain City, India.International Research Journal of Environment Sciences, 1(2), 41-45.Akpor, O. B., Ohiobor, G. O., & Olaolu, T. D. (2014). Heavy metal pollutants inwastewater effluents: Sources, effects and remediation. Advances in Bioscience andBioengineering, 2(4), 37-43.Alajtal, A. I., Edwards, H. G., & Elbagermi, M. A. (2013) Monitoring of heavy metals content inTawargah Pone in Libya. APCBEE Procedia, Elsever, 5, 11-15.Al-Anber. M. A. (2011). Thermodynamics Approach in the Adsorption of Heavy Metals. Piraján, J. C.M. (Ed.), Thermodynamics - Interaction Studies - Solids, Liquids and Gases.737- 764. In Tech.Alhibshi, E., Albriky, K., & Bushita. (2014). Concentration of heavy metals in underground waterwells in Ghrian district, Libya. International Conference on Agricultural, Ecological and MedicalSciences, 35-39.Ali, I., Asim, M., & Khan, T. A. (2012). Low-cost adsorbents for the removal of organic pollutantsfrom wastewater. Journal of Environmental Management, 113, 170- 183.Ali, S. M., Sabae, S. Z., Fayez, M., Monib, M., & Hegazi, N. A. (2011). The influence ofagro-industrial effluents on River Nile pollution. Journal of Advanced research, 2, 85-95.Alloway, B. J. (2013). Heavy metals in soil: Trace metals and metalloids in soils and theirbioavailability, Environmental pollution, 22. Third Edition, Springer- New York London.Almlinger, F., PollaK, M., & Favoino, E. (2004, July) Heavy metals and organic compounds fromwastes used as organic fertilisers. Final report, ENV.A.2./ETU/2001/0024.Alomá, I. C., Rodrígueza, I., Calerob, M., & Blázquezb, G. (2013). Biosorption of Cr6+ from aqueoussolution by sugarcane bagasse. Desalination and Water Treatment, 1-11.ALOthman, Z. A., Naushad, M., & Ali, R. (2013). Kinetic, equilibrium isotherm and thermodynamicstudies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated withphosphoric acid. Environmental Science and Pollution Research, 20(5), 3351-3365.Amirnia, S., Ray, M. B., & Margaritis, A. (2015). Heavy metals removal from aqueous solutions usingSaccharomyces cerevisiae in a novel continuous bioreactor- biosorption system. Chemical EngineeringJournal, 264, 863-872.Amode, J. O., Santos, J. H., Alam, Z. M., Mirza, A. H., & Mei, C. C. (2016). Adsorptionof methylene blue from aqueous solution using untreated and treated (Metroxylon spp) waste adsorbent: Equilibrium and kinetic studies.International Journal of Industrial Chemistry, 7(3), 333-345.Annadurai, G., Juang, R.-S., & Lee, D.-J. (2002). Use of cellulose-based wastes for adsorption ofdyes from aqueous solutions. Journal of Hazardous Materials, B92, 263-274.Ansari, R., Seyghali, B., Mohamed-khah, A., & Zanjanchi, M. A. (2012). Highly efficient adsorptionof anionic dyes from aqueous solutions using sawdust modified by cationic surfactant ofcetyltrimethylammonium bromide. Journal of Surfactants and detergents, 15, 557-565.Arie, A. A., Vincent, & Putranto, A. (2016). Activated carbons from KOH-activation of salacca peelsas low cost potential adsorbents for dye removal. Advanced Materials Letters, 7(3), 226-229.Arnepalli, D. N., Shanthakumar, S., Rao, B. H., Singh, D. N. (2008). Comparison of methods fordetermining specific, surface area of fine-grained soils. Geotech Geol Engineering, 26, 121-132.Arshadi, M., Amiri, M., & Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic Investigationsof Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resources and Industry,6, 1-17.Asif, Z., & Chen, Z. (2017). Removal of arsenic from drinking water using rice husk.Applied Water Science, 7, 1449-1458.Asrari, E. (2014). Heavy metals in water and soil, analysis, assessment, and remediationstrategies. Apple Academic Press, Inc, Canada.ATSDR. (2004). Toxicological profile for copper. Alanta: U.S. Department of Health and HumanServices. Agency for Toxic Substances and Disease Registry.ATSDR. (2007). Toxicological profile for lead. Alanta: U.S. Department of Health and HumanServices. Agency for Toxic Substances and Disease Registry.ATSDR. (2012). Toxicological profile for cadmium. Alanta: U.S. Department of Health and HumanServices, Agency for Toxic Substances and Disease Registry.Attallah, M. F., Ahmed, I. M., & Hamed, M. M. (2013). Treatment of industrial wastewater containingcongo red and naphthol green using low-cost adsorbent. Environmental Science and PollutionResearch, 20, 1106-1116.Azimi, A., Azari, A., Rezakazemi M., & Ansarpour, M. (2017). Removal of heavymetals from industrial wastewaters: A Review. ChemBioEng Rev, 4(1), 1-24.Bahadori, A., Clark, M., & Boyd, B. (2013). Essential of water system design in the oil,gas, and chemical processing industries. Springer, New York, USA.Balasubramani, K., & Sivarajasekar, N. (2014). Adsorption studies of organic pollutants ontoactivated carbon. International Journal of Innovative Research in Science, Engineering andTechnology, 3(3), 10575-10581.Banerjee, S., Chattopadhyaya, M. C., Srivastava, V., & Sharma, Y. C. (2014).Adsorption studies of methylene blue onto activated saw dust: Kinetics, equilibrium, andthermodynamic studies. Environmental Progress and Sustainable Energy, 33(3), 790-799.Barakat, M. A. (2011). New trends in removing heavy metals from industrial waste water. ArabianJournal of Chemistry, 4, 361-377.Barrett, E.P., Joyner, L.G., & Halenda, P. P. (1951). The determination of pore volume and areadistributions in porous substances. I. Computations from nitrogen isotherms. Journal of AmericanChemical Society 73, 373-380.Baruah, S., Devi, A., Bhattacharyya, K. G., & Sarma, A. (2017). Developing a biosorbent from AegleMarmelos leaves for removal of methylene blue from water. International Journal of EnvironmentalScience and Technology, 14(2). 341-352.Bazba, S.K., & Boz, Y. (2016). Low-cost biosorbent: Anadara inaequivalvis shells for removal ofPb(II) and Cu(II) from aqueous solution. Process Safety and Environmental Protection, 103, 144-152.Beaty, R. D., & Kerber, J. D. (2002) Concepts, Instrumentation and Techniques in Atomic AbsorptionSpectrophotometr. Shelton, U.S.A; Perkin-Elmer Corporation.Bechtold, T., & Mussak, R. (2009). Handbook of Natural Colorants. The Atrium, Southern Gate,Chichester, West Sussex, PO19 8SQ, United Kingdom. A John Wiley and Sons, Ltd., Publication.Bediako, J., Wei, W., & Yun, Y. (2016). Low-cost adsorbent developed from waste textile fabric andits application to heavy metal adsorption. Journal of the Institute of Chemical Engineers, 63,250-258.Bennani, K. A., Mounir, B., Hachkar, M., Bakasse, M., & Yaacoubi, A. (2015).Adsorption of cationic dyes onto Moroccan clay: Application for industrial wastewater treatment.Journal of Materials and Environmental Science, 6(9), 2483-2500.Bhalara, P. D., Punetha, D., & balasubramanian, K. (2014). A review of potentialremediation techniques for uranium (IV) ion retrieval from contaminatedaqueous environment. Journal of Environmental Chemical Engineering, 2,1621-1634.Bhuiyan, A., Mokhtar, M. B., Toriman, M. E., Gasim, M. B., Ta, G. C., Elfithri, R., &Razman, M. R. (2013). The environmental risk and water pollution: A reviewfrom the river basins around the world. American-Eurasian Journal ofSustainable Agriculture, 7(2), 126-136.Bindra, S.P., Abulifa, S., Hamid, A., Al Reiani, H.S., & Abdalla, H.K. (2013).Assessment of impacts on ground water resources in Libya and vulnerabilityto climate change. Scientific Bulletin of the ‘Petru Maior’, 10, 63-69.Bindra, S. P., Muntasser, M., El-Khweldi, M., & El-Khwedi, A. (2003). Waste useefficiency for industrial development in Libya. Desalination, 158, 167-178.Bohli, T., Villaescusa, I., & Ouederni, A. (2013). Comparative study of bivalentcationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stoneschemically activated carbon. Chemical Engineering and Process Technology,4(4), 1-7.Bohli, T., Ouederni, A., Fiol, N., & Villaescusa, I. (2013). Single and binary adsorptionof some heavy metal ions from aqueous solutions by activated carbon derivedfrom olive stones. Desalination and Water Treatment, 53(4), 1082-1088.Bolis, V. (2103). Fundamentals in Adsorption at the Solid-Gas Interface: Concepts andThermodynamics. Auroux, A (Ed.), Calorimetry and thermal methods incatalysis, 3-50. Retrieved from http://www.springer.com/978-3-642-11953-8.Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecularlayers. Journal of American Chemical Society 60, 309-319.Cao, J., Wang, Y., Yan, Z., & Li, G. (2014). Polystyrene microspheres-templatedpreparation of hierarchical porous modified red mud with high rhodamine Bdye. Micro and Nano Letters Journal, 9(4), 229-231.Carmen, Z., Daniela, S. (2012). Textile organic dyes- Characteristics, polluting effectsand separation/elimination procedures from industrial effluents: A criticaloverview. Tomasz Puzyn (Ed). Organic pollutants ten years after theStockholm convention environmental and analytical update (55-86).Environmental Sciences, InTech. doi: 10.5772/32373.Chand, P., & Pakade, Y. B. (2015). Synthesis and Characterisation of hydroxyapatitenanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II),Cd(II), and Ni(II) ions from aqueous solution. Environmental Science andPollution Research, 22, 10919-10929.Chaukura, N., Murimba, E. C., & Gwenzi, W. (2016). Synthesis, characterization andmethyl orange adsorption capacity of ferric oxide-biochar nano-composites derived from pulp andpaper sludge. Applied Water Science, 1-12.Cheney, B. (2007). “Introduction to Scanning Electron Microscopy”. Available:http://www.sjsu.edu/people/anastasia.micheals/courses/MatE143/s1/SEM_G UID E.pdf [Online accessed].Chen, H., & Zhao, J. (2009). Adsorption study for the removal of congo red anionic dye usingorgano-attapulgite. Adsorption, 15, 381-389.Chen, J. P., Wang, L. K., Wang, M. S., Hung, Y., Shammas, N. K. (2016). Remediation of heavy metalsin the environment. Boca Raton, FL 33487-2742. CRC Press LLC.Chowdhury, S., & Saha, P. D. (2012). Scale-up of a dye adsorption process using chemically modiedrice husk: Optimization using response surface methodology. Desalination and Water Treatment, 37,331-336.Coelho, G. F., Gonçalves Jr, A. C., Tarley, C. R. T., Casarin, J., Nacke, H., & Francziskowski, M.A. (2014). Removal of metal ions Cd(II), Pb(II), and Cr(III) from water by the cashew nut shellAnacardium occidentale L. Ecological Engineering, 73, 514-525.Conceição, F.T., Pichinelli, B. C., Silva, M. S. G., Moruzzi, R. B., Menegário, A. A.,& Antunes, M. L. P. (2016). Cu(II) adsorption from aqueous solution using red mud activated bychemical and thermal treatment. Environmental Erath Science, 75, 1-7.COWI: Heavy metals in waste. (2002, February) COWI A/S, Denmark. European Commission DG ENV. E3.Project ENV.E.3/ETU/2000/0058.Cross, M. E., O’Riordan, R. M., & Culloty, S. C. (2014). The reproductive biology of the exploitedrazor clam, Ensis siliqua, in the Irish Sea. Fisheries Research, 150, 11-17.Dbrowski, A. (2001). Adsorption-from theory to practice. Advances in Colloid and InterfaceScience, 93, 135-224.Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2015). Application of Casuarina equisetifolia needlefor methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal.54, 1253-1263.Dashamiri, S., Ghaedi, M., Asfaram, A., Zare, F., & Wang, S. (2017). Multi-response optimization ofultrasound assisted competitive adsorption of dyes onto Cu (OH)2-nanoparticle loaded activatedcarbon: Central composite design.Ultrasonics Sonochemistry, 34, 343-353.Dawood, S., & Sen, T. K. (2012). Removal of anionic dye congo red from aqueoussolution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic,kinetic, mechanism and process design. Water Research, 46, 1933-1946.Dawood, S., Sen, T. K., & Phan, C. (2014). Synthesis and characterisation of novel- activatedcarbon from waste biomass pine cone and its application in the removal of congo red dye fromaqueous solution by adsorption. Water, Air and Soil Pollution, 225, 1-16.Demcak, S., Balintova, M., Hurakova, M., Frontasyeva, M. V., Zinicovscaia, I., & Yushin, N. (2017).Utilization of poplar wood saw dust for heavy metals removal from model solutions. NovaBiotechnologica et Chimica, 16(1), 26- 31.Demiral, H., & Güngör, C. (2016). Adsorption of copper(II) from aqueous solutions on activatedcarbon prepared from grape bagasse. Journal of cleaner Production, 124, 103-113.Devi, V. N., Saraswathi, P., & Makeswari, M. (2016). Removal of dyes and heavy metals from aqueoussolution using ricinus communis as an adsorbent- A review. European Journal of pharmaceutical andMedical Research, 3(7), 395-398.Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., & Liu, Y. (2014).Adsorption of rhodamine B from aqueous solution using treated rice husk- based activated carbon.Colloids and Surfaces A: Physicochem and Engineering Aspects, 446, 1-7.Doan, H. D., Lohi, A., Dang, V. B. H., & Dang-Vu, T. (2008). Removal of Zn2+ and Ni2+ by adsorptionin a fixed bed of wheat straw. Process Safety and Environment Protection, 86, 259-267.Duffus, J. H. (2002). Heavy metals-a meaningless term (IUPAC Technical Report).Journal of Pure and Applied Chemistry, 74(5), 793-807.Du, Y., Lian, F., & Zhu, L. (2011). Biosorption of divalent Pb, Cd and Zn on aragonite and calcitemollusc shells. Environmental Pollution, 159, 1763-1768.Ebdon, L., Evans, E. H., Fisher, A.S., & Hill, S. J. (1998). An Introduction to Analytical AtomicSpectrometry. In Evans (Ed). UK.ELabbar, M. M. (2008). The Libyan experimental on the environmental impactassessment for desalination plants. Desalination, 220, 24-36.Elanza, S., Lebkiri, A., Marzak, S., Rifi, E. H., Lebkiri, M., & Satif, C. (2014). Removalof lead ions from aqueous solution by the sugarcane bagasse. Journal of Materials and EnvironmentalScience, 5 (5), 1591-1598.El-Baz, S., Baz, M., Barakate, M., Hassani, L., El-Gharmali, A., & Imziln, B. (2015).Resistance to and accumulation of heavy metals by actinobacteria solated from abandoned miningareas. The Scientific World Journal, 2015, 1-14.El-Haddad, M., Slimani, R., Mamouni, R., El Antri, S., & Lazar, S. (2013). Removal of two textiledyes from aqueous solutions onto calcined bones. Journal of the Association of Arab University forBasic Applied Sciences, 14, 51-59.Elhami, S., & Karami, S., (2013). Modified sawdust for the removal of an azo dye from water:Removal optimization with box-behnken design. Technical Journal of Engineering and AppliedSciences, 3 (17), 2111-2117.Elmoubarki, R., Mahjoubi, F. Z., Tounsadi, H., Moustadarf, J., Abdennouri, M., Zouhri, A., ElAlbani, A., & Barka, N. (2015). Adsorption of textile dyes on raw and decanted of Moroccan clays:Kinetic, equilibrium and thermodynamics. Water Resources and Industry, 9, 16-29.El-Sadaawy, M., & Abdelwahab, O. (2014). Adsorptive removal of nickel from aqueous solutions byactivated carbons from doum seed (Hyphaenthebaica) coat. Alexandria Engineering Journal, 53,399-408.Erto, A., Natale, F, D., Musmarra, D., & Lancia, A. (2015). Modelling of single and competitiveadsorption of cadmium and zinc onto activated carbon. Adsorption, 21, 611-621.Etim, U. J., Umoren, S. A., & Eduok, U. M. (2016). Coconut coir dust as a low cost adsorbent forthe removal of cationic dye from aqueous solution. Journal of Saudi Chemical Society, 20, S67-S76.Fajriati, I., Mudasir & Wahyuni, E. T. (2014). The influence of Cu (II) on methyl orange andmethylene blue photodegradation catalysed by TiO2- Chitosan nanocomposites. Journal of advances inChemistry Engineering and Biological Sciences, 1(1), 21-24.FAO, "China catches almost 11 m tonnes of molluscs in 2005". Retrieved 10-03-2008.Fatiha, M., & Belkacem, B. (2016). Adsorption of methylene blue from aqueoussolutions using natural clay. Journal of Material and Environmental Science,7(1), 285-292.Feizi, M., & Jalali, M. (2015). Removal of heavy metals from aqueous solutions usingsunflower, potato, canola and walnut shell residues. Journal of the Taiwan Institute of ChemicalEngineers, 54, 125-136.Fianko, J. R., Laar, C., Osei, G., Anim, A.K., Gibrilla, A., & Adomako, D. (2013).Evaluation of some heavy metal loading in the Kpeshi lagoon, Ghana. Applied Water Science, 3,311-319.Filipi, M., & Milichovský, M. (2014). Adsorption organic cationic dyes of oxycelluloses andlinters. Journal of Encapsulation and Adsorption Sciences, 4, 1-7.Franus, M., & Randura, L. (2014). Sorption of heavy metal ions from aqueous solution by glauconite.Fresenius Environmental Bulletin, 23(3a), 825-839.Freundlich, H. M. F. (1906). Uber die adsorption in lasungen. Journal of Physical Chemistry, 57,385-470.Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review.Journal of Environmental Management, 92, 407-418.Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015).Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics,isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53-61.Gao, M., Ma, Q., Lin, Q., Chang, J., Bao, W., & Ma, H. (2015). Combined modification of fly ashwith Ca(OH)2/Na2FeO4 and its adsorption of methyl orange. Applied Surface Science, 359, 323-330.Gao, X., Dai, Y., Zhang, Y., Zhai, X., & Fu, F. (2016). Effective dye removal from waste waterusing a novel low-cost NaOH-modified fly ash. Clays and Clay Minerals, 64(6), 695-705.García, E. R., Medina, R. L., Lozano, M. M., Pérez, I. H., Valero, M. J., & Franco, M.M. (2014). Adsorption of azo-dye orange II from aqueous solutions using a metal-organic frameworkmaterial: Iron- Benzenetricarboxylate. Materials, 7, 8037-8057.Gebril, A. O., Omran, A., Pakir, A. H. K., & Aziz, H. A. (2010). Municipal solid waste managementin Benghazi (Libya): Current practices and challenges. Environmental Engineering and ManagementJournal, 9(9), 1289-1296.Ghaedi, M., Rahimi, M.R., Ghaedi, A.M., Tyagi, I., Agarwal, S., Gupta, V.K. (2016).Application of least squares support vector regression and linear multipleregression for modeling removal of methyl orange onto tin oxide nanoparticlesloaded on activated carbon and activated carbon prepared from Pistaciaatlantica wood. Journal of Colloid Interface Science, 461, 425-435.Giao, X., Huang, W., & Bian, Y. (2014).Effective removal of cadmium ions from a simulatedgastrointestinal fluid by Lentinus edodes. International Journal of Environmental Research andPublic Health, 11, 12486-12498.Giwa, A. A., Abdulsalam, K. A., Wewers, F., & Oladipo, M. A. (2016). Biosorption of acid dye insingle and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. Hindawi PublishingCorporation, Journal of Chemistry, 2016, 1-11.Gunatilake, S. K. (2015). Method of removing of heavy metals from industrial wastewater. Journal ofMultidisciplinary Engineering Science Studies, 1(1), 12-18.Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2016). Application of potato (Solanumtuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueoussolution. Arabian Journal of Chemistry, 9, S707-S716.Gupta, S., & Babu, B. V. (2009). Removal of toxic metal Cr(IV) from industrial wastewater usingsawdust as adsorbent: Equilibrium, kinetic and regeneration studies. The chemical EngineeringJournal, 1-20.Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatmenttechnologies for wastewater recycling: An overview. RSC Advances, 2, 6380- 6388.Gupta, V. K., Suhas, Ali, I., & Saini, V. K. (2004). Removal of rhodamine B, fast green, andmethylene blue from wastewater using red mud, an Aluminum industry waste. Industrial andEngineering Chemistry Research, 43, 1740-1747.Gurgel, L. V. A., Gil, L. F. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous singlemetal solutions by succinylated twice-mercerized sugarcane bagasse functionalized withtriethylenetetramine. Water Research, 43, 4479- 4488.Gürses, A., Açikyildiz, M., Güne, K., & Gürses, M. S. (2016). Dye and pigment.Springer Briefs in Molecular Science, Green Chemistry for Sustainability.Hajahmadi, Z., Younesi, H., Bahramifar, N., Khakpour, H., & Pirzadeh, K. (2015).Multicomponent isotherm for biosorption of Zn(II), Co(II) and Cd(II) from ternary mixture ontopretreated dried Aspergillus niger biomass. WaterResearch and Industry, 11, 71-80.Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions.Industrial and Engineering Chemistry Fundamentals, 5(2), 212-223.Hamad, T. A., Agll, A. A., Hamad, Y. M., & Sheffield, J. W. (2014). Solid waste as renewable sourceof energy: Current and future possibility in Libya. Case Studies in Thermal Engineering, 4,144-152.Hamdaoui, O. (2016). Adsorption of Cu(II) from aqueous phase by cedar bark. Journal of DispersionScience and Technology, 38 (8), 1087-1091.Hanim, R. N., Hazmi, F. A., & Tahrim, A. A. (2013). Comparative adsorption studies by usinglow-cost adsorbents of rice husk and rice husk ash on methylene blue dye removal. Journal ofEngineering and Technology, 4(2), 39-48.Hashem, A., & El-Khiraigy, K. (2013). Bioadsorption of Pb(II) onto Anethum graveolens fromcontaminated wastewater: Equilibrium and kinetic studies. Journal of Environmental Protection, 4,108-119.Hassaan. G. A. (2016). Mechanical engineering in ancient Egypt, part XIX: Textile industry.International Journal of Advanced Research in Management, Architecture, Technology andEngineering.11, 11-20.Hawari, A. H., & Mulligan, C. N. (2006). Biosorption of lead(II), cadmium(II), copper(II) andnickel(II) by anaerobic granular biomass. Bioresource Technology, 97, 692-700.Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrialwastes as adsorbents. Housing and Building National Research Center, 9, 276-282.Heidari, A., Younesi, H., Mehraban, Z., & Heikkinen, H. (2013). Selective adsorption of Pb(II),Cd(II), and Ni(II) ions from aqueous solution using chitosan-AAM nanoparticles. InternationalJournal of Biological Macromolecules, 61, 251- 263.Iakovleva, E., & Sillanpää, M. (2013). The use of low-cost adsorbents for wastewater purificationin mining industries. Environmental Science and Pollution Research, 20(11), 7878-7899.Ibrahim, M. N. M., Ngah, W. S. W., Norliyana, M. S., Daud, W. R. W., Rafatullah, M., Sulaiman, O.,& Hashim, R. (2010). A novel agricultural waste adsorbent for the removal of lead (II) ions fromaqueous solutions. Journal of HazardousMaterials, 182(1), 377-385.Idan, I. J., Jamil, S. N. A. B, Abdullah, L. C., & Choong, T. S. Y. (2017). Removal ofreactive anionic dyes from binary solutions by adsorption onto quaternised kenaf core Fibre.International Journal of Chemical Engineering, 2017, 1-13.Inglezakis, V. J., & Poulopoulos, S. G. (2006). Adsorption, ion exchange and catalysis: design ofoperation and environmental application (1 ed.,). The Boulevard, Langford Lane, Kidlinagton, OxfordOX5 1GB, UK.Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2015). Adsorption of rhodamine B from aqueoussolution on Iringia gabonensis biomass: Kinetics and thermodynamic studies. South African Journalof Chemistry, 68, 115-125.Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinteic, isotherm and thermodynamicmodeling of liquid phase adsorption of rhodamine B dye onto Raphia hookerie fruit epicarp. WaterResource and Industry, 15, 14-27.Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2017). Liquid phase adsorptions of rhodamine Bdye onto raw and chitosan supported mesoporous adsorbents: Isotherms and kinetics studies. AppliedWater Science, 7(5), 2297-2307.Jabeen, A., Huang, X. S., & Aamir, M. (2015). The challenges of water pollution, threat to publichealth, flaws of water laws and policies in Pakistan. Journal of water Resource and Protection, 7,1516-1526.Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: Essential knowledge forpredicting environmental impact. Elements, 7(6), 381-386.Jamin, N. C., & Mahmood, N. Z. (2015). Hazardous waste management in Malaysia: A case study oncement manufacturing. Procedia Environmental Sciences.1-7 doi:10.13140/RG.2.1.3646.2808.Jiang, X., & Huang, J. (2016). Adsorption of rhodamine B on two novel polar-modifiedpost-cross-linked resins: Equilibrium and kinetics. Journal of Colloid and Interface Science 467,230-238.John, P. (2006). Coagulation and flocculation in water and waste water treatment (2 ed.,).Published by IWA publishing, London, UK.Jumma, J. A., Toriman, M. E., & Hashim, N. Md. (2012). Groundwater pollution and wastewatermanagement in Deran city, Libya. Environmental Research Journal, 6(1), 50-54.Kallel, F., Chaari, F., Bouaziz, F., Bettaieb, F., Ghorbel, R., & Chaabouni, S.E. (2016).Sorption and desorption characteristics for the removal of a toxic dyes, methylene bluefrom aqueous solution by a low cost agricultural by-product.Journal of Molecular Liquids, 219, 279-288.Kamari, A., Ngah, W. S. W., & Wang, L. W. (2009). Shorea dasyphylla sawdust forhumic acid sorption. European Journal of Wood and Wood Products, 67, 417- 426.Kamari, A., Putra, W. P., Abd Wahid, N. S., & Yusoff, S. N. M. (2015). Cerithidea obtuse (MudCreeper snail) shell as a green biosorbent for adsorption for Cu(II), Ni(II) and Pb(II) ions fromaqueous solutions. Fresenius Environmental Bulletin, 24(2a), 575- 586.Kamari, A., Yusoff, S. N. M., Abdullah. F., & Putra, W. P. (2014). Biosorptive removal of Cu(II),Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption andcharacterization. Journal of Environmental Chemical Engineering, 2, 1912-1919.Kamaru, A. A., Sani, N. S., & Malek, N. A. N. N. (2016). Raw and surfactant-modied pineapple leafas adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalinationand Water Treatment, 57(40), 1-15.Kamba, A.S., Ismail, M., Ibrahim, T.A.T., Zakaria, Z.A.-B. (2013). Synthesis and characterizationof calcium carbonat aragonite nanocrystals from cockle shell powder (Anadara granosa). Journal ofNanomaterials, 2013, 1-9.Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soilsfrom Witwatersrand gold mining basin, South Africa. International Journal of Environmental Researchand Public Health, 13(7), 1- 11.Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activatedcarbon, silica and silica activated carbon composite. Energy Procedia, 50, 113- 120.Kashwaha, A. K., Gupta, N., & Chattopadhyaya, M. C. (2014). Removal of cationic methylene blue andmalachite green dyes from aqueous solution by waste materials of Daucus carota. Journal of SaudiChemical Society, 18, 200-207.Kaur, R., Singh, J., Khare, R., Cameotra, S. S., & Ali, A. (2013). Batch sorption dynamic, kineticand equilibrium studies of Cr(VI), Ni(II) and Cu(II) from aqueous phase using agriculturalresidues. Applied Water Science, 3, 207-218.Khamparia, S., & Jaspal, D. (2016). Investigation of adsorption of rhodamine B onto a naturaladsorbent Argemone mexicana. Journal of Environmental Management, 183(3), 786-793.Khaniabadi, Y. O., Heydari, R., Nourmoradi, H., Basiri, H., & Basiri, H. (2016). Low-cost sorbent for the removal of aniline and methyl orange from liquid-phase:Aloe Vera leaves wastes. Journal of the Taiwan of Chemical Engineers, 68,90-98.Khan, T. A., Ali, I., Singh, V.V., & Sharma, S. (2009). Utilisation of fly ash as low-cost adsorbent for the removal of methylene blue, malachite green and rhodamine B dyes from textilewaste water. Journal of Environmental Protection Science, 3, 11-22.Khan, T.A., Singh, V.V., & Kumar, D. (2004). Removal of some basic dyes from artificial wastewaterby adsorption on Akash Kinari coal. Journal of Science and Industrial Research, 63, 355-364.Kharub, M. (2012). Use of various technologies, methods and adsorbents for the removal of dye.Journal of Environmental Research and Development, 6(3), 879-883.Khiri, M.Z.A., Matori, K.A., Zainuddin, N., Abdullah, C.A.C., Alassan, Z.N., Baharuddin, N.F., &Ziad, M.H.M. (2016). The usability of rak clam shell (Anadara granosa) as calcium precursor toreduce hydroxyapatite nanoparticle via wet chemical precipitate method in various sinteringtemperature. SpringerPlus. 5(1), 1-15.Koodyska, D. (2013). Application of a new generation of complexing agents in removal of heavymetal ions from different wastes. Environmental Science and Pollution Research, 20, 5939-5949.Kumar, S., & Jain, S. (2013). History, introduction, and kinetic of ion exchange materials: Areview. Hindawi Puplishing Carporation, Chemical of Journal, 2013, 1-13.Kushwaha, D., & Dutta, S. (2017). Experiment, modeling and optimization of liquid phase adsorptionof Cu(II) using dried and carbonised biomass of Lyngbya majuscule. Applied Water Science, 7,935-949.Kwon, J., Yun, S., Lee, J., Kim, S., & Jo, H. Y. (2010). Removal of divalent heavy metals (Cd, Cu,Pb, and Zn) and arsenic (III) from aqueous solution using scoria and equilibria of sorption.Journal of Hazardous Materials, 174, 307- 313.Kyzas, G. Z., Fu, J., & Matis, K. A. (2013). The change from past to future for adsorptionmaterials in treatment of dyeing wastewater. Materials, 6, 5131- 5158.Lafi, R., Fradj, A., Hafiane, A., & Hameed, B. H. (2014). Coffee waste as potential adsorbent forthe removal of basic dyes from aqueous solution. Korean Journalof Chemical Engineering, 31(12), 2198-2206.Lakherwal, D. (2014). Adsorption of heavy metals: A review. International Journal ofEnvironmental Research and Development, 4(1), 41-48.Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journalof the American Chemical Society, 40, 1361-1403.Laus, R., & Fávere, V. T. (2011). Competitive adsorption of Cu(II) and Cd(II) ions by chitosancrosslinked with epichlorohydrin-triphosphate. Biosorption Technology, 102, 8769-8776.Leavitt, D. F., & Williams, R., (2010). Biology of the Atlantic Jacknife (Razor) clam (EnsisDirectus Conrad, 1843). NRAC Publication, 217, 1-5.Lee, A., Elamb, J. W., & Darlinga, S. B. (2016). Membrane materials for water Purification: design,development, and application. Environmental Science: Water Research and Technology, 2, 17-42.Lee, K. E., Morad, N., Teng, T. T., & Poh, B. T. (2012). Development, characterization and theapplication of hybrid materials in coagulation/flocculation of wastewater: A review. ChemicalEngineering Journal, 203, 370-386.Li, H., An, N., Liu, G., Li, J., Liu, N., Jia, M., Zhang, W., & Yuan, X. (2016).Adsorption behaviors of methyl orange dye on nitrogen-doped mesoporous carbon materials. Journal ofColloid and Interface Science, 466, 343-351.Li, L., Liu, S., Zhou, T. (2010). Application of activated carbon derived from scrap tires foradsorption of rhodamine B. Journal of Environmental Sciences. 22(8), 1273-1280.Lim, L.B.L., Priyantha, N., Tennakoon, D.T.B., Chieng, H.I., Dahri, M.K., & Suklueng,M. (2017). Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium,thermodynamic and kinetic studies. Arabian Journal of Chemistry, 10(2), S3216-S3228.Linga Raju, C. L., Narasimhulu, K. V., Gopal, N. O., & Reddy, B. C. V. (2002).Electron paramagnetic resonance, optical and infrared spectral studies on the marine mussel Arcaburnesi shells. Journal of Molecular Structure, 608, 201- 211.Li, N., Zhang, L. D., Chen, Y. Z., Fang, M., Zhang, J. X., & Wang, H. M. (2012).Highly efficient, irreversible and selective ion exchange property of layered titanatenanostructures. Advanced Functional Materials Journal, 22, 835-841.Liu, K., Li, H., Wang, Y., Gou, X., & Duan, Y. (2015). Adsorption and removal ofrhodamine B from aqueous solution by tannic acid functionalised graphene.Colloids and Surface A: Physicochemical and Engineering Aspects, 477, 35-41.Liu, Y., Zeng, G., Tang, L., Cai, Y., Pang, Y., Zhang, Y., Yang, G., Zhou, Y., He, H.,& He, Y. (2015). Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ninanoparticles doped bimodal mesoporous carbon. Journal of Colloid and Interface Science, 448,451-459.Li, W. C., Law, F. Y., & Chan, Y. H. M. (2017). Biosorption studies on copper (II) and cadmium (II)using pre-treated rice straw and rice husk. Environmental Science and Pollution Research, 24,8903-8915.Lone, M. I., He, Z., Stoffella, P. J., & Yang, X. (2008). Phytoremediation of heavy metal pollutedsoil and water: Progresses and perspectives. Journal of Zhejiang University Science B, 9(3),210-220.Mahmoudi, K., Hosni, K., Hamdi, N., & Srasra, E. (2015). Kinetic and equilibrium studies on removalof methylene blue and methyl orange by adsorption onto activated carbon from date pits: Acomparative study. Korean Journal of Chemical Engineering, 32(2), 274-283.Malarvizhi, T. S., & Santhi, T. (2013). Lignite red y ash modied by chemical treatment foradsorption of zinc from aqueous solution. Research on Chemical Intermediate, 39, 2473-2494.Malik, D. S., Jain, C. K., & Yadav, A. K. (2016). Removal of heavy metals from emerging cellulosiclow-cost adsorbents: A review. Applied Water Science, 1- 24.Malina, J., & Raenovi, A. (2014). Kinetic aspects of methylene blue adsorption on blast furnacesludge. Chemical and Biochemical Engineering Quarterly, 28(4), 491-498.Manahan, S. E. (2005). Environmental Chemistry (8 ed.,). Boca Raton, FL [etc.]: CRC Press LLC.Markovi, S., Stankovi, A., Lopii, Z., Lazarevi, S., Stojanovi, M., & Uskokovi,D. (2015). Application of raw peach shell particles for removal of methylene blue. Journal ofEnvironmental Chemical Engineering, 3, 716-724.Merrikhpour, H., & Jalali, M. (2012). Comparative and competitive adsorption of cadmium, copper,nickel, and lead ions by Iranian natural zeolite. CleanTechnologies and Environmental Policy, 15(2), 303-316.Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for thebiosorption process: A review. Applied biochemistry and Biotechnology Journal, 170,1389-1416.Miclescu, A., & Wiklund, L. (2010). Methylene blue, an old drug with new indications.Journlul Român de Anestezie Terapie Intensiv, 17(1), 35-41.Mihailova, I., Dimitrova, S., & Mehandjiev, D. (2013). Effect of thermal treatment on the Pb(II)adsorption ability of blast furnace slag. Journal of Chemical Technology and Metallurgy, 48(1),72-79.Millar, G. J., Miller, G. L., Couperthwaite, S. J., & Papworth, S. (2016). Factors influencingkinetic and equilibrium behaviour of sodium ion exchange with strong acid cation resin. Separationand Purification Technology, 163, 79-91.Mittal, A., Malviya, A., Kaur, D., Mittal, J., & Kurup, L. (2007). Studies on the adsorptionkinetics and isotherms for the removal and recovery of methyl orang from wastewaters using wastematerials. Journal of Hazardous Materials, 148, 229-240.Moghaddam, A.A.N., Najafpour, G.D., Ghoreyshi, A.A., & Mohammadi, M. (2010).Adsorption of methylene blue in aqueous solution phase by fly ash, clay and walnut shell asadsorbents. World Applied Science Journal, 8(2), 229-234.Mohod, C. V., & Dhote, J. (2013). Review of heavy metals in drinking water and their effect onhuman health. International Journal of Innovative Research in Science, Engineering and Technology,2(7), 2992-2996.Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., & Yuen, C. W. (2018). Recyclingof seashell waste in concrete: A review. Construction and Building Materials, 162, 751-764.Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review ofelectrocoagulation for water treatment: Potentials and challenges. Journal of EnvironmentalManagement, 186, 24-41.Naiya, T. K., & Das, S. K. (2015). Removal of Cr(VI) from aqueous solution using y ash ofdifferent sources. Desalination and Water Treatment, 1-10.Narayanan, S. L., Venkatesan, G., & Potheher, I. V. (2017). Equilibrium studies on removal of lead(II) ions from aqueous solution by adsorption using modied red mud. International Journal ofEnvironmental Science and Technology. doi 10.1007/s13762-017-1513-x.Nasuha, N., Zurainan, H.Z., Maarof, H.I., Zubir, N.A., Amri, N. (2011). Effect ofcationic and anionic dye adsorption from aqueous solution by using chemicallymodified papaya seed. International Conference on Environment Science andEngineering, 8, 50-54.Nath, K. (2017). Membrane separation processes (2 ed.,). Published by Asoke K.Ghosh, PHI Learning Private Limited.Nguyen, T. C., Loganathan, P., Nguyen, T. V., Kandasamy, J., Naidu, R., & Vigneswaran, S. (2017).Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.Environmental Science and Pollution Research, 1-9.Nordin, N., Zakaria, Z. A., & Ahmad, W. A. (2012). Utilisation of rubber wood shavings for theremoval of Cu(II) and Ni(II) from aqueous solution. Water, Air, and Soil Pollution, 223, 1649-1659.Nour, H. E. (2015). Distribution of hydrocarbons and heavy metals pollutants in groundwater andsediments from north western Libya. Indian Journal of Geo- Marine Sciences, 44(7), 993-999.Oliveira, E. H. C., Mendonça, É. T. R., Barauna, O. S., Ferreira, J. M., & Sobrinho, M.A. M. (2016). Study of variables for optimization of the dye indosol adsorption process using redmud and clay as adsorbents. Adsorption, 22(1), 59-69.Ono, Y., Kim, Y. D., & Itsubo, N. (2017). A country-specic water consumption inventory consideringInternational trade in Asian countries using a multi- regional input-output table. Sustainability,9, 1-16.Oppenländer, T. (2003). Photochemical purification of water and air: advanced oxidation processes(AOPs)-principles, reaction mechanisms, reactor concepts. WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim.Owamah, H. I. (2014). Biosorptive removal of Pb(II) and Cu(II) from wastewater using activatedcarbon from cassava peels. Journal of Material Cycles and Waste Management, 16, 347-358.Pal, J., & Deb, M. K. (2014). Efcient adsorption of congo red dye from aqueous solution usinggreen synthesized coinage nanoparticles coated activated carbon beads. Applied Nanoscience, 4(8),967-978.Pandey, A., Bera, D., Shukla, A., & Ray, L. (2015). Studies on Cr(VI), Pb(II) and Cu(II)adsorption-desorption using cacium alginate as biopolymer. Chemical Speciation and Bioavailability,19(1), 17-24.Park, T., Ampunan, V., Lee, S., & Chung, E. (2016). Chemical behaviour of differentspecies of phosphorus in coagulation. Chemosphere, 144, 2264-2269.Patel, H., & Vashi, R. T. (2012). Removal of Congo red dye from its aqueous solutionusing natural coagulants. Journal of Saudi Chemical Society, 16, 131-136.Pereira, L., & Alves, M. (2012). Dyes- Environmental impact and remediation. Malik.A., & Grohmann. E (Eds.,), Environmental Protection Strategies for Sustainable Development,Strategies for sustainability, 111-162. Springer. doi: 10.1007/978-94-007-1591-2_4.Postai, D. L., Demarchi, C. A., Zanatta, F., Melo, D. C. C., & Rodrigues, C. A. (2016).Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites moluccana alow-cost adsorbent. Alexandria Engineering Journal, 55, 1713-1723.Prakash, N., Latha, S., Sudha, P. N., & Renganathan, N. G. (2013). Influence of clay on theadsorption of heavy metals like copper and cadmium on chitosan. Environmental Science and PollutionResearch, 20, 925-938.Prasanna, M. V., Praveena, S. M., Chidambaram, S., Nagarajan, R., & Elayaraja, A. (2012).Evaluation of water quality pollution indices for heavy metal contamination monitoring: A casestudy from Curtin Lake, Miri City, East Malaysia. Environmental of Earth Science, 67, 1987-2001.Priyantha, N., Navaratne, A. N., & kulasooriys, T. P. K. (2015). Adsorption of heavy metal ions onrice husk: Isotherm modeling and error analysis. International Journal of Earth Science andEngineering, 8(2), 336-342.Pua, F. L., Sajab, M. S., Chia, C. H., Zakaria, S., Abdul Rahman, I., & Salit, M. S. (2013).Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions.Journal of Environmental Chemical Engineering, 1, 460-465.Putra, W. P., Kamari, A., Yusoff, S. N. M., Ishak, C. F., Mohamed, A., Hashim, N., & Isa, I. M.(2014). Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected wastematerials: Adsorption and characterization studies. Journal of Encapsulation and AdsorptionSciences, 4, 25-35.Qi, Y., Yang, M., Xu, W., He, S., & Men, Y. (2017). Natural polysaccharides-modified graphene oxidefor adsorption of organic dyes from aqueous solutions. Journal of Colloid and Interface Sciences,486, 84-96.Qi, Z.-P., Liu, Q., Zhu, Z.-R., Kong, Q., Chen, Q.-F., Zhao, C.-S., Liu, Y.-Z., Miao,M.-S., Wang, C. (2016). Rhodamine B removal from aqueous solutions using loofah sponge andactivated carbon prepared from loofah sponge. Desalinationand Water Treatment. 57(60), 29421-29433.Quantchrome Corp. (2007). Autosorb-I series, Surface area, pore size andchemisorptions. Retrieved from http://www.quantchrome.com/.Rai, P. K. (2012). An eco-sustainable green approach for heavy metals management: two case studiesof developing industrial region. Environmental Monitoring and Assessment, 184, 421-448.Rajasulochana, P., & Preethy, V. (2016). Comparison on efficiency of various techniques intreatment of waste and sewage water: A comprehensive review. Resource-Efficient Technologies, 2(4),175-184.Raj, J., Mohineesh, A. R., & Dogra, T. D. (2013). Direct determination of zinc, cadmium, lead,copper metal in tap water of Delhi (India) by anodic stripping voltammetry technique. Published byEDP Science, 1, p.p. 09009(1-4).Ramachandra, T. V., & Solanki, M. (2007). Ecological assessment of lentic water bodies ofBangalore. The Ministry of Science and Technology-Government of India. ENVIS Technical Report.Ramos, S. N. C., Xavier, A. L. P., Teodoro, F. S., Gil, L. F., & Gurgel, L. V. A. (2016).Removal of cobalt(II), copper(II), and nickel(II) from aqueous solution usingphthalate-functionalised sugarcane bagasse: Mono and multi component adsorption in batch mode.Industrial Crops and Products, 79, 116-130.Rangabhashiyam, S., Anu, N., & Selvaraju, N. (2013). Sequestration of dye from textile industrywastewater using agricultural waste products as adsorbents. Journal of Environmental ChemicalEngineering, 1, 629-641.Reddy, M. C. S., Nirmala, V., & Ashwini, C. (2017). Bengal gram seed husk as an adsorbent for theremoval of dye from aqueous solutions- Batch studies. Arabian Journal of Chemistry, 10,S2554-S2566.Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders and Porous Solids:Principles, Methodology and Applications. Academic Press, London, UK.Rubinos, D.A., & Barral, M. T. (2015). Use of red mud (bauxite residue) for the retention ofaqueous inorganic mercury(II). Environmental Science and Pollution Research, 22, 17550-17568.Saad, A. M. A., Shariff, N. M., Gairola, S. (2011). Nature and causes of land degradation and desertification in Libya: need for sustainable landmanagement. African Journal of Biotechnology, 10(63), 13680-13687.Sahoo, M., Mahananda, M. R., & Seth, P. (2016). Physico-chemical analysis of surfaceand ground water around Talcher Coal Field, District Angul, Odisha, India.Journal of Geoscience and Environment Protection, 4, 26-37.Sahu, P. O & Chaudhari, P. K. (2013). Review on Chemical treatment of Industrial Waste water.Journal of Applied Sciences and Environmental Management, 17(2), 241-257.Saleh, T. A., & Gupta, V. K. (2016). Nanomaterial and polymer membranes: Synthesis,characterisation and applications. The Boulevard, Langford Lane, Kidlinagton, Oxford OX5 1GB, UK.Salleh, M. A. M., Mahmoud, D. K., Abdul Karim, W. A. W., & Idris, A. (2011).Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review.Desalination, 208, 1-13.Salman, J. M., Amrin, A. R., Hassan, F. M., & Jouda, S. A. (2015). Removal of congo red dye fromaqueous solution by using natural materials. Mesopotamia Environmental Journal, 1(3), 82-89.Samiey, B., Cheng, C., & Wu, J. (2014). Organic-inorganic hybrid polymers as adsorbents for removalof heavy metal ions from solutions: a review. Materials, 7, 673-726.Santhi, T., Manonmani, S., Vasantha, V. S. & Chang, Y. T. (2016). A new alternative adsorbent forthe removal of cationic dyes from aqueous solution. Arabian Journal of Chemistry, 9, S466-S474.Santos, S. C. R., & Boaventura, R. A. R. (2016). Adsorption of cationic and anionic dyes onsepiolite clay: Equilibrium and kinetic studies in batch mode. Journal of Environmental ChemicalEngineering, 4, 1473-1483.Saravanan, A., Kumar, P. S, & Mugilan, R. (2016). Ultrasonic-assisted activated biomass (shtailpalm Caryota urens seeds) for the sequestration of copper ions from wastewater. Research onChemical Intermediate, 42, 3117-3146.Sdiri, A., & Higashi, T. (2013). Simultaneous removal of heavy metals from aqueous solution bynatural limestones. Applied water Science, 3, 29-39.Senthil Kumar, P. S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., &Sivanesan, S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies onequilibrium isotherm, kinetics and thermodynamic of interactions. Desalination, 261, 52-60.Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M., & Masrur, S. F. (2016). Adsorptionof methylene blue onto oil palm (Elaeis guineensis) leaves: Processoptimaisation, isotherm, kinetics and thermodynamic studies. Journal ofTaiwan Institute of Chemical Engineers, 63, 363-370.Shah, J., Jan, M. R., Haq, A., & Khan, Y. (2013). Removal of rhodamine B fromaqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamicsstudies. Frontiers of Chemical Science and Engineering, 7(4), 428-436.Sharma, S. K. (2015). Green chemistry for dyes removal from wastewater, Research trends andapplications. Scrivener publishing LLC, Canada.Sharma, S.K., & Sanghi. R. (2012). Advances in water treatment and pollution prevention. SpringDordrecht Heidelberg New York London.Shirzad-Siboni, M., Khataee, A., Vafaei, F., & Joo, S. W. (2014). Comparative removal of twotextile dyes from aqueous solution by adsorption onto marine-source waste shell: Kinetic andisotherm studies. Korean Journal of Chemistry Engineering, 31(8), 1451-1459.Sivarajasekar, N., Baskar, R., Ragu, T., Sarika, K., Preethi, N., & Radhika, T. (2017).Biosorption studies on waste cotton seed for cationic dyes sequestration: Equilibrium andthermodynamics. Applied Water Science, 7, 1987-1995.Smaranda, C., Gavrilescu, M., & Bulgariu, D. (2011). Studies on sorption of congo red from aqueoussolution onto soil. International Journal of Environmental Research, 5(1), 177-188.Sobhanardakani, S., Parvizimosaed, H., & Olyaie, E. (2013). Heavy metals removal from wastewatersusing organic solid waste-rice husk. Environmental Science and Pollution Research, 20, 5265-5271.Soo, E., & Kalembkiewicz, J. (2016). Comparison of adsorption of Cd(II) and Pb(II) ions one pureand chemically modified fly ashes. Chemical and Process Engineering, 37(2), 215-234.Sogut, E. G., & Caliskan, N. (2017). Isotherm and kinetic studies of Pb(II) adsorption on raw andmodified diatomite by using non-linear regression method. Fresenius Environmental Bulletin, 26(4),2721-2729.Sperling, M.V. (2007). Biological wastewater treatment series. Wastewater characteristics,treatment and disposal (Volume 1). IWA publishing, London, UK.Strathmann, H., Giorno, L., & Drioli, E. (2006). An introduction to membrane science andtechnology. Institute on membrane technology, CNR-ITM. Bucci 17/C,87036 Rende (CS), Italy.Subbaiah, M. V., & Kim, D.-S. (2016). Adsorption of methyl orange from aqueoussolution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies.Ecotoxicology and Environmental Safety, 128, 109- 117.Subramaniam, R., Ponnusamy, S. K. (2015). Novel adsorbent from agricultural waste (cashew nutshell) for methylene blue dye removal: Optimisation by response surface methodology. Water Resourceand industry. 11, 64-70.Suteu, D., & Rusu, L. (2012). Removal of methylene blue dye from aqueous solution using seashellwastes as biosorbent. Environmental Engineering and Management Journal, 11(11), 1977-1985.Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2017).Remediation engineering: Design concepts (2 ed.,). Boca Raton, FL 33487- 2742: CRC Press LLC.Tahir, H., Sultan, M., Akhtar, N., Hameed, U., & Abid, T. (2016). Application of natural andmodified sugarcane bagasse for the removal of dye from aqueous solution. Journal of Saudi ChemicalSociety, 20(1), S115-S121.Tashauoei, H. R., Hashemi, S., Ardani, R., Yavari, Z., & Asadi-Ghalhari, M. (2016).Adsorption of lead from aqueous solution by modified beech sawdust. Journal of Safety, Environmentand Health Research, 1(1), 11-16.Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. (2012). Heavy metals toxicity andthe environment. National Institutes of Health ‘NIH Public Access’, 101, 133-164.Tchuifon, D. R., Anagho, S. G., Njanja, E., Ghogomu, J. N., Ndifor-Angwafor, N. G.,& Kamgaing, T. (2014). Equilibrium and kinetic modelling of methyl orange adsorption from aqueoussolution using rice husk and egussi peeling. International Journal of Chemical Science, 12(3),741-761.Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent advancement ofcoagulation-flocculation and its application in wastewater treatment. International and EngineeringChemistry Research (ACS Publications), 55(16), 4363-4389.Templeton, M. R., & Butler, D. (2011). An introduction to wastewater treatment. 1-80.Relative from www.Bookboon.com.Teng, T. T., & Low, L. W. (2012) Removal of dyes and pigments from industrial effluents. S.K.Sharma, & R. Sanghi (Eds), Advances in water treatment andpollution Prevention, 65-93. Springer. Doi: 10.1007/978-94-4204-8_4.Tripathi, A., & Ranjan, M. R. (2015). Heavy metal removal from wastewater using low-cost adsorbents. Journal of Bioremediation and Biodegradation, 6(6), 1-5.Tsang, D. C. W., Hu, J., Liu, M. Y., Zhang, W., Lai, K. C. K., & Lo, I. M. C. (2007).Activated carbon produced from waste wood pallets: Adsorption of three classes of dyes. Water AirSoil Pollution, 184, 141-155.Uddin, M. T., Rahman, M. A., Rukanuzzaman, M., & Islam, M. A. (2017). A potential low-costadsorbent for the removal of cationic dyes from aqueous solutions. Applied Water Science, 7(6),2831-2842.Umpuch, C., & Jutarat, B. (2013). Adsorption of organic dyes from aqueous solution by surfactantmodified corn straw. International Journal of Chemical Engineering and Application, 4(3), 134-139.Umpuch, C., & Sakaew, S. (2013). Removal of methyl orange from aqueous solution by adsorption usingchitosan intercalated montmorillonite. Songklanakarin Journal of Science and Technology, 35(4),451- 459.USEPA (United States Environmental Protection Agency). (2014). Refernce Guide: to treatmentTechnologies for Mining-Influenced Water. EPA542-R-14-001.Uwamariya, V. (2013). Adsorptive removal of heavy metals from groundwater by iron oxide basedadsorbent. MSc thesis, University of the Witwatersrand, Johannesburg, South Africa.Uzunolu, D., & Özer, A. (2015). Adsorption of hazardous heavy metal copper(II) from aqueousefuents onto waste material sh (Dicentrarchus labrax) scales: Optimization, equilibrium,kinetics, thermodynamic, and characterization studies. Desalination and Water Treatment, 1-15.Vallée, D., Margat, J., & Eliasso, Å. (2003). Review of world water resources. Food and AgricultureOrganization of the United Nations, Rome.Veli, s., & Pekey, B. (2004). Removal of copper from aqueous solution by ion exchange resins.Fresenius Environmental Bulletin, 13(3b), 244-250.Velmurugan, P., Rathina, K. V., & Dhinakaran, G. (2011). Dye removal from aqueous solution usinglow-cost adsorbent. International Journal of Environmental Sciences, 1(7), 1492-1503.Visa, M., Bogatu, C., & Duta, A. (2010). Simultaneous adsorption of dyes and heavy metals frommulticomponent solution using fly ash. Applied Surface Science,156(17), 5486-5491.Wachinski, A. M, (2017). Environmental ion exchange: Principles and design (2 ed.,).Boca Raton, FL 33487-2742: CRC Press LLC.Wang, L. K., Vaccari, D. A., Li, Y., & Shammas, N. K. (2005). Chemical precipitation.Wang, L. K., Hung, Y.-T., & Shammas, N. K (Eds.), physicochemical treatment processes. Part of thehandbook of Environmental Engineering book serious (HEE, Vol 3) (pp.141-197). The Humana PressInc., Totowa, N.Wang, Z., Huang, G., An, C., Chen, L., & Liu, J. (2016). Removal of copper, zinc and cadmium ionsthrough adsorption on water-quenched blast furnace slag. Desalination and Water Treatment, 1-14.Wan Ngah, W.S., Hanafiah, M.A.K.M., & Yong, S.S. (2008). Adsorption of humic acid from aqueoussolutions on crosslinked chitosan-epichlorohydrin beads: Kinetics and isotherm studies. Colloidsand Surfaces B: Biointerfaces, 65(1), 18-24.Wanyonyi, W. C., Onyari, J. M., & Shiundu, P. M. (2014). Adsorption of congo red dye from aqueoussolutions using roots of Eichhornia crassipes: Kinetic and equilibrium studies. Energy Procedia,50, 862-869.Wassem, S., Din, M. I., Nasir, S., & Rasool, A. (2014). Evaluation of Acacia nilotica as anon-conventional low-cost biosorbent for the elimination of Pb(II) and Cd(II) ions aqueoussolutions. Arabian Journal of Chemistry, 7, 1091-1098.Witek-Krowiak, A. (2013). Application of beech sawdust for removal of heavy metals from water:Biosorption and desorption studies. European Journal of Wood and Wood Production, 71, 227-236.World Health Organization (WHO). (2004). Copper in drinking-water. Background document fordevelopment of WHO Guidelines for drinking -water quality, USA.World Health Organization (WHO). (2006). Guidelines for drinking-water quality [electronicresource]: incorporating first addendum. Vol. 1, Recommendations.- 3rd ed. Geneva, Switzerland.World Health Organization (WHO). (2008). Guidelines for drinking-water quality [electronicresource]: incorporating the first and second addend, Vol. 1, Recommendations. - 3rd ed. Geneva,Switzerland.Wuana, R., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and available strategies for remediation.International Scholarly Research Network, ISRN Ecology, 2011, 1-20.Wu, C., Kuo, C., & Guan, S. (2015). Adsorption kinetics of lead and zinc ions by coffeeresidues. Polish Journal of Environmental Studies, 24(2), 761-767.Xu, M., & McKay, G. (2017). Removal of heavy metals, lead, cadmium, and zinc, using adsorptionprocesses by cost-effective adsorbents. A. Bonilla-Petriciolet et al. (Eds.,), Adsorption processesfor water treatment and purication, 109-138. Springer International Publishing AG 2017.Yacout, D. M. M., & Hassouna, M. S. (2016). Identifying potential environmental impacts of wastehandling strategies in textile industry. Environmental Monitoring and Assessment, 188, 1-13.Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueoussolution by adsorption: A review. Advances in Colliod and Interface Science, 209, 172-184.Yan, H., Yang, H., Li, A., & Cheng, R. (2016). pH-tunable surface charge of chitosan/graphene oxidecomposite adsorbent for efficient removal of multiple pollutant from water. Chemical EngineeringJournal, 284, 1397-1405.Yan, J., Zhu, Y., Qiu, F., Zhao, H., Yang, D., Wang, J., & Wen, W. (2016). Kinetic, isotherm andthermodynamic studies for removal of methyl orange using novel B-cyclodextrin functionalizedgraphene oxide-isophorone diisocyanate composites. Chemical Engineering Research and Design, 106,168-177.Yayayürük, O., & Yayayürük, A. E. (2016). Removal of Cu(II) from water samples using glycidylmethacrylate-based polymer functionalized with diethylenetriamine tetraacetic acid: Investigationof adsorption characteristics. Water, Air and Soil Pollution, 227, 244, 1-12.Yu, J., Xiong, W., Zhu, J., Chen, J., & Chi, R. (2017). Removal of congo red from aqueous solutionby adsorption onto different amine compounds modied sugarcane bagasse. Clean Technologies andEnvironmental Policy, 19(2), 517- 525.Yu, J., Zhu, J., Feng, L., Cai, X., Zhang, Y., & Chi, R. (2015). Removal of cationic dyes bymodified waste boisorbent under continuous model: Competitive adsorption and kinetic. ArabianJournal of Chemistry, doi.org/10.1016/j/arabjc.2014.12.022.Zare, K., Gupta,V. K., Moradi, O., Makhlouf, A. S. H., Sillanpa, M., Nadagouda, M. N., Sadegh, H.,Shahryari-ghoshekandi, R., Pal, A., Wang, Z., Tyagi, I., & Kazemi, M. (2015). A comparative studyon the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal ofnoxioussynthetic dyes: A review. Journal of Nanostructure Chemistry, 5, 227-236.Zhang, L., Zhang, H., Guo, W., & Tian, Y. (2014). Removal of malachite green andcrystal violet cationic dyes from aqueous solution using activated sintering process red mud.Applied Clay Science 93-94, 85-93.Zhao, D., Qiu, Q., Wang, Y., Huang, M., Wu, Y., Liu, X., & Jiang, T. (2016). Efcient removal ofacid dye from aqueous solutions via adsorption using low-cost blast-furnace slag. Desalination andWater Treatment, 56(58), 1-16.Zhao, M., Xu, Y., Zhang, C., Rong, H., & Zeng, G. (2016). New trends in removing heavy metals fromwastewater. Applied Microbiology and Biotechnology, 100, 6509-6518.Zhou, Q., Liao, B., Lin, L., Qiu, W., & Song, Z. (2018). Adsorption of Cu(II) and Cd(II) fromaqueous solutions by Ferromanganese binary oxide-biochar composites. Science of the TotalEnvironment, 615, 115-122.Zhou, R., Xu, Y., Shen, J., Han, L., Chen, X., Feng, X., & Kuang, X. (2016). Urinary KIM-1: a novelbiomarker for evaluation of occupational exposure to lead. Scientific Reports, Doi:10.1038/srep38930.Zhou, Y., Zhang, L., & Cheng, Z. (2015). Removal of organic pollutants from aqueous solution usingagricultural wastes: A review. Journal of Molecular Liquids, 212, 739-762.Zhu, C., Dong, X., Chen, Z., & Naidu, R. (2016). Adsorption of aqueous Pb(II), Cu(II), Zn(II) ionsby amorphous tin(VI) hydrogen phosphate: An excellent inorganic adsorbent. International Journal ofEnvironmental Science and Technology,13, 1257-1268.