Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)

This research aims to present a methodology based on Multi-Criteria Decision Making (MCDM) to aid decision-makers in prioritizing a large scale of patients in a telemedicine environment. In this study, the data from 500 patients with chronic heart disease are examined and evaluated their emergency l...

Full description

Saved in:
Bibliographic Details
Main Author: Abdulniser Khald Hamzah
Format: thesis
Language:eng
Published: 2018
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=4497
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:4497
record_format uketd_dc
spelling oai:ir.upsi.edu.my:44972020-02-27 Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR) 2018 Abdulniser Khald Hamzah RC1200 Sports Medicine This research aims to present a methodology based on Multi-Criteria Decision Making (MCDM) to aid decision-makers in prioritizing a large scale of patients in a telemedicine environment. In this study, the data from 500 patients with chronic heart disease are examined and evaluated their emergency levels based on four main sources: electrocardiogram (ECG), oxygen saturation (SPO2), blood pressure (BP), and non- sensory measurement (text frame). The researcher of this study constructed a decision matrix based on a crossover of multiple sources and patients list according to the features of the sources. Subsequently, patients were prioritized using MCDM techniques, namely, integrated Multi-layer Analytic Hierarchy Process (MLAHP) and Technique for Order Performance by Similarity to Ideal Solution (TOPSIS). For validation, subjectively, cardiologists are consulted to confirm the ranking results; objectively, mean ± standard deviation and T-test are used to check the accuracy of the systematic ranking. For evaluation, this study provided scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. The following results were obtained. (1) Integrating MLAHP and Group-TOPSIS is effective for solving patient prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors are the most critical cases needing the highest priority levels, whereas the last five are the least critical cases and thus given the lowest priority levels. In objective validation, significant differences were observed between the groups’ scores, indicating that the ranking results were identical. (3) In evaluation, regarding the first, second, and third scenarios, the proposed method had an advantage over the benchmark method with rates of 40%, 60%, and 100%, respectively. The implications of this study, will gain the benefits to medical organizations in provide a way to improve the priority settings processes for the healthcare manages constantly making difficult resource decisions. As well as benefits to doctors by assist medical teams through providing a decision making support for prioritizing and perform a timely and accurate treatment of their patients. Moreover, the benefits to patients are provided as the prioritization improves fairness, decreases urgent waiting times for patients with heart chronic disease. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=4497 https://ir.upsi.edu.my/detailsg.php?det=4497 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif N/A
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic RC1200 Sports Medicine
spellingShingle RC1200 Sports Medicine
Abdulniser Khald Hamzah
Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)
description This research aims to present a methodology based on Multi-Criteria Decision Making (MCDM) to aid decision-makers in prioritizing a large scale of patients in a telemedicine environment. In this study, the data from 500 patients with chronic heart disease are examined and evaluated their emergency levels based on four main sources: electrocardiogram (ECG), oxygen saturation (SPO2), blood pressure (BP), and non- sensory measurement (text frame). The researcher of this study constructed a decision matrix based on a crossover of multiple sources and patients list according to the features of the sources. Subsequently, patients were prioritized using MCDM techniques, namely, integrated Multi-layer Analytic Hierarchy Process (MLAHP) and Technique for Order Performance by Similarity to Ideal Solution (TOPSIS). For validation, subjectively, cardiologists are consulted to confirm the ranking results; objectively, mean ± standard deviation and T-test are used to check the accuracy of the systematic ranking. For evaluation, this study provided scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. The following results were obtained. (1) Integrating MLAHP and Group-TOPSIS is effective for solving patient prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors are the most critical cases needing the highest priority levels, whereas the last five are the least critical cases and thus given the lowest priority levels. In objective validation, significant differences were observed between the groups’ scores, indicating that the ranking results were identical. (3) In evaluation, regarding the first, second, and third scenarios, the proposed method had an advantage over the benchmark method with rates of 40%, 60%, and 100%, respectively. The implications of this study, will gain the benefits to medical organizations in provide a way to improve the priority settings processes for the healthcare manages constantly making difficult resource decisions. As well as benefits to doctors by assist medical teams through providing a decision making support for prioritizing and perform a timely and accurate treatment of their patients. Moreover, the benefits to patients are provided as the prioritization improves fairness, decreases urgent waiting times for patients with heart chronic disease.
format thesis
qualification_name
qualification_level Doctorate
author Abdulniser Khald Hamzah
author_facet Abdulniser Khald Hamzah
author_sort Abdulniser Khald Hamzah
title Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)
title_short Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)
title_full Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)
title_fullStr Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)
title_full_unstemmed Prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (IR)
title_sort prioritization methodology for a large scale of remote patients: a case study of chronic heart disease (ir)
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Seni, Komputeran dan Industri Kreatif
publishDate 2018
url https://ir.upsi.edu.my/detailsg.php?det=4497
_version_ 1747833128104230912