Modeling Malaysian road accidents:the structural time series approach
Modeling the number of road accidents occurrence is a quite common topicin recent years. A number of studies have been developed with the aim to find thebest model that gives better prediction. However, statistical patterns such as trendand seasonality of road accidents is rarely observed. Estimatin...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2018
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=5248 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:5248 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
HE Transportation and Communications |
spellingShingle |
HE Transportation and Communications Noor Wahida Md Junus Modeling Malaysian road accidents:the structural time series approach |
description |
Modeling the number of road accidents occurrence is a quite common topicin recent years. A number of studies have been developed with the aim to find thebest model that gives better prediction. However, statistical patterns such as trendand seasonality of road accidents is rarely observed. Estimating the pattern of trendand seasonal will indirectly provide a better impact on prediction system.Traditionally, estimation of trend and seasonal patterns are made based ondecomposition method. Yet, this type of estimation shows intangible predictions asthe estimation are based on deterministic form. Therefore, structural time series(STS) approach is proposed to model the trend and seasonal pattern of road accidentsoccurrence. The STS approach offered a direct interpretation and allowed the timeseries component including trend and seasonal to vary over time. In this thesis theroad accidents model is developed using the STS approach with the aim to observethe pattern of trend and seasonality of road accidents occurrence. This thesis wasdone on all 5 main regions and 14 states in Malaysia. The study further enhanceinvestigation on road accidents influences at different locations with appropriateexplanatory variables. There are 8 explanatory variables considered in this study,which includes four climate variables, two economic variables, seasonal relatedvariable and safety related variable. Effectiveness of the model is measured bycomparing their prediction and forecasting performance with time series regression(TSR) and seasonal autoregressive integrated moving average (SARIMA) models.The study found that the trend and seasonal patterns of road accidents occurrencevary in different locations. The number of accidents was estimated to be higherduring festival seasons especially in non-developing states. Besides, the specialfeatures of the stochastic behavior of road accidents pattern is also observed. Duringthe study period, the pattern of road accidents is fluctuate between increasing anddecreasing. Similarly, the influence of road accidents in different locations alsovaries. In terms of the prediction and forecasting performance, STS gave morereliable prediction and forecasting compared to TSR and SARIMA models. |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Noor Wahida Md Junus |
author_facet |
Noor Wahida Md Junus |
author_sort |
Noor Wahida Md Junus |
title |
Modeling Malaysian road accidents:the structural time series approach |
title_short |
Modeling Malaysian road accidents:the structural time series approach |
title_full |
Modeling Malaysian road accidents:the structural time series approach |
title_fullStr |
Modeling Malaysian road accidents:the structural time series approach |
title_full_unstemmed |
Modeling Malaysian road accidents:the structural time series approach |
title_sort |
modeling malaysian road accidents:the structural time series approach |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2018 |
url |
https://ir.upsi.edu.my/detailsg.php?det=5248 |
_version_ |
1747833175534469120 |
spelling |
oai:ir.upsi.edu.my:52482020-09-21 Modeling Malaysian road accidents:the structural time series approach 2018 Noor Wahida Md Junus HE Transportation and Communications Modeling the number of road accidents occurrence is a quite common topicin recent years. A number of studies have been developed with the aim to find thebest model that gives better prediction. However, statistical patterns such as trendand seasonality of road accidents is rarely observed. Estimating the pattern of trendand seasonal will indirectly provide a better impact on prediction system.Traditionally, estimation of trend and seasonal patterns are made based ondecomposition method. Yet, this type of estimation shows intangible predictions asthe estimation are based on deterministic form. Therefore, structural time series(STS) approach is proposed to model the trend and seasonal pattern of road accidentsoccurrence. The STS approach offered a direct interpretation and allowed the timeseries component including trend and seasonal to vary over time. In this thesis theroad accidents model is developed using the STS approach with the aim to observethe pattern of trend and seasonality of road accidents occurrence. This thesis wasdone on all 5 main regions and 14 states in Malaysia. The study further enhanceinvestigation on road accidents influences at different locations with appropriateexplanatory variables. There are 8 explanatory variables considered in this study,which includes four climate variables, two economic variables, seasonal relatedvariable and safety related variable. Effectiveness of the model is measured bycomparing their prediction and forecasting performance with time series regression(TSR) and seasonal autoregressive integrated moving average (SARIMA) models.The study found that the trend and seasonal patterns of road accidents occurrencevary in different locations. The number of accidents was estimated to be higherduring festival seasons especially in non-developing states. Besides, the specialfeatures of the stochastic behavior of road accidents pattern is also observed. Duringthe study period, the pattern of road accidents is fluctuate between increasing anddecreasing. Similarly, the influence of road accidents in different locations alsovaries. In terms of the prediction and forecasting performance, STS gave morereliable prediction and forecasting compared to TSR and SARIMA models. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=5248 https://ir.upsi.edu.my/detailsg.php?det=5248 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdul Manan, M. M., ?onsson, T., & Varhelyi, A. (2013). Development of a safetyperformance function for motorcycle accident fatalities on Malaysian primaryroads. Safety Science, 60, 13-20. https:lldoi.org/10.l016/j.ssci.2013.06.005Abdul Manan, M. M., & Varhelyi, A. (2012). Motorcycle fatalities in Malaysia.IATSS Research, 36(1), 30-39. https:lldoi.org/lO.l016/j.iatssr.2012.02.005Abusini, S. (2013). The effect of road characteristics on motorcycle accident in BatuEast Java Indonesia. In International Conference on Mathematical Sciences andStatistics 2013 (ICSMS 2013) (Vol. 241, pp. 241-246).https:lldoi.org/l0.l06311.4823912Aderamo, A. J. (2012a). Assessing the Trends in Road Traffic Accident Casualtieson Nigerian Roads. Journal ofSocial Sciences, 31(3), 19-25.Aderamo, A. J. (2012b). Spatial pattern of road traffic accident casualties in Nigeria.Mediterranean Journal of Social Sciences, 3 (May), 61-72.https:lldoi.org/l0.5901/mjss.2012.v3n2.61Aderamo, A. J., & Olatujoye, S. (2013). Trends motorcycle accidents in Lokoja,Nigeria. European Journal ofScience and Technology, 2(6), 251-261.Ali, G. A., & Bakheit, C. S. (2011). Comparative analysis and prediction of trafficaccidents in Sudan using artificial neural netwrok and statistical method. InProceedings of the 30th Southern African Transport Conference (SATC 2011).202-214.Allen, K. (1999). A structural time series approach to the reconstruction ofTasmanian maximum temperatures. Environmental Modelling & Software, 14,261-274.Amin, M. S. R., Zareie, A., & Amador-Jimenez, L. E. (2014). Climate changemodeling and the weather-related road accidents in Canada. TransportationResearch Part D: Transport and Environment, 32(2014), 171-183.https:lldoi.org/lO.l016/j.trd.2014.07.012Andreassen, D. (1985). Linking deaths with vehicles and population. TrafficEngineering & Control, 26(11), 547-549.Andrews, R. L. (1994). Forecasting performance of structural time series models.Journal of Business & Economic Statistics 12(1) 129-133https:lldoi.org/10.l080/07350015.1994.l0509996 ' , .Antoniou, C., Papadimitriou, E., & Yannis, G. (2014). Road safety forecasts in fiveEuropean countries using structural time series models. Traffic InjuryPrevention, 15(6), 598-605. https:lldoi.org/10.1080/15389588.2013.854884Antoniou, C., & Yannis, G. (2013). State-space based analysis and forecasting ofmacroscopic road safety trends in Greece. Accident Analysis and Prevention,60,268-276. https:lldoi.org/10.1016/j.aap.2013.02.039Athanasopoulos, G., Hyndman, R. J., Song, H., & Wu, D. C. (2011). The tourismforecasting competition. International Journal ofForecasting, 27,822-844.Bergel-Hayat, R., D ebbarh, M., Antoniou, C., & Yannis, G. (2013). Explaining theroad accident risk: Weather effects. Accident Analysis & Prevention, 60, 456-465. https:lldoi.org/10.1016/j.aap.2013.03.006Bergel-Hayat, R., & Zukowska, J. (2014). Structural time series modelling of thenumber of road fatalities in Poland in relation with economic factors. In TRA5th conference, Paris, 14-17 April 2014.Box, G. E. P., & Jenkins, J. M. (1976). Time series analysis: Forecasting andcontrol. Holden-Day, San Francisco, CA.Brien, R. M. O. (2007). A Caution regarding rules of thumb for variance inflationfactors. Quality &Quantity, 41, 673-690. https:lldoi.org/10.l007/s11135-006-9018-6Brijs, T., Karlis, D., & Wets, G. (2008). Studying the effect of weather conditions ondaily crash counts using a discrete time-series model. Accident; Analysis andPrevention, 40(3),1180-90. https:lldoi.org/10.1016/j.aap.2008.01.001Broadstock, D. C., & Collins, A. (2010). Measuring unobserved prices using thestructural time-series model: The case of cycling. Transportation Research PartA: Policy and Practice, 44(4), 195-200.https:lldoi.org/10.1016/j.tra.2010.01.002Bun, E. (2012). Road traffic accidents in Nigeria: A public helath problem. ShortCommunication, 3(2), 1-3.Caliendo, C., Guida, M., & Parisi, A. (2007). A crash-prediction model for multilaneroads. Accident Analysis & Prevention, 39(4), 657-670.https:lldoi.org/10.1016/J.AAP.2006.10.012Chang, L.-Y., & Chen, W.-C. (2005). Data mining of tree-based models to analyzefreeway accident frequency. Journal of Safety Research, 36(4), 365-375.https:lldoi.org/10.1016/J.JSR.2005.06.013Chang, Y. S. (2014). Comparative analysis of long-term road fatality targets forindividual states in the US-An application of experience curve models.Transport Policy, 36, 53-69. https:lldoi.org/10.1016/j.tranpo1.2014.07.005Commandeur, J. J. F., Koopman, S., & Koo. (2007). An introduction to state spacetime series analysis. United State: Oxford University Press.Commandeur, J. J. F., Wesemann, P., Bijleveld, F., Chhoun, V., & Sann, S. (2017).Setting Road Safety Targets in Cambodia: A Methodological DemonstrationUsing the Latent Risk Time Series Model. Journal ofAdvanced Transportation,2017(January), 1-9. https:lldoi.org/10.1155/2017/5798174Commandeur, J., & Koopman, S. (2007). An introduction to state space time seriesanalysis. United State: Oxford University Press.Cowpertwait, P. S. P., & Metcalfe, A. V. (2009). Time series data. In Introductorytime series with R. New York, NY: Springer New York.https:lldoi.org/l0.1007/978-0-387-88698-5_1Desai, M. M., & Patel, A.. (2011). Road accidents study based on regression model:A case study of Ahmedabad City, National Conference on Recent Trends inEngineering & Technology (May), 1-8.Dilaver, Z., & Hunt, L. C. (2011). Industrial electricity demand for Turkey: Astructural time series analysis. Energy Economics, 33(3), 426-436.https:lldoi.org/l0.1016/j.eneco.2010.10.001Dordonnat, V., Koopman, S. J., & Ooms, M. (2012). Dynamic factors in periodictime-varying regressions with an application to hourly electricity loadmodelling. Computational Statistics & Data Analysis, 56(11), 3134-3152.https:lldoi.org/l0.1016/j.csda.2011.04.002Dordonnat, V., Koopman, S. J., Ooms, M., Dessertaine, A., & ?ollet, J. (??08). Anhourly periodic state space model for modelling F.rench national electricity load.International Journal of Forecasting, 24(4), 566-587.https:lldoi.org/10.1016/j.ijforecast.2008.08.010Durbin, J., & Koopman, S. J. (2012). Time Series Analysis by State Space Methods:Second Edition. OUP Oxford. Retrieved fromhttps:/lbooks.google.comlbooks?id=IGyshsfkLrIC&pgis=lDurbin, J., & Koopman, S. J. S .. (2012). Time Series Analysis by State SpaceMethod (2nd ed.). London: Oxford University Press.Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squaresregression: I. Biometrika, 37, 409-428. https:lldoi.org/10.2307/2332391Durbin, J., & Watson, G. S. (1951). Testing for serial correlation in least squaresregression. II. Biometrika, 38, 159-178. https:lldoi.org/10.2307/2332325Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squaresregression: III. Biometrika, 58, 1-19. https:lldoi.org/10.2307/2332391Eisenberg, D. (2004). The mixed effects of precipitation on traffic crashes. AccidentAnalysis & Prevention, 36(4), 637-647. https:lldoi.org/10.1016/S0001-4575(03)00085-XFreeman, S. N., & Kirkwood, G.. (1995). On a structural time series method forestimating stock biomass and recruitment from catch and effort data. FisheriesResearch, 22, 77-98.Fridstrem, L., Ifver, J., Ingebrigtsen, S., Kulmala, R., & Thomsen, L. K. (1995).Measuring the contribution of randomness, exposure, weather, and daylight tothe variation in road accident counts. Accident Analysis & Prevention, 27(1), 1-20. https:lldoi.org/l0.l016/0001-4575(94)E0023-EFriend, D. (1976). How to study statistics. Education + Training, 18(8), 230-236.https:lldoi.org/l0.1108/eb016420Greibe, P. (2003). Accident prediction models for urban roads. Accident Analysis andPrevention, 35(May 2001),273-285.Gujarati, D. N. (2003). Basic econometrics. McGraw Hill.Hakim, S. (1991). A critical review of macro models for Road Accidents, 23(5),379-400.Hannonen, M. (2005). An analysis ofland prices: A structural time series approach.International Journal of Strategic Property Management 9(3), 145-172.https:lldoi.org/l0.l08011648715X.2005.9637534 'Hamen, S., Wo?g, S.. V, & Hashim, W. 1. W. (2006). Motorcycle accident predictionmodel for junctions on urban roads in Malaysia. Advances in TransportationStudies an International Journal, 8, 31-40.Harrison, P .. , & Stevens, C .. (1976). Bayesian forecasting. Journal of the RoyalStatistical Society. , (Series B). Retrieved fromhttps:llwww.jstor.org/stable/2984970?seq=l#page_scan_tab_contentsHarrison, P. J., & Stevens, C. F. (1971). A bayesian approach to short-termforecasting. Journal of the Operational Research Society, 22(4), 341-362.https:lldoi.org/l0.l057/jors.1971.78Harvey, A. (2006a). Chapter 7 Forecasting with Unobserved Components TimeSeries Models. Handbook of Economic Forecasting, 1, 327-412.https:lldoi.org/10.1016/S1574-0706(05)01007-4Harvey, A. (2006b). Trend Analysis. In Encyclopedia ofEnvironmetrics, Chichester,UK: John Wiley & Sons, Ltd. https:lldoi.org/l0.l002/9780470057339.vat025Harvey, A. . (1989). Forecasting, Structural Time Series Models and the KalmanFilter. Cambridge University Press. Retrieved fromhttps:/Iwww.amazon.comiF orecasting-Structural-Mode1s-KalmanFilter/dp/0521405734Harvey, A. C., & Durbin, J. (1986). The effects of seat belt legislation on Britishroad casualties: A case study in structural time series modelling. Journal ofRoyal Statistical Society, 149(3), 187-227.Harvey, A. C., & Shephard, N. (1993). Structural time series models, Handbook ofStatistics (11),261-302.Hermans, E., Wets, G., & Van den Bossche, F. (2006). The frequency and severity ofroad traffic accidents investigated on the basis of state space methods. Journalof Transport Statistics, 9(1), 63-76.Houston, D. J. (2007). Are helmet laws protecting young motorcyclists? Journal ofSafety Research, 38(3), 329-336. https:lldoi.org/l0.1016/j.jsr.2007.05.002Jalles, J..T. (2009). Structural time series models and the Kalman filter: A conciserevzew.Janes, J. (l?95). Desc?ptive statistics: where they sit and how they fall. Library HiTech Library Review Management Research Review, 17(3),402--409. Retrievedfrom http://dx.doi.org/10.1108/07378839910303063Kalman, R. . (1960). A New Approach to linear filtering and prediction problems.Journal ofBasic Engineering, 82.Karlis, D., & Hermans, E. (2012). Time series models for road safety accidentprediction, 27.Keay, K., & Simmonds, I. (2006). Road accidents and rainfall in a large Australiancity. Accident Analysis and Prevention, 38 (January 2005), 445--454.https:lldoi.org/10.l016/j.aap.2005.06.025Kim, J. H., Wong, K., Athanasopoulos, G., & Liu, S. (2011). Beyond pointforecasting: Evaluation of alternative prediction intervals for tourist arrivals.International Journal of Forecasting, 27(3), 887-901.https:lldoi.org/10.1016/j.ijforecast.2010.02.014Kitagawa, G., & Gersch, W. (1996). Smoothness Priors Analysis ofTime Series (Vol.116). New York, NY: Springer New York. https:lldoi.org/10.1007/978-1-4612-0761-0Knape, J., Jonz, N., Sk, M., & Sokolov, L. (2009). Modeling demographic processesin marked populations. Environmental and Ecological Statistics (3) 59-79.https:lldoi.org/10.1007/978-0-387-78151-8Koopman, S. J., Harvey, A.. , Doornik, J. A., & Shephard, N. (2006). Structural TimeSeries Analyser Modeller and Predictor STAMP 7. London: TimberlakeConsultants Ltd.Krieg, S., & van den Brakel, J. a. (2012). Estimatio? of the m?nthly.une?ployrnentrate for six domains through structural time senes modelling WIth comtegratedtrends. Computational Statistics & Data Analysis, 56(10), 2918-2933.https:lldoi.org/10.1016/j.csda.2012.02.008Lassarre, S. (2001). Analysis of progress in road safety in ten European countries.Accident Analysis and Prevention, 33(6), 743-751.https:lldoi.org/l0.l016/S0001-4575(00)00088-9Law, T. ?., No.land, R. B., & Evans, A. W. (2008). Model factors associated with therelaho?shiP between motorcycle deaths and economic growth. AccidentAnalysis and Prevention, xxx. https:lldoi.orgl10.1016/j.aap.2008.11.005Law, T. H., Umar, R. S. R., Zulkaurnain, S., & Kulanthayan, S. (2005). Impact of theeffect of economic crisis and the targeted motorcycle safety programme onmotorcycle-related accidents, injuries and fatalities in Malaysia. InternationalJournal of Injury Control and Safety Promotion, 12(1), 9-21.https:lldoi.orgll0.l080/17457300512331339166Lawson, A. R., Ghosh, B., & Broderick, B. (2011). Prediction of traffic-relatednitrogen oxides concentrations using Structural Time-Series models.Atmospheric Environment, 45(27), 4719-4727.https:lldoi.orgl10.1016/j.atmosenv.2011.04.053Lazim, M. A. (2005). Introductory Business Forecasting a Practical Approach. ShahAlam: Pusat Penerbitan Universiti(UPENA) UiTM.Lipfert, F. W., & Murray, C. J. (2012). Air pollution and daily mortality: A newapproach to an old problem. Atmospheric Environment, 55, 467-474.https:lldoi.orgl10.1016/j.atmosenv.2012.03.013Majed, M. J. (2012). Apabila musim cuti sekolah, kemalangan jalan raya punmeningkat. Utusan Malaysia.Mann, P. S. (2004). Introductory Statistics: Using Technology (FIFTH EDIT).Wiley. Retrieved from http://www.amazon.comiIntroductory-Statistics-Technology-Prem-Mannidp/0471473243Mehmood, A., Moin, A., Khan, 1. Q., Mohammad Umer, M., & Rashid, J. (2015).Vulnerable road users are at greater risk during Ramadan - results from roadtraffic surveillance data. Journal of the Pakistan Medical Association, 65(3),287-291.Moges, H., & Woldeyohannes, S. (2014). Trends and projecti.on? of ve?icle cr?shrelated fatalities and injuries in Northwest Gondar, Ethiopia: A time senesanalysis. International Journal ofEnvironmental Health Engineering, 3(1), 30.https:lldoi.orgl10.4103/2277-9183.139752Mohammadian, M., Packzad, R., Salehiniya, H., Khazaie, S., Ne?atollahi, S.,Pishkuhi, M. A., & Hafshejani, A. M. (2015). Seas?nal Patt.ern III Occurrenceand In-hospital fatality rate from Traffic ACCidents III Isfahan, Iran.International Journal ofEpidemiologic Research, 2(3), 126-133.Montgomery: D. C., Peck, E. A., & Vining, G. G. (2001). Introduction to LinearRegression Analysis (Third Edit). Canada: John Wiley & Sons.Moosa,1. A. (1999): Cyclical output, cyclical unemployment, and Okun's coefficientA. structural time series approach. International Review of Economics &Fznance, 8(3), 293-304. https:lldoi.orglI0.1016/S1059-0560(99)00028-3Moosa, 1. A. (2000). A structural time series test of the monetary model of exchangerates under the German hyperinflation. Journal of International FinancialMarkets, Institutions and Money, 10(2), 213-223.https:lldoi.orglI0.l016/S1042-4431(99)00033-5Mukaka, M. M. (2012). Statistics comer: A guide to appropriate use of correlationcoefficient in medical research. Malawi Medical Journal: The Journal ofMedical Association of Malawi, 24(3), 69-71. Retrieved fromhttp://www.ncbi.nlm.nih.gov/pubmed/23638278Muscatelli, V. A., & Tirelli, P. (2001). Unemployment and growth: some empiricalevidence from structural time series models. Applied Economics, 33, 1083-. 1088. https:lldoi.orglI0.l080100036840010003276Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journalofthe American Statistical Association, 55(290), 299-306.Nanga, S. (2016). Time Series Analysis of Road Accidents in Ghana. DamaInternational Journal of Researchers , 878(6), 2343-6743. Retrieved fromhttp://www.damaacademia.comlissue/volumel/issue61DIJR-JU-007.pdfNasaruddin, N., Wah, Y. B., & Voon, W. S. (2012). Fatality prediction model formotorcycle accidents in Malaysia. In Statistics in Science, Business, andEngineering (ICSSBE), 2012 International Conference (pp. 1-6).Nasr, M. (2009). Methods ofForecasting Deaths due to Road Accidents in Pakistan.Comsats University of Technology in Islamabad, PakistanNerlove, M., & Wage, S. (1964). On the optimality of adaptive forecasting.Management Science, 10(2),207-224. https:lldoi.orgll0.1287/mnsc.10.2.207Noland, R. B. (2003). Traffic fatalities and injuries: the effect of changes ininfrastructure and other trends. Accident; Analysis and Prevention, 35(4), 599-611. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12729823Ofori, T:, Ac??, s., ? Ephraim, L. (2012). Statistical models for forecasting roadaC:ldent mjunes In Ghana. International Journal ofResearch in EnvironmentalSciences and Technology, 2, 143-149.Peltzman, S. (1975). The effects of automobile safetyregulation. Journal ofPoliticalEconomy, 83(4), 677-726.Ponnaluri, R. V. (2012). Modeling road traffic fatalities in India: Smeed's law timeinvariance and regional specificity. IATSS Research, 36, 75-82.'Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time seriesforecasting: an application to international tourism demand, 19, 435---451.https://doi.org/10.1016/S0169-2070(02)00057-2Quddus, M. A (2008). Time series count data models: An empirical application totraffic accidents. Accident Analysis & Prevention, 40(5), 1732-1741.https://doi.org/l0.l016/j.aap.2008.06.011Radin Umar, R., Murray, G. M., & Brian, L. H. (1996). Modelling of conspicuityrelatedmotorcycle accidents in Seremban and Shah Alam, Malaysia. AccidentAnalysis and Prevention, 28(3), 325-332.Radin Umar, R. S. (1998). Model kematian jalan raya di Malaysia: Unjuran tahun2000. Pertanika J Sci. & Technol, 108(62), 107-119. Retrieved fromhttp://psasir. upm.edu.my/3430/1/Model_Kernatian_Jalan_ Raya_ di_Malaysia.pdfRazzaghi, A, Bahrampour, A., Baneshi, M. R., & Zolala, F. (2013). Assessment oftrend and seasonality in road accident data: An Iranian case study. InternationalJournal ofHealth Policy and Management, 1(1), 51-55.Rosenberg, B. (1973). Random coefficients models: The analysis of a cross sectionof time series by stochastically convergent parameter regression. Annals ofEconomic and Social Measurement, 24.Salako, R. J., Adegoke, B. 0., & Akanmu, T. A. (2014). Time series analysis formodeling and detecting seasonality pattern of auto-crash cases recorded atfederal road safety commission, Osun Sector command (RS 111), Osogbo.International Journal of Engineering and Advanced Technology Studies, 2(4),25-34.Sarani, R., Hashim, H. H., Wan Yaacob, W. F., Mohamed, N., & Radin Sohadi, R.U. (2013). The effect of rear seatbelt advocacy and law enforcement in reducinginjuries among passenger vehicle. International Journal of Public HealthResearch, 3(1), 267-275.Sarani, R., ?harifah Allya??, S. M.. , Jamilah, M.. , & Wong, S .. (2012). PredictingMalaysian road fatalities for year 2020. Malaysian Institute of Road SafetyResearch (Vol. MRR 06/201). Kuala Lumpur.Schweppe, F. (1965). Evaluation oflikelihood functions for Gaussian signals. IEEETransactions on Information Theory, 11(1), 61-70.https:lldoi.org/10.1109/TIT.1965.1053737Scott, P. (1983). Variations in two-vehicle accident frequencies, 1970-1978.Crowthorne, Berkshire. Retrieved fromhttp://trove.nla.gov.aulworkl21890540?selectedversion=NBD3084871Scott, P. P. (1986). Modelling time series of British road accidents data. AccidentAnalysis and Prevention, 18(2), 109-117.Scuffham, P. A., & Langley, J. D. (2002). A model of traffic crashes in NewZealand. Accident Analysis & Prevention, 34(5), 673-687.https:lldoi.org/10.1016/S0001-4575(01)00067-7Shahid, S., Minhans, A, Che Puan, 0., Hasan, S. A, & Ismail, T. (2015). Spatial andtemporal pattern of road accidents and casualties in Peninsular Malaysia. JurnalTekn 0 logi, 76(14), 57-65. https:lldoi.org/10.11113/jt.v76.5843Shankar, V., Mannering, F., & Barfield, W. (1995). Effect of roadway geometriesand environmental factors on rural freeway accident frequencies. AccidentAnalysis & Prevention, 27(3), 371-389. https:lldoi.org/10.1016/0001-4575(94)00078-ZShepherd, B. (2006). Estimating price elasticities of supply for cotton: A structuraltime-series approach. Paris.Shuja, N., Lazim, M. A., & Wah, Y. B. (2007). Moving Holiday Effects Adjustmentfor Malaysian Economic Time Series. Department ofStatistics.Singh, D. P., Thakur, A K., & Ram, D. S. (2014). Application of structural timeseries model for forecasting Gram production in India. American InternationalJournal of Research in Science Technology, Engineering_ ? MathematicsAIJRSTEM, 14(133),2328-3491. Retrieved from http://www.IasIf.netSmeed, R. J. (1 ?4?). Some statistical aspects of road safety research. Journal of theRoyal Statl?tlcal Society. Series A (General), 112(1), 1-34. Retrieved fromhttp://www.J stor.orglstable/29841 77Song, ?., Li, G:, Wit?, S. F., .& Athanasopoulos, G. (2011). Forecasting touristamvals usmg time-varying parameter structural time series models.Internati?nal Journal of Forecasting, 27(3), 855-869.https://dOl.orgl10.1016/j.ijforecast.2010.06.001Stipdonk:, R. . (2008). Time series applications on road safety developments inEurope. Deliverable D7.10 of the EU FP6 Project SafetyNet. Contract, (May2004), 1-154.SWOV. (2012). SWOV Fact Sheet- The Influence of Weather on Road Safety.Leidschendam, Netherlands. Retrieved fromhttps:llwww.swov.nllrapport/Factsheets/uKlFS_Influence_of_weather.pdfTheil, R., & Wage, S. (1964). Some observation on adaptive forecasting. Manag. Sci,10, 198-206.Thury, G., & Witt, S. F. (1998). Forecasting industrial production using structuraltime series models. Omega, 26(6), 751-767. https:lldoi.orgll0.l016/S0305-0483(98)00024-3Usman, T., Fu, L., & Miranda-moreno, L. F. (2010). Quantifying safety benefit ofwinter road maintenance: Accident frequency modeling. Accident Analysis andPrevention, 42(6), 1878-1887. https:lldoi.orgl10.1016/j.aap.2010.05.008Valli, P. P. (2005). Road accident models for large metropolitan cities of India.IATSS Research, 29(1), 57-65.Wan Yaacob, W. F., Lazim, M. A., & Bee Wah, Y. (2010). Evaluating spatial andtemporal effects of accidents likelihood using random effects panel countmodel. In International Conference on Science and Social Research (CSSR2010) (pp. 960-964).Wan Yaacob, W. F., Lazim, M. A., & Bee Wah, Y. (2011a). Applying fixed effectpnel count model to examine road accident occurence. Journal of AppliedSciences, 11(7), 1185-1191.Wan Yaacob, W. F., Lazim, M. A., & Bee Wah, Y. (2012). Modeling road accidentsusing fixed effects model: Condition?l ve:sus unconditional model. InProceeding ofthe World Congress on Engineering (Vol. I).Wan Yaacob, W. F., Wan Husin, W. Z., Abd Aziz, N., & Nordin, N. 1. (2011b). Anintervention model of road accidents: The case of OPS Sikap. Journal ofApplied Sciences, 11(7), 1105-1112.Wang, G., & Getz, L. L. (2007). State-space models for stochastic and seasonalfluctuations of vole and shrew populations in east-central Illinois. EcologicalModelling, 207(2-4), 189-196. https:lldoi.orgl10.1016/j.ecolmode1.2007.04.026Welch, G., & Bishop, G. (2006). An Introduction to the Kalman Filter, UNC-ChapelHill, TR 95-041, 1-16.West, M., & Harrison, P. J. (1986). Monitoring and Adaptation in BayesianForecasting Models. Journal ofthe American Statistical Association, 81(395).Wooldridge, J. M. (2006). Introductory Econometrics: A Modern Approach (6Edition). Boston, USA: Cengage Learning.Young, P. C. (1984). Recursive estimation and time-series analysis: An introduction.Springer-Verlag.Zheng, X., & Basher, R. E. (1999). Structural time series models and trend detectionin global and regional temperature series. American Meteorology Society, 2347-2358.Zlatoper, T. J. (1984). Regression analysis of time series data on motor vehicle deathin the United States. Journal of Transport Economics and Policy, 18(3), 263-273. |