Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites

This research aimed to modify and examine the role of new graphene-compatiblesurfactants and the mechanism in the stabilisation of graphene incorporated intobiopolymer matrix namely natural rubber latex (NRL) and cellulose for thepreparation of conductive nanocomposites. The surfactants were systema...

Full description

Saved in:
Bibliographic Details
Main Author: Tretya Ardyani
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=5363
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:5363
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QD Chemistry
spellingShingle QD Chemistry
Tretya Ardyani
Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
description This research aimed to modify and examine the role of new graphene-compatiblesurfactants and the mechanism in the stabilisation of graphene incorporated intobiopolymer matrix namely natural rubber latex (NRL) and cellulose for thepreparation of conductive nanocomposites. The surfactants were systematicallydesigned and synthesised to have enhanced compatibility with graphene as compared to commerciallyavailable common surfactants. The modifications are centred on variation of surfactantchain degree as well as aromatic numbers on surfactant tail, aromatisation on surfactantheadgroup, ion exchange of hydrophilic headgroup, and metal incorporation on surfactantheadgroup. The graphene-compatible surfactants have been investigated by a range oftechniques including proton nuclear magnetic resonance (H NMR) spectroscopy, air water(a/w) surface tension measurement, and zeta potential measurement. The performance of thesynthesised surfactants for the dispersion of graphene in biopolymer was studied by fieldemission scanning electron microscopy (FESEM), high-resolution transmission electronmicroscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). The electricalconductivities of the nanocomposites were also measured using four point probemeasurement. The aggregated structures of surfactants in aqueous phase and in graphenedispersion were examined using small-angle neutron scattering (SANS) analysis. Researchfinding showed that aromatisation is a crucial factor influencing surfactant compatibility withgraphene surfaces where the intensity is enhanced with increasing the number of aromaticgroups on surfactant molecular structure. The synthesised surfactants exhibit more uniformdispersion of graphene compared to commercial surfactants used in this study. Thehighest electrical conductivity achieved for nanocomposite with NRL was 1.08 x 10? S cm?while for cellulose was2.71 x 10?? S cm?. Analysis using SANS showed that the most efficient surfactants for bothnanocomposites exhibited micelle shape similar with graphene which are stacked-disk andlayered structure. In conclusion, the presence of higher aromatic groups in thesurfactant structure gives rise to relative graphene-compatibility and thus thenanocomposites final properties. In implication, the results obtained are beneficial forthe development efficient surfactants for carbon nanomaterial and low-dimensional nanomaterial based technology.
format thesis
qualification_name
qualification_level Doctorate
author Tretya Ardyani
author_facet Tretya Ardyani
author_sort Tretya Ardyani
title Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
title_short Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
title_full Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
title_fullStr Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
title_full_unstemmed Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
title_sort modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=5363
_version_ 1747833183607455744
spelling oai:ir.upsi.edu.my:53632020-11-17 Modification of surfactant chemical structure for graphene/biopolymer conductive nanocomposites 2019 Tretya Ardyani QD Chemistry This research aimed to modify and examine the role of new graphene-compatiblesurfactants and the mechanism in the stabilisation of graphene incorporated intobiopolymer matrix namely natural rubber latex (NRL) and cellulose for thepreparation of conductive nanocomposites. The surfactants were systematicallydesigned and synthesised to have enhanced compatibility with graphene as compared to commerciallyavailable common surfactants. The modifications are centred on variation of surfactantchain degree as well as aromatic numbers on surfactant tail, aromatisation on surfactantheadgroup, ion exchange of hydrophilic headgroup, and metal incorporation on surfactantheadgroup. The graphene-compatible surfactants have been investigated by a range oftechniques including proton nuclear magnetic resonance (H NMR) spectroscopy, air water(a/w) surface tension measurement, and zeta potential measurement. The performance of thesynthesised surfactants for the dispersion of graphene in biopolymer was studied by fieldemission scanning electron microscopy (FESEM), high-resolution transmission electronmicroscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). The electricalconductivities of the nanocomposites were also measured using four point probemeasurement. The aggregated structures of surfactants in aqueous phase and in graphenedispersion were examined using small-angle neutron scattering (SANS) analysis. Researchfinding showed that aromatisation is a crucial factor influencing surfactant compatibility withgraphene surfaces where the intensity is enhanced with increasing the number of aromaticgroups on surfactant molecular structure. The synthesised surfactants exhibit more uniformdispersion of graphene compared to commercial surfactants used in this study. Thehighest electrical conductivity achieved for nanocomposite with NRL was 1.08 x 10? S cm?while for cellulose was2.71 x 10?? S cm?. Analysis using SANS showed that the most efficient surfactants for bothnanocomposites exhibited micelle shape similar with graphene which are stacked-disk andlayered structure. In conclusion, the presence of higher aromatic groups in thesurfactant structure gives rise to relative graphene-compatibility and thus thenanocomposites final properties. In implication, the results obtained are beneficial forthe development efficient surfactants for carbon nanomaterial and low-dimensional nanomaterial based technology. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=5363 https://ir.upsi.edu.my/detailsg.php?det=5363 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How toget between the sheets: a review of recent works on the electrochemical exfoliation ofgraphene materials from bulk graphite. Nanoscale, 7(16), 6944- 6956.Abdul Khalil, H. P. S., Alwani, M. S., & Omar, A. K. M. (2007). Chemical composition,anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers.BioResources, 1(2), 220-232.Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites fromsustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979.Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K.,Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillatedcellulose using various mechanical processes: a review. Carbohydrate polymers, 99,649-665.Abdul Khalil, H. P. S., Ireana Yusra, A. F., Bhat, A. H., & Jawaid, M. (2010). Cell wallultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivatedkenaf fiber. Industrial Crops and Products, 31(1), 113- 121.Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A. H., & Jawaid, M. (2010). Cell wallultrastructure, anatomy, lignin distribution, and chemical composition of Malaysiancultivated kenaf fiber. Industrial Crops and Products, 31(1), 113- 121.Adamczyk, Z., Para, G., & Warszy?ski , P. (1999). Influence of ionic strength onsurface tension of cetyltrimethylammonium bromide. Langmuir, 15(24), 8383- 8387.Agate, S., Joyce, M., Lucia, L., & Pal, L. (2018). Cellulose and nanocellulose-basedflexible-hybrid printed electronics and conductive composites-a review. Carbohydratepolymers, 198, 249-260.Aguilar-Bolados, H., Brasero, J., Lopez-Manchado, M. A., & Yazdani-Pedram, M. (2014).High performance natural rubber/thermally reduced graphite oxide nanocomposites by latextechnology. Composites Part B: Engineering, 67(0),449-454.Alanyal?o?lu, M., Segura, J. J., Or-Sol, J., & Casa-Pastor, N. (2012). Thesynthesis of graphene sheets with controlled thickness and order usingsurfactant-assisted electrochemical processes. Carbon, 50(1), 142-152.Alexander, S., Smith, G. N., James, C., Rogers, S. E., Guittard, F., Sagisaka, M., & Eastoe, J.(2014). Low surface energy surfactants with branched hydrocarbon architectures. Langmuir, 30(12),34133421.Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation,properties and uses of a new class of materials. Materials Science and Engineering: R: Reports,28(1-2), 1-63.Alila, S., Boufi, S., Belgacem, M. N., & Beneventi, D. (2005). Adsorption of acationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir, 21(18), 8106-8113.Alqus, R., Eichhorn, S. J., & Bryce, R. A. (2015). Molecular dynamics of cellulose amphiphilicityat the graphene-water interface. Biomacromolecules, 16(6), 1771-1783.An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K. M., Washington, M., Nayak, S. K., Talapatra,S., & Kar, S. (2010). Stable aqueous dispersions of noncovalently functionalizedgraphene from graphite and their multifunctional high-performance applications. Nano Letters,10(11), 4295-4301.Andrews, L. J. (1954). Aromatic molecular complexes of the electron donor-acceptor type. ChemicalReviews, 54(5), 713-776.Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y., & Ma, J. (2014). Electrically andthermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 55(1), 201-210.Aswal, V. K., & Goyal, P. S. (1998). Mixed micelles of alkyltrimethylammonium halides asmall-angle neutron-scattering study. Physica B: Condensed Matter, 245(1), 73-80.Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau,C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3),902-907.Bandyopadhyay, S., Shelley, J. C., Tarek, M., Moore, P. B., & Klein, M. L. (1998). Surfactantaggregation at a hydrophobic surface. The Journal of Physical Chemistry B, 102(33),6318-6322.Baniasadi, H., Ramazani S.A, A., Mashayekhan, S., & Ghaderinezhad, F. (2014). Preparationof conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synthetic Metals,196(0), 199-205.Bari, R., Tamas, G., Irin, F., Aquino, A. J. A., Green, M. J., & Quitevis, E. L. (2014).Direct exfoliation of graphene in ionic liquids with aromatic groups. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 463(0), 63-69.Barras, R., Cunha, I., Gaspar, D., Fortunato, E., Martins, R., & Pereira, L. (2017).Printable cellulose-based electroconductive composites for sensing elements in paperelectronics. Flexible and Printed Electronics, 2(1), 014006.Baur, J., & Silverman, E. (2007). Challenges and opportunities in multifunctionalnanocomposite structures for aerospace applications. MRS Bulletin, 32(04), 328-334.Bergstrm, M., & Pedersen, J. S. (1998). Small-angle neutron scattering (SANS) study ofaggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) anddodecyltrimethylammonium bromide (DTAB). Langmuir, 14(14), 3754-3761.Bergstrm, M., & Pedersen, J. S. (1999). Structure of pure SDS and DTAB micelles in brinedetermined by small-angle neutron scattering (SANS). Physical Chemistry Chemical Physics,1(18), 4437-4446.Berr, S. S. (1987). Solvent isotope effects on alkytrimethylammonium bromide micelles asa function of alkyl chain length. Journal of Physical Chemistry, 91(18), 4760-4765.Berr, S. S., & Jones, R. R. M. (1989). Small-angle neutron scattering from aqueous solutions of sodium perfluorooctanoate above the critical micelle concentration. The Journal ofPhysical Chemistry, 93(6), 2555-2558.Bhatnagar, A., & Sain, M. (2005). Processing of cellulose nanofiber-reinforced composites.Journal of Reinforced Plastics and Composites, 24(12), 1259- 1268.Bijma, K., Blandamer, M. J., & Engberts, J. B. F. N. (1998). Effect of counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridiniumsurfactants. 2. Microcalorimetry. Langmuir, 14(1), 79-83.Biswal, N. R., & Paria, S. (2010). Effect of electrolyte solutions on the adsorption of surfactantsat PTFE-water interface. Industrial & Engineering Chemistry Research, 49(15), 7060-7067.Bjrk, J., Hanke, F., Palma, C.-A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption ofaromatic and anti-aromatic systems on graphene through stacking. The Journal of PhysicalChemistry Letters, 1(23), 3407-3412.Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer,H. L. (2008). Ultrahigh electron mobility in suspended graphene.Solid State Communications, 146(9-10), 351-355.Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., & Stubos, A. K. (2009).Liquid-phase exfoliation of graphite towards solubilized graphenes. Small, 5(16), 1841-1845.Bowers, J., Butts, C. P., Martin, P. J., Vergara-Gutierrez, M. C., & Heenan, R. K.(2004). Aggregation behavior of aqueous solutions of ionic liquids. Langmuir, 20(6), 2191-2198.Brown, P., Bushmelev, A., Butts, C. P., Cheng, J., Eastoe, J., Grillo, I., Heenan, R. K., &Schmidt, A. M. (2012). Magnetic control over liquid surface properties with responsive surfactants.Angewandte Chemie, 124(10), 2464-2466.Brown, P., Butts, C., Dyer, R., Eastoe, J., Grillo, I., Guittard, F., Rogers, S., &Heenan, R. (2011). Anionic surfactants and surfactant ionic liquids with quaternaryammonium counterions. Langmuir, 27(8), 4563-4571.Brown, P., Butts, C. P., Eastoe, J., Fermin, D., Grillo, I., Lee, H.-C., Parker, D., Plana, D., &Richardson, R. M (2012). Anionic surfactant ionic liquids with 1-butyl- 3-methyl-imidazoliumcations: characterization and application. Langmuir, 28(5), 2502-2509.Brown, P., Butts, C. P., Eastoe, J., Grillo, I., James, C., & Khan, A. (2012). Newcatanionic surfactants with ionic liquid properties. Journal of Colloid and InterfaceScience, 395(0), 185-189.Brown, W., & Zhao, J. (1993). Adsorption of sodium dodecyl sulfate on polystyrene latex particlesusing dynamic light scattering and zeta potential measurements. Macromolecules, 26(11), 2711-2715.Brumfiel, G. (2012). Britain's big bet on graphene: Manchester institute will focus on commercialapplications of atom-thick carbon sheets. Nature, 488(7410), 140- 141.Burlatsky, S. F., Atrazhev, V. V., Dmitriev, D. V., Sultanov, V. I., Timokhina, E. N., Ugolkova, E.A., Tulyani, S., & Vincitore, A. (2013). Surface tension model for surfactant solutions at thecritical micelle concentration. Journal of Colloid and Interface Science.Buwalda, R. T., Stuart, M. C. A., & Engberts, J. B. F. N. (2000). Wormlike micellar and vesicularphases in aqueous solutions of single-tailed surfactants with aromatic counterions.Langmuir, 16(17), 6780-6786.Bystrzejewski, M., Huczko, A., Lange, H., Gemming, T., Bchner, B., & Rmmeli,M. H. (2010). Dispersion and diameter separation of multi-wall carbon nanotubes inaqueous solutions. Journal of Colloid and Interface Science, 345(2), 138-142.Carrasco, P. M., Montes, S., Garca, I., Borghei, M., Jiang, H., Odriozola, I.,Cabaero, G., & Ruiz, V. (2014). High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals.Carbon, 70(0), 157-163.Cataldi, P., Bayer, I. S., Bonaccorso, F., Pellegrini, V., Athanassiou, A., & Cingolani,R. (2015). Foldable conductive cellulose fiber networks modified by graphene nanoplatelet-bio-basedcomposites. Advanced Electronic Materials, 1(12), 1500224(1500221-1500228).Chan, A. J., Steenkeste, K., Canette, A., Eloy, M., Brosson, D., Gaboriaud, F., &Fontaine-Aupart, M.-P. (2015). Natural rubber-filler interactions: what are the parameters?Langmuir, 31(45), 12437-12446.Chan, C. H., Joy, J, Maria, H. J., & Thomas, S. (2013). Natural rubber-basedcomposites and nanocomposites: state of the art, new challenges andopportunities. In Thomas, S., Maria, H. J., Joy, J., Chan, C. H., & Pothen, L.A. (Eds.) Natural Rubber Materials: Volume 2: Composites and Nanocomposites(pp. 1 32). Cambridge: Royal Society of Chemistry.Chen, K., & Xue, D. (2014). Preparation of colloidal graphene in quantity byelectrochemical exfoliation. Journal of Colloid and Interface Science, 436(SupplementC), 41-46.Chen, Y., Zhang, B., Liu, G., Zhuang, X., & Kang, E.-T. (2012). Graphene and itsderivatives: switching ON and OFF. Chemical Society Reviews, 41(13), 4688- 4707.Chen, Y., Zhang, X., Zhang, D., Yu, P., & Ma, Y. (2011). High performancesupercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon,49(2), 573-580.Cheng, D. C. H., & Gulari, E. (1982). Micellization and intermicellar interactions in aqueoussodium dodecyl benzene sulfonate solutions. Journal of Colloid and Interface Science, 90(2),410-423.Cheng, H., Hu, C., Zhao, Y., & Qu, L. (2014). Graphene fiber: a new material platformfor unique applications. NPG Asia Mater, 6, e113.Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: solvent properties and organicreactivity. Journal of Physical Organic Chemistry, 18(4), 275-297.Cho, H. M., Gross, A. S., & Chu, J.-W. (2011). Dissecting force interactions incellulose deconstruction reveals the required solvent versatility forovercoming biomass recalcitrance. Journal of the American Chemical Society, 133(35), 14033-14041.Chua, C. K., & Pumera, M. (2013). Reduction of graphene oxide with substitutedborohydrides. Journal of Materials Chemistry A, 1(5), 1892-1898.Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a syntheticchemistry viewpoint. Chemical Society Reviews, 43(1), 291-312.Ciesielski, A., & Samori, P. (2013). Graphene via sonication assisted liquid-phaseexfoliation. Chemical Society Reviews, 43(1), 381-398.Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene.Advanced Functional Materials, 19(23), 3680-3695.Coleman, J. N. (2012). Liquid exfoliation of defect-free graphene. Accounts of ChemicalResearch, 46(1), 14-22.Collins, A. M. (2012). Nanotechnology cookbook practical, reliable and jargon-free experimentalprocedures (1?? ed.). Oxford: Elsevier.Compton, O. C., & Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, andgraphene: versatile building blocks for carbon-based materials. Small, 6(6), 711-723.Cooper, A. J., Wilson, N. R., Kinloch, I. A., & Dryfe, R. A. W. (2014). Single stageelectrochemical exfoliation method for the production of few-layer graphene via intercalation oftetraalkylammonium cations. Carbon, 66(Supplement C), 340-350.Cornish, K., Wood, D. F., & Windle, J. J. (1999). Rubber particles from four different species, examined by transmission electron microscopy and electron- paramagnetic-resonance spinlabeling, are found to consist of a homogeneous rubber core enclosed by a contiguous,monolayer biomembrane. Planta, 210(1), 85-96.Coro?, M., Pog?cean, F., Ro?u, M.-C., Socaci, C., Borodi, G., Mageru?an, L., Biri?,A. R., & Pruneanu, S. (2015). Simple and cost-effective synthesis of graphene by electrochemicalexfoliation of graphite rods. RSC Advances, 6(4), 2651- 2661.Cristadoro, A., Ai, M., Rder, H. J., Rabe, J. P., & Mllen, K. (2008). Electrical field- inducedalignment of nonpolar hexabenzocoronene molecules into columnar structures on highly orientedpyrolitic graphite investigated by STM and SFM. The Journal of Physical Chemistry C, 112(14),5563-5566.Cui, S., Canet, R., Derre, A., Couzi, M., & Delhaes, P. (2003). Characterization ofmultiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon,41(4), 797-809.Das, A., Kasaliwal, G. R., Jurk, R., Boldt, R., Fischer, D., Stckelhuber, K. W., &Heinrich, G. (2012). Rubber composites based on graphene nanoplatelets, expanded graphite,carbon nanotubes and their combination: A comparativestudy. Composites Science and Technology, 72(16), 1961-1967.Das, S., Irin, F., Tanvir Ahmed, H. S., Cortinas, A. B., Wajid, A. S., Parviz, D.,Jankowski, A. F., Kato, M., & Green, M. J. (2012). Non-covalentfunctionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer, 53(12), 2485-2494.de Heer, W. A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B.,Hankinson, J., & Conrad, E. (2011). Large area and structured epitaxial graphene producedby confinement controlled sublimation of silicon carbide. Proceedings of the National Academy ofSciences, 108(41), 16900-16905.de Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T.,Sprinkle, M., Hass, J., Sadoswki, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene.Solid State Communications, 143(1-2), 92-100.De, S., Aswal, V. K., & Ramakrishnan, S. (2010). Phenyl-ring-bearing cationicsurfactants: effect of ring location on the micellar structure. Langmuir, 26(23), 17882-17889.Derjaguin, B., & Landau, L. (1941). The theory of stability of highly charged lyophobicsols and coalescence of highly charged particles in electrolyte solutions. ActaPhysicochim, 14(633-52), 58.Di Crescenzo, A., Demurtas, D., Renzetti, A., Siani, G., De Maria, P., Meneghetti, M.,Prato, M., & Fontana, A. (2009). Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1- hexadecyl-3-vinyl-imidazolium bromidein aqueous solution. Soft Matter, 5(1), 62-66.Di Crescenzo, A., Di Profio, P., Siani, G., Zappacosta, R., & Fontana, A. (2016).Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates.Langmuir, 32(26), 6559-6570.Dez-Pascual, A. M., Valls, C., Mateos, R., Vera-Lpez, S., Kinloch, I. A., & Andrs,M. P. S. (2018). Influence of surfactants of different nature and chain length on the morphology,thermal stability and sheet resistance of graphene. Soft Matter, 14(29), 6013-6023.Doane, T. L., Chuang, C.-H., Hill, R. J., & Burda, C. (2012). Nanoparticle -potentials. Accounts of Chemical Research, 45(3), 317-326.Docherty, K. M., & Kulpa Jr, C. F. (2005). Toxicity and antimicrobial activity ofimidazolium and pyridinium ionic liquids. Green Chemistry, 7(4), 185-189.Dominguez, H. (2007). Self-aggregation of the SDS surfactant at a solid-liquidinterface. The Journal of Physical Chemistry B, 111(16), 4054-4059.Dong, B., Li, N., Zheng, L., Yu, L., & Inoue, T. (2007). Surface adsorption andmicelle formation of surface active ionic liquids in aqueous solution.Langmuir, 23(8), 4178-4182.Doucet, M., Cho, J. H., Alina, G., Bakker, J., Bouwman, W., Butler, P., Campbell,Kieran., Gonzales, M., Heenan, R., Jackson, A., Juhas, P., King, S., Kienzle, P., Krzywon, J.,Markvardsen, A., Nielsen, T., O'Driscoll, L., Potrzebowski, W., Ferraz Leal, R., Richter,T., Rozycko, P., Snow, T., & Washington, A. SasView Version 4.1.2. Retrieved June 23, 2017.https://zenodo.org/record/825675Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010).Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10(3),751-758.Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S., & Bielawski, C. W. (2011).Reduction of graphite oxide using alcohols. Journal of Materials Chemistry, 21(10), 3443-3447.Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide.Chemical Society Reviews, 39(1), 228-240.Drummond, C. J., Albers, S., & Furlong, D. N. (1992). Polymer-surfactantinteractions:(Hydroxypropyl) cellulose with ionic and ion-ionic surfactants. Colloids andsurfaces, 62(1-2), 75-85.Ducker, W. A., & Grant, L. M. (1996). Effect of substrate hydrophobicity on surfactantsurface-aggregate geometry. The Journal of Physical Chemistry, 100(28), 11507-11511.Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future.Pure and Applied Chemistry, 72(7), 1391-1398.Eastoe, J. (2003). Surfactant chemistry. Bristol: Bristol University.Eastoe, J., & Gold, S. (2005). Self-assembly in green solvents. Physical ChemistryChemical Physics, 7(7), 1352-1362.Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K., & Penfold, J. (2000). Adsorptionof ionic surfactants at the air-solution interface. Langmuir, 16(10), 4511-4518.Eastoe, J., Paul, A., Downer, A., Steytler, D. C., & Rumsey, E. (2002). Effects offluorocarbon surfactant chain structure on stability of water-in-carbon dioxide microemulsions.Links between aqueous surface tension and microemulsion stability. Langmuir, 18(8),3014-3017.Egerton, R. F. (2005). Phsyical principles of electron microscopy. New York: Springer.El Seoud, O. A., Pires, P. A. R., Abdel-Moghny, T., & Bastos, E. L. (2007). Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. Journal of Colloid and Interface Science,313(1), 296-304.Elworthy, P. H., & Mysels, K. J. (1966). The surface tension of sodiumdodecylsulfate solutions and the phase separation model of micelle formation.Journal of Colloid and Interface Science, 21(3), 331-347.Eriksson, J. C., & Ljunggren, S. (1990). Model calculations on the transitions between surfactantaggregates of different shapes. Langmuir, 6(5), 895-904.Evans, D. F., & Ninham, B. W. (1986). Molecular forces in the self-organization of amphiphiles. TheJournal of Physical Chemistry, 90(2), 226-234.Fan, W., Zhang, C., Tjiu, W. W., & Liu, T. (2013). Fabrication of electricallyconductive graphene/polystyrene composites via a combination of latex and layer-by-layerassembly approaches. Journal of Materials Research, 28(04), 611-619.Feigin, L. A., & Svergun, D. I. (1987). Structure analysis by small-angle X-ray and neutronscattering. New York: Springer.Feng, Y., Zhang, X., Shen, Y., Yoshino, K., & Feng, W. (2012). A mechanically strong,flexible and conductive film based on bacterial cellulose/graphene nanocomposite.Carbohydrate polymers, 87(1), 644-649.Fennel Evans, D., & Wennerstrom, H. (1994). The colloidal domain: Where physics, chemistry, biologyand technology meet. New York: Wiley-VCH Weinheim.Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder,electron-phonon coupling, doping and nonadiabatic effects. Solid StateCommunications, 143(1-2), 47-57.Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F.,Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). RamanSpectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401.Florio, G. M., Werblowsky, T. L., Mller, T., Berne, B. J., & Flynn, G. W. (2005). Self-assemblyof small polycyclic aromatic hydrocarbons on graphite: A combined scanning tunneling microscopy and theoretical approach. The Journal of Physical Chemistry B, 109(10),4520-4532.Food and Agricultural Organization of the United Nation: Statistic (FAOSTAT). Productionquantities of rubber by country average 1994 - 2016 (Publication). Retrieved May 31, 2018, fromFood and Agricultural Organization of theUnited Nations: http://www.fao.org/faostat/en/#data/QC.Fornes, T. D., Yoon, P. J., Hunter, D. L., Keskkula, H., & Paul, D. R. (2002). Effectof organoclay structure on nylon 6 nanocomposite morphology and properties.Polymer, 43(22), 5915-5933.Fukushima, T., & Aida, T. (2007). Ionic liquids for soft functional materials withcarbon nanotubes. Chemistry - A European Journal, 13(18), 5048-5058.Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., & Aida, T.(2003). Molecular ordering of organic molten salts triggered by single-walled carbonnanotubes. Science, 300(5628), 2072-2074.Galbraith, J. W., Giles, C. H., Halliday, A. G., Hassan, A. S. A., McAllister, D. C., Macaulay, N.,Macmillan, N. W. (1958). Adsorption at inorganic surfaces. III. The mechanism of adsorption oforganic solutes, including dyes, by graphite. Journal of Applied Chemistry, 8(7), 416-424.Galgano, P. D., & El Seoud, O. A. (2010). Micellar properties of surface active ionic liquids: Acomparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationicsurfactants. Journal of Colloid and Interface Science, 345(1), 1-11.Galgano, P. D., & El Seoud, O. A. (2011). Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison withstructurally related surfactants. Journal of Colloid and Interface Science, 361(1), 186-194.Garg, G., Hassan, P. A., Aswal, V. K., & Kulshreshtha, S. K. (2005). Tuning thestructure of SDS micelles by substituted anilinium ions. The Journal of PhysicalChemistry B, 109(4), 1340-1346.Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534. Geim, A. K.,& Novoselov, K. S. (2007). The rise of graphene. Nature Materials,6(3), 183-191.Geng, Y., Romsted, L. S., Froehner, S., Zanette, D., Magid, L. J., Cuccovia, I. M., & Chaimovich,H. (2005). Origin of the sphere-to-rod transition in cationic micelles with aromaticcounterions: specific ion hydration in the interfacial region matters. Langmuir, 21(2),562-568.George, G., Sisupal, S. J., Tomy, T., Kumaran, A., Vadivelu, P., Suvekbala, V.,Sivaram, S., & Ragupathy, L. (2018). Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparingbiocompatible polymer nanocomposites. Scientific Reports, 8(1), 11228.Ghislandi, M., Tkalya, E., Alekseev, A., Koning, C., & de With, G. (2015). Electrical conductivebehavior of polymer composites prepared with aqueous graphenedispersions. Applied Materials Today, 1(2), 88-94.Ghislandi, M., Tkalya, E., Marinho, B., Koning, C. E., & de With, G. (2013).Electrical conductivities of carbon powder nanofillers and their latex-based polymercomposites. Composites Part A: Applied Science and Manufacturing, 53(0), 145-151.Ghislandi, M., Tkalya, E., Schillinger, S., Koning, C. E., & de With, G. (2013). High performancegraphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion. CompositesScience and Technology, 80(0), 16-22.Gilje, S., Han, S., Wang, M., Wang, K. L., & Kaner, R. B. (2007). A chemical route to graphene fordevice applications. Nano Letters, 7(11), 3394-3398.Glanzer, S., & Sax, A. F. (2013). Carbon nanotubes dressed by aromatic molecules.Molecular Physics, 111(16-17), 2427-2438.Glover, A. J., Adamson, D. H., & Schniepp, H. C. (2012). Charge-driven selectiveadsorption of sodium dodecyl sulfate on graphene oxide visualized by atomic force microscopy.Journal of Physical Chemistry C, 116, 20080-20085.Goodwin, J. (2009). Colloids and interfaces with surfactants and polymers. West Sussex:John Wiley & Sons.Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Effect ofnanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatichydrocarbons. Nano Letters, 7(3), 583-587.Granite, M., Radulescu, A., & Cohen, Y. (2012). Small-angle neutron scattering from aqueousdispersions of single-walled carbon nanotubes with Pluronic F127 and poly(vinylpyrrolidone). Langmuir, 28(30), 11025-11031.Grant, L. M., Tiberg, F., & Ducker, W. A. (1998). Nanometer-scale organization of ethylene oxidesurfactants on graphite, hydrophilic silica, and hydrophobic silica. The Journal of PhysicalChemistry B, 102(22), 4288-4294.Greaves, T. L., & Drummond, C. J. (2008). Ionic liquids as amphiphile self-assembly media. ChemicalSociety Reviews, 37(8), 1709-1726.Green, A. A., & Hersam, M. C. (2009a). Emerging methods for producingmonodisperse graphene dispersions. The Journal of Physical Chemistry Letters, 1(2),544-549.Green, A. A., & Hersam, M. C. (2009b). Solution phase production of graphene with controlledthickness via density differentiation. Nano Letters, 9(12), 4031- 4036.Griffith, A., & Notley, S. M. (2012). pH dependent stability of aqueous suspensions of graphenewith adsorbed weakly ionisable cationic polyelectrolyte. Journalof Colloid and Interface Science, 369(1), 210-215.Grimme, S. (2008). Do special noncovalent stacking interactions really exist?Angewandte Chemie International Edition, 47(18), 3430-3434.Grossiord, N. (2007). A latex-based concept for making carbon nanotube/polymernanocomposites (Doctoral dissertation, Technische Universiteit Eindhoven, Netherlands). Retrieved fromhttps://pure.tue.nl/ws/files/3247483/200712265.pdfGrossiord, N., Hermant, M.-C., & Tkalya, E. (2012). Electrically conductive polymer- graphenecomposites prepared using latex technology. In V. Mittal (Ed.), Polymer-graphenenanocomposites (pp. 66-85). Cambridge: RSC Publishing.Grossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., &Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12),2866-2872.Grossiord, N., van der Schoot, P., Meuldijk, J., & Koning, C. E. (2007).Determination of the surface coverage of exfoliated carbon nanotubes by surfactantmolecules in aqueous solution. Langmuir, 23(7), 3646-3653.Grunlan, J. C., Mehrabi, A. R., Bannon, M. V., & Bahr, J. L. (2004). Water-basedsingle-walled-nanotube-filled polymer composite with an exceptionally low percolationthreshold. Advanced Materials, 16(2), 150-153.Guardia, L., Paredes, J. I., Rozada, R., Villar-Rodil, S., Martnez-Alonso, A., &Tascn, J. M. D. (2014). Production of aqueous dispersions of inorganic grapheneanalogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 4(27),14115-14127.Halle, B., Landgren, M., & Jnsson, B. (1988). The shape of ionic micelles. Journal de Physique,49(7), 1235-1259.Hassan, P. A., Fritz, G., & Kaler, E. W. (2003). Small angle neutron scattering study of sodiumdodecyl sulfate micellar growth driven by addition of a hydrotropic salt. Journal of Colloid andInterface Science, 257(1), 154-162.Hassan, P. A., Raghavan, S. R., & Kaler, E. W. (2002). Microstructural changes in SDS micellesinduced by hydrotropic salt. Langmuir, 18(7), 2543-2548.Hassan, P. A., Rana, S., & Verma, G. (2014). Making sense of Brownian motion: colloidcharacterization by dynamic light scattering. Langmuir, 31(1), 3-12.Hassan, P. A., Sawant, S. N., Bagkar, N. C., & Yakhmi, J. V. (2004). Polyanilinenanoparticles prepared in rodlike micelles. Langmuir, 20(12), 4874-4880.Hayter, J. B., & Penfold, J. (1983). Determination of micelle structure and charge by neutronsmall-angle scattering. Colloid & Polymer Science, 261(12), 1022-1030.Hazell, G., Hinojosa-Navarro, M., McCoy, T. M., Tabor, R. F., & Eastoe, J. (2016).Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up.Journal of Colloid and Interface Science, 464, 285-290.He, Y., Li, Z., Simone, P., & Lodge, T. P. (2006). Self-assembly of block copolymer micelles in anionic liquid. Journal of the American Chemical Society, 128(8), 2745-2750.Heinze, T. (2015). Cellulose: structure and properties. In O. J. Rojas (Ed.), Cellulose chemistryand properties: fibers, nanocelluloses and advanced materials (pp. 1-52). Raleigh: Springer.Hernndez, M., Bernal, M. d. M., Verdejo, R., Ezquerra, T. A., & Lpez-Manchado,M. A. (2012). Overall performance of natural rubber/graphenenanocomposites. Composites Science and Technology, 73(0), 40-46.Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2009).Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery.Langmuir, 26(5), 3208-3213.Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland,B., Byrne, M., & GunKo, Y. K. (2008). High-yield production of graphene by liquid-phaseexfoliation of graphite. Nature nanotechnology, 3(9), 563.Hollamby, M. J. (2013). Practical applications of small-angle neutron scattering.Physical Chemistry Chemical Physics, 15, 10566-10579.Holland, N. B., Ruegsegger, M., & Marchant, R. E. (1998). Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants. Langmuir, 14(10),2790-2795.Holmberg, K., Jnsson, B., Kronberg, B., & Lindman, B. (2003). Surfactants and polymersin aqueous solution (Vol. 2). Surrey: John Wiley & Sons, Ltd.Hou, M., Xu, M., & Li, B. (2018). Enhanced electrical conductivity of cellulosenanofiber/graphene composite paper with a sandwich structure. ACS SustainableChemistry & Engineering, 6(3), 2983-2990.Hsieh, A. G., Korkut, S., Punckt, C., & Aksay, I. A. (2013). Dispersion stability offunctionalized graphene in aqueous sodium dodecyl sulfate solutions. Langmuir,29(48), 14831-14838.Hsieh, A. G., Punckt, C., Korkut, S., & Aksay, I. A. (2013). Adsorption of sodium dodecylsulfate on functionalized graphene measured by conductometrictitration. The Journal of Physical Chemistry B, 117(26), 7950-7958.Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z.,Fan, S., Bloking, J. T., McGehee, M. D., Wagberg, L., & Cui, Y. (2012). Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science, 6(2),513-518.Huang, L., Wu, B., Yu, G., & Liu, Y. (2011). Graphene: learning from carbon nanotubes.Journal of Materials Chemistry, 21(4), 919-929.Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the AmericanChemical Society, 80(6), 1339-1339.Hunter, C. A., & Sanders, J. K. M. (1990). The nature of. pi.-. pi. interactions. Journal of theAmerican Chemical Society, 112(14), 5525-5534.Hunter, R. J. (1981). Zeta potential in colloid science: principles and applications(Vol. 2). London: Academic press.Imae, T. (1996). SANS investigation of supramolecular assemblies constructed in aqueousalkyldimethylamine oxide solutions with organic additives. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 109, 291-304.Imae, T., Kakitani, M., Kato, M., & Furusaka, M. (1996). Effect of organic additives orcounterions on the supramolecular assembly structures constructed by amphiphiles. Asmall-angle neutron scattering investigation. The Journal of Physical Chemistry, 100(51),20051-20055.Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fractionsurfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2),269-273.Israelachvili, J., & Pashley, R. (1982). The hydrophobic interaction is long range,decaying exponentially with distance. Nature, 300(5890), 341-342.Israelachvili, J. (2011). Intermolecular and surface forces: revised third edition.Boston: Academic Press.Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the ChemicalSociety, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.Javadian, S., Nasiri, F., Heydari, A., Yousefi, A., & Shahir, A. A. (2014). Modifying effect of imidazolium-based ionic liquids on surface activity and self- assemblednanostructures of sodium dodecyl sulfate. The Journal of Physical Chemistry B, 118(15), 4140-4150.Jiang, D.-E., Sumpter, B. G., & Dai, S. (2006). How do aryl groups attach to agraphene sheet? The Journal of Physical Chemistry B, 110(47), 23628-23632.Jiang, L., Gao, L., & Sun, J. (2003). Production of aqueous colloidal dispersions ofcarbon nanotubes. Journal of Colloid and Interface Science, 260(1), 89-94.Jiang, S., Gui, Z., Bao, C., Dai, K., Wang, X., Zhou, K., Shi, Y., Lo, S., & Hu, Y. (2013).Preparation of functionalized graphene by simultaneous reduction and surface modification andits polymethyl methacrylate composites through latex technology and melt blending.Chemical Engineering Journal, 226(0), 326-335.Jiao, J., Dong, B., Zhang, H., Zhao, Y., Wang, X., Wang, R., & Yu, L. (2012).Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids inwater. The Journal of Physical Chemistry B, 116(3), 958-965.John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate polymers,71(3), 343-364.Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose fromvarious natural resources and residues: a review. Cellulose, 22(2), 935-969.Juhu, D., & Lang, J. (1993). Effect of surfactant postadded to latex dispersion onfilm formation: a study by atomic force microscopy. Langmuir, 9(3), 792-796.Juhu, D., & Lang, J. (1994). Latex film surface morphology studied by atomic force microscopy:effect of a non-ionic surfactant postadded to latex dispersion. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 87(3), 177-185.Kabe, R., Feng, X., Adachi, C., & Mllen, K. (2014). Exfoliation of graphite intographene in polar solvents mediated by amphiphilic hexa-peri-hexabenzocoronene. Chemistry - An Asian Journal, 9(11), 3125-3129.Kakaei, K., & Hasanpour, K. (2014). Synthesis of graphene oxide nanosheets byelectrochemical exfoliation of graphite in cetyltrimethylammonium bromide and itsapplication for oxygen reduction. Journal of Materials Chemistry A, 2(37), 15428-15436.Kang, H., Zuo, K., Wang, Z., Zhang, L., Liu, L., & Guo, B. (2014). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier andmechanical performance. Composites Science and Technology, 92(0), 1-8.Kang, Y.-R., Li, Y.-L., Hou, F., Wen, Y.-Y., & Su, D. (2012). Fabrication of electric papers ofgraphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexibleelectrodes for energy storage. Nanoscale, 4(10), 3248-3253.Kastrisianaki-Guyton, E. S., Chen, L., Rogers, S. E., Cosgrove, T., & VanDuijneveldt, J. S. (2015). Adsorption of F127 onto single-walled carbon nanotubes characterized using small-angle neutron scattering. Langmuir, 31(10), 3262-3268.Katsnelson, M. I. (2007). Graphene: carbon in two dimensions. Materials Today, 10(1-2),20-27.Kim, B. S., Hayes, R. A., & Ralston, J. (1995). The adsorption of anionic naphthalene derivativesat the graphite-aqueous solution interface. Carbon, 33(1), 25-34.Kim, H. (2009). Processing, morphology and properties of graphene reinforced polymernanocomposites (Doctoral dissertation, University of Minnesotta). Retrieved fromhttps://conservancy.umn.edu/handle/11299/56729.Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymernanocomposites. Macromolecules, 43(16), 6515-6530.Kim, H., Kobayashi, S., AbdurRahim, M. A., Zhang, M. J., Khusainova, A., Hillmyer,M. A., Abdala, A. A., & Macosko, C. W. (2011). Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 52(8), 1837-1846.Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., & Kim,J. (2015). Review of nanocellulose for sustainable future materials. InternationalJournal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197-213.Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: new faces of grapheneoxide. Accounts of Chemical Research, 45(8), 1356-1364.Kim, J. S., Hong, S., Park, D., & Shim, S. (2010). Water-borne graphene-derivedconductive SBR prepared by latex heterocoagulation. Macromolecular Research, 18(6),558-565.Kim, J. S., Yun, J. H., Kim, I., & Shim, S. E. (2011). Electrical properties ofgraphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature.Journal of Industrial and Engineering Chemistry, 17(2), 325-330.Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574.Kiziltas, E. E., Kiziltas, A., Rhodes, K., Emanetoglu, N. W., Blumentritt, M., &Gardner, D. J. (2016). Electrically conductive nano graphite-filled bacterialcellulose composites. Carbohydrate polymers, 136, 1144-1151.Klemm, D., Schumann, D., Kramer, F., Heler, N., Koth, D., & Sultanova, B. (2009). Nanocellulose materials-different cellulose, different functionality. Paper presented at theMacromolecular symposia.Klevens, H. B. (1953). Structure and aggregation in dilate solution of surface active agents.Journal of the American Oil Chemists Society, 30(2), 74-80.Koga, H., Nogi, M., Komoda, N., Nge, T. T., Sugahara, T., & Suganuma, K. (2014). Uniformlyconnected conductive networks on cellulose nanofiber paper for transparent paperelectronics. NPG Asia Materials, 6(3), e93.Kotlarchyk, M., & Chen, S. H. (1983). Analysis of small angle neutron scatteringspectra from polydisperse interacting colloids. The Journal of chemical physics,79(5), 2461-2469.Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., & Car,R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. NanoLetters, 8(1), 36-41.Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recentadvances in graphene based polymer composites. Progress in Polymer Science, 35(11),1350-1375.Kumar, S., Sharma, D., & Sharma, D. (2006). Small-angle neutron scattering studies on sodium dodecylbenzenesulfonate-tetra-n-butylammonium bromide systems. Journal of surfactants anddetergents, 9(1), 77-82.Kyowa. What is surface tension? Retrieved April 23, 2018, from http://www.face-kyowa.co.jp/english/Lagaly, G. (1999). Editorial. Applied clay science, 15(1-2), 1-9.Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose- Itsbarrier properties and applications in cellulosic materials: A review. Carbohydratepolymers, 90(2), 735-764.LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicatenanocomposites: an overview. Applied Clay Science, 15(1), 11-29.Lechner, C., & Sax, A. F. (2014). Adhesive forces between aromatic molecules and graphene. TheJournal of Physical Chemistry C, 118(36), 20970-20981.Lewis, K. E., & Robinson, C. P. (1970). The interaction of sodium dodecyl sulfate withmethyl cellulose and polyvinyl alcohol. Journal of Colloid and Interface Science, 32(3), 539-546.Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueousdispersions of graphene nanosheets. Nature Nanotechnology, 3(2),101-105.Li, Z. X., Lu, J. R., Thomas, R. K., & Penfold, J. (1997). Neutron reflectivity studiesof the adsorption of aerosol-ot at the air-water interface: the structure of the sodium salt. TheJournal of Physical Chemistry B, 101(9), 1615-1620.Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology,42(19), 7254-7259.Lin, S., Shih, C.-J., Sresht, V., Rajan, A. G., Strano, M. S., & Blankschtein, D. (2016).Understanding the colloidal dispersion stability of 1D and 2D materials: perspectivesfrom molecular simulations and theoretical modeling. Advances in Colloid and Interface Science,244, 36-53.Lin, S., Shih, C.-J., Strano, M. S., & Blankschtein, D. (2011). Molecular insights into the surface morphology, layering structure, and aggregation kinetics ofsurfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 133(32),12810-12823.Lindman, B., Karlstrm, G., & Stigsson, L. (2010). On the mechanism of dissolution of cellulose.Journal of Molecular Liquids, 156(1), 76-81.Lisunova, M. O., Lebovka, N. I., Melezhyk, O. V., & Boiko, Y. P. (2006). Stability of the aqueoussuspensions of nanotubes in the presence of nonionic surfactant. Journal of Colloid and InterfaceScience, 299(2), 740-746.Liu, J., Notarianni, M., Will, G., Tiong, V. T., Wang, H., & Motta, N. (2013).Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness onthe sheet resistance and capacitive properties. Langmuir, 29(43), 13307-13314.Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., Liu, X., Gopal Sahoo, N.,:I, C., Shen, Z., & Lin, J. (2013). Improved synthesis of graphene flakes from the multipleelectrochemical exfoliation of graphite rod. Nano Energy, 2(3), 377-386.Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). Onestep ionicliquidassisted electrochemical synthesis of ionic functionalized graphene sheets directlyfrom graphite. Advanced Functional Materials, 18(10), 1518- 1525.Liu, S., Wu, B., & Yang, X. (2014). Electrolyte-induced reorganization of SDS self- assembly ongraphene: a molecular simulation study. ACS Applied Materials & Interfaces, 6(8), 5789-5797.Liu, X., Wang, L.-Y., Zhao, L.-F., He, H.-F., Shao, X.-Y., Fang, G.-B., Wan, Z.-G., &Zeng, R.-C. (2016). Research progress of graphene-based rubbernanocomposites. Polymer Composites, 39(4), 1006-1022.Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S.,Blighe, F. M., De, S., Wang, Z., McGovern, I. T., Duesberg, G. S., & Coleman, J. N.(2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/watersolutions. Journal of the American Chemical Society, 131(10), 3611-3620.Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High- concentration, surfactant-stabilized graphene dispersions. ACS Nano, 4(6), 3155-3162.Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science.Progress in Polymer Science, 34(5), 431-448.Lu, J., Yang, J.-x., Wang, J., Lim, A., Wang, S., & Loh, K. P. (2009). One-potsynthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliationof graphite in ionic liquids. ACS Nano, 3(8), 2367-2375.?uczak, J., Hupka, J., Thming, J., & Jungnickel, C. (2008). Self-organization ofimidazolium ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 329(3), 125-133.Magid, L. J., Li, Z., & Butler, P. D. (2000). Flexibility of elongated sodium dodecyl sulfatemicelles in aqueous sodium chloride: a small-angle neutron scattering study. Langmuir, 16,10028-10036.Mahajan, R. K., Vohra, K. K., Kaur, N., & Aswal, V. K. (2008). Organic additives and electrolytesas cloud point modifiers in octylphenol ethoxylate solutions. Journal of surfactants anddetergents, 11(3), 243-250.Malaysia Rubber Board. (2018). Natural Rubber Market Review. Retrieved. fromhttp://www3.lgm.gov.my/Digest/digest/digest-5-2018.pdf.Manne, S., Cleveland, J. P., Gaub, H. E., Stucky, G. D., & Hansma, P. K. (1994).Direct visualization of surfactant hemimicelles by force microscopy of the electricaldouble layer. Langmuir, 10(12), 4409-4413.Mariano, M., El Kissi, N., & Dufresne, A. (2014). Cellulose nanocrystals and relatednanocomposites: review of some properties and challenges. Journal of PolymerScience Part B: Polymer Physics, 52(12), 791-806.Martinez, C. R., & Iverson, B. L. (2012). Rethinking the term "pi-stacking". Chemical Science,3(7), 2191-2201.Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., & Resasco, D. E. (2003).Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B,107(48), 13357-13367.Matos, C. F., Galembeck, F., & Zarbin, A. J. G. (2014). Multifunctional andenvironmentally friendly nanocomposites between natural rubber and graphene orgraphene oxide. Carbon, 78(0), 469-479.Matsuo, Y., Niwa, T., & Sugie, Y. (1999). Preparation and characterization of cationicsurfactant-intercalated graphite oxide. Carbon, 37(6), 897-901.May, S., & Ben-Shaul, A. (2001). Molecular theory of the sphere-to-rod transition and the secondCMC in aqueous micellar solutions. The Journal of Physical Chemistry B, 105(3), 630-640.McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J.,Herrera-Alonso, M., Millius, D. L., Car, R., & Prudhomme, R. K. (2007). Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite. Chemistry ofMaterials, 19(18), 4396-4404.McCoy, T. M., Brown, P., Eastoe, J., & Tabor, R. F. (2015). Noncovalent magnetic control andreversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACSApplied Materials & Interfaces, 7(3), 2124-2133.McCoy, T. M., de Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor,R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry ChemicalPhysics, 20(24), 16801-16816.Medronho, B., & Lindman, B. (2014). Competing forces during cellulose dissolution: from solvents tomechanisms. Current Opinion in Colloid & Interface Science, 19(1), 32-40.Medronho, B., & Lindman, B. (2015). Brief overview on cellulosedissolution/regeneration interactions and mechanisms. Advances in colloid and interface science,222, 502-508.Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., & Lindman, B. (2012).Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects androle of hydrophobic interactions. Cellulose, 19(3), 581-587.Menger, F. M., & Rizvi, S. A. A. (2011). Relationship between surface tension and surface coverage.Langmuir, 27(23), 13975-13977.Meyer, E. E., Rosenberg, K. J., & Israelachvili, J. (2006). Recent progress inunderstanding hydrophobic interactions. Proceedings of the National Academy of Sciences, 103(43),15739-15746.Michler, G. H. (2008). Electron microscopy of polymer. Leipzig: Springer-Verlag BerlinHeidelberg.Milner, E. M., Skipper, N. T., Howard, C. A., Shaffer, M. S. P., Buckley, D. J.,., Cullen, E. L., Heenan, R. K., Lindner, P., & Schweins, R.(2012). Structure and morphology of charged graphene platelets in solution bysmall-angle neutron scattering. Journal of the American Chemical Society, 134(20),8302-8305.Mohamed, A., Anas, A., Abu Bakar, S., Aziz, A., Sagisaka, M., Brown, P., Eastoe, J., Kamari, A.,Hashim, N., & Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised byhighly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites.Colloid and Polymer Science, 292(11), 3013-3023.Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., Sagisaka, M., Brown, P., & Eastoe, J. (2015). Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journalof Colloid and Interface Science, 455, 179-187.Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J.(2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances inColloid and Interface Science, 230, 54-69.Mohamed, A., Sagisaka, M., Guittard, F., Cummings, S., Paul, A., Rogers, S. E., Heenan,R. K., Dyer, R., & Eastoe, J. (2011). Low fluorine content co?-philic surfactants. Langmuir,27(17), 10562-10569.Mohamed, A., Sagisaka, M., Hollamby, M., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J.(2012). Hybrid CO?-philic surfactants with low fluorine content. Langmuir, 28(15),6299-6306.Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., Nave,S., Dyer, R., Rogers, S. E., Heenan, R. K., & Eastoe, J. (2010). Universal surfactantfor water, oils, and CO?. Langmuir, 26(17), 13861-13866.Mohanty, A., & Dey, J. (2007). Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n-dodecyloxy)benzoyl]-l-aminoacidates in Water. Langmuir, 23(3), 1033-1040.Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewableresources: opportunities and challenges in the green materials world. Journal of Polymersand the Environment, 10(1-2), 19-26.Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbonnanotubes. Macromolecules, 39(16), 5194-5205.Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterialsreview: structure, properties and nanocomposites. ChemicalSociety Reviews, 40(7), 3941-3994.Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J., & Talmon, Y.(2003). Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters,3(10), 1379-1382.Moulik, S. P., Haque, M. E., Jana, P. K., & Das, A. R. (1996). Micellar properties of cationic surfactants in pure and mixed states. The Journal of Physical Chemistry, 100(2),701-708.Myers, D. (1999). Surfaces, interfaces, and colloids (2?? ed.). New York: Wiley-Vch New York.Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected roleof the surfactant tail. Langmuir, 18(1), 31-38.Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N.M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene.Science, 320(5881), 1308.Najafabadi, A. T., & Gyenge, E. (2014). High-yield graphene production byelectrochemical exfoliation of graphite: Novel ionic liquid (IL)-acetonitrile electrolytewith low IL content. Carbon, 71(0), 58-69.Nave, S., Eastoe, J., Heenan, R. K., Steytler, D., & Grillo, I. (2002). What is sospecial about Aerosol-OT? Part III - glutaconate versus sulfosuccinate headgroupsand oil-water interfacial tensions. Langmuir, 18(5), 1505-1510.Nave, S., Eastoe, J., & Penfold, J. (2000). What is so special about Aerosol-OT? 1.Aqueous systems. Langmuir, 16(23), 8733-8740.Nave, S., Paul, A., Eastoe, J., Pitt, A. R., & Heenan, R. K. (2005). What is so special aboutAerosol-OT? Part IV. Phenyl-tipped surfactants. Langmuir, 21(22), 10021-10027.Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surfacenanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 390(1-3), 157-166.Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen- bondingsystem in cellulose I from synchrotron X-ray and neutron fiber diffraction. Journal ofthe American Chemical Society, 124(31), 9074-9082.Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically transparent nanofiber paper.Advanced materials, 21(16), 1595-1598.Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonicexfoliation with continuous surfactant addition. Langmuir, 28(40),14110-14113.Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I.,Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Diracfermions in graphene. Nature, 438(7065), 197.Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva,I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films.Science, 306(5696), 666-669.Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S. B., Piccinini, M.,Illescas, J., & Mariani, A. (2011). High concentration few-layer graphene sheets obtainedby liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 21(10),3428-3431.O'Dea, A. R., Smart, R. S. C., & Gerson, A. R. (1999). Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous solutions onto graphite. Carbon,37(7), 1133-1142.Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamicsinvestigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7(19),9148-9156.Pang, H., Xu, L., Yan, D.-X., & Li, Z.-M. (2014). Conductive polymer composites withsegregated structures. Progress in Polymer Science, 39(11), 1908-1933.Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomernanocomposites. Carbon, 95, 460-484.Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J.M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphenenanosheets derived from graphite oxide. Langmuir, 25(10), 5957- 5968.Paria, S., Manohar, C., & Khilar, K. C. (2005). Adsorption of anionic and non-ionic surfactants ona cellulosic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2),221-229.Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011).Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019- 3023.Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes.Nature Nanotechnology, 4(4), 217-224.Paruchuri, V. K., Nguyen, A. V., & Miller, J. D. (2004). Zeta-potentials of self-assembled surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces.Colloids and Surfaces A: Physicochemical and EngineeringAspects, 250(1), 519-526.Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., & Mllen, K. (2014).Exfoliation of graphite into graphene in aqueous solutions of inorganic salts.Journal of the American Chemical Society, 136(16), 6083-6091.Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., & Green, M. J. (2012).Dispersions of non-covalently functionalized graphene with minimal stabilizer.ACS Nano, 6(10), 8857-8867.Pashley, R., & Karaman, M. (2005). Applied colloid and surface chemistry. Cornwall: John Wiley &Sons.Patole, A. S., Patole, S. P., Kang, H., Yoo, J.-B., Kim, T.-H., & Ahn, J.-H. (2010). Afacile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Journal of Colloid and Interface Science, 350(2),530-537.Patrick, H. N., & Warr, G. G. (2000). Self-assembly structures of nonionic surfactants atgraphite-solution interfaces. 2. Effect of polydispersity and alkyl chain branching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 162(13), 149-157.Patrick, H. N., Warr, G. G., Manne, S., & Aksay, I. A. (1997). Self-assemblystructures of nonionic surfactants at graphite/solution interfaces. Langmuir, 13(16),4349-4356.Paul, A., Griffiths, P. C., Pettersson, E., Stilbs, P., Bales, B. L., Zana, R., & Heenan,R. K. (2005). Nuclear magnetic resonance and small-angle neutron scattering studies of anionicsurfactants with macrocounterions: tetramethylammonium dodecyl sulfate. The Journal of PhysicalChemistry B, 109(33), 15775-15779.Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites.Polymer, 49(15), 3187-3204.Peng, H., Meng, L., Niu, L., & Lu, Q. (2012). Simultaneous reduction and surfacefunctionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid.The Journal of Physical Chemistry C, 116(30), 16294-16299.Peng, R., Wang, Y., Tang, W., Yang, Y., & Xie, X. (2013). Progress in imidazolium ionic liquidsassisted fabrication of carbon nanotube and graphene polymer composites. Polymers, 5(2),847.Prez, E. M., & Martn, N. (2015). - interactions in carbon nanostructures.Chemical Society Reviews, 44(18), 6425-6433.Pham, V. H., Dang, T. T., Hur, S. H., Kim, E. J., & Chung, J. S. (2012). Highlyconductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite preparedby self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACSApplied Materials & Interfaces, 4(5),2630-2636.Pichayakorn, W., Suksaeree, J., Boonme, P., Taweepreda, W., & Ritthidej, G. C. (2012).Preparation of deproteinized natural rubber latex and properties of films formed byitself and several adhesive polymer blends. Industrial & Engineering Chemistry Research,51(41), 13393-13404.Pinkert, A., Marsh, K. N., Pang, S., & Staiger, M. P. (2009). Ionic liquids and their interactionwith cellulose. Chemical Reviews, 109(12), 6712-6728.Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymernanocomposites. Polymer, 52(1), 5-25.Potts, J. R., Shankar, O., Du, L., & Ruoff, R. S. (2012). Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/naturalrubber nanocomposites. Macromolecules, 45(15), 6045-6055.Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites.Composites Science and Technology, 74(0), 166-172.Price, B. K., Hudson, J. L., & Tour, J. M. (2005). Green chemical functionalization ofsingle-walled carbon nanotubes in ionic liquids. Journal of the American Chemical Society,127(42), 14867-14870.Quennouz, N., Hashmi, S. M., Choi, H. S., Kim, J. W., & Osuji, C. O. (2016).Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 12(1), 157-164.Rabe, J. P., & Buchholz, S. (1991). Commensurability and mobility in two-dimensional molecular patterns on graphite. Science, 253(5018), 424-427.Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges- origin ofstability and potential for magnetism in carbon materials. Journal of the American ChemicalSociety, 127(16), 5917-5927.Rahman, R., Foster, J. T., & Haque, A. (2013). Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites. The Journal of Physical Chemistry A, 117(25),5344-5353.Rajter, R. F., French, R. H., Ching, W. Y., Carter, W. C., & Chiang, Y. M. (2007). Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbonnanotubes in water from ab initio optical properties. Journal of Applied Physics, 101(5),054303.Ramalingam, P., Pusuluri, S. T., Periasamy, S., Veerabahu, R., & Kulandaivel, J. (2013).Role of deoxy group on the high concentration of graphene in surfactant/water media. RSCAdvances, 3(7), 2369-2378.Ramli, N. (2017). Kenaf production. Retrieved May 31, 2018. from/www.mpic.gov.my.Rausch, J., Zhuang, R.-C., & Mder, E. (2010). Surfactant assisted dispersion offunctionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Scienceand Manufacturing, 41(9), 1038-1046.Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review frompreparation to processing. Progress in Polymer Science, 28(11), 1539- 1641.Reczek, J. J., & Iverson, B. L. (2006). Using aromatic donor acceptor interactions to affectmacromolecular assembly. Macromolecules, 39(17), 5601-5603.Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M., & Iverson, B. L. (2006).Tunable columnar mesophases utilizing C2 symmetric aromatic donor- acceptorcomplexes. Journal of the American Chemical Society, 128(24), 7995-8002.Regev, O., ElKati, P. N. B., Loos, J., & Koning, C. E. (2004). Preparation ofconductive nanotube-polymer composites using latex technology. Advanced Materials, 16(3),248-251.Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., &Kong, J. (2008). Large area, few-layer graphene films on arbitrary substrates by chemical vapordeposition. Nano Letters, 9(1), 30-35.Remsing, R. C., Swatloski, R. P., Rogers, R. D., & Moyna, G. (2006). Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and35/37 Cl NMR relaxation study on model systems. Chemical Communications(12), 1271-1273.Rippel, M. M., Lee, L.-T., Leite, C. A. P., & Galembeck, F. (2003). Skim and cream natural rubberparticles: colloidal properties, coalescence and film formation. Journal of Colloid and InterfaceScience, 268(2), 330-340.Rochette, C. N., Crassous, J. J., Drechsler, M., Gaboriaud, F., Eloy, M., de Gaudemaris, B., & Duval, J. F. L. (2013). Shell structure of natural rubberparticles: evidence of chemical stratification by electrokinetics and cryo-TEM. Langmuir, 29(47),14655-14665.Rojas, O. J. (2016). Cellulose chemistry and properties: fibers, nanocelluloses andadvanced materials (Vol. 271). New York: Springer.Rosen, M. J., & Kunjappu, J. T. (2004). Surfactants and interfacial phenomena (3?? ed.). NewJersey: John Wiley & Sons.Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S . (2009). Cellulose modification by polymergrafting: a review. Chemical Society Reviews, 38(7), 2046-2064.Sa, V., & Kornev, K. G. (2011). Analysis of stability of nanotube dispersions usingsurface tension isotherms. Langmuir, 27(22), 13451-13460.Sadasivuni, K. K., Ponnamma, D., Thomas, S., & Grohens, Y. (2014). Evolution fromgraphite to graphene elastomer composites. Progress in Polymer Science, 39(4), 749-780.Sagisaka, M., Iwama, S., Hasegawa, S., Yoshizawa, A., Mohamed, A., Cummings, S., Rogers, S. E.,Heenan, R. K., & Eastoe, J. (2011). Super-efficient surfactant for stabilizing water-in-carbondioxide microemulsions. Langmuir, 27(10), 5772-5780.Sagisaka, M., Iwama, S., Yoshizawa, A., Mohamed, A., Cummings, S., & Eastoe, J. (2012). Effective and efficient surfactant for CO? having only short fluorocarbon chains. Langmuir,28(30), 10988-10996.Sagisaka, M., Narumi, T., Niwase, M., Narita, S., Ohata, A., James, C., Yoshizawa, A., Taffin deGivenchy, E. P., Guittard, F., & Alexander, S. (2014). Hyper- branched hydrocarbonsurfactants give fluorocarbon-like low surface energies. Langmuir, 30(21), 6057-6063.Samsuri, A. (2013). Theory and mechanisms of filler reinforcement in natural rubber. In S. Thomas,H. J. Maria, J. Joy, C. H. Chan & L. A. Pothen (Eds.), Natural Rubber-Based Composites and Nanocomposites: State of the Art, New Challenges and Opportunities (pp. 73-109).Cambridge: Royal Society of Chemistry.Sansatsadeekul, J., Sakdapipanich, J., & Rojruthai, P. (2011). Characterization ofassociated proteins and phospholipids in natural rubber latex. Journal of Bioscience andBioengineering, 111(6), 628-634.Schaefer, D. W., & Justice, R. S. (2007). How nano are nanocomposites?Macromolecules, 40(24), 8501-8517.Schramm, L. L. (2006). Emulsions, foams, and suspensions: fundamentals and applications.Weinheim: Wiley VCH.Sefcik, J., Verduyn, M., Storti, G., & Morbidelli, M. (2003). Charging of latexparticles stabilized by sulfate surfactant. Langmuir, 19(11), 4778-4783.Seo, J.-W. T., Green, A. A., Antaris, A. L., & Hersam, M. C. (2011). High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. TheJournal of Physical Chemistry Letters, 2(9), 1004- 1008.Sethuraj, M. R., & Mathew, N. T. (1922). Natural rubber: biology, cultivation and technology(Vol. 23). Netherlands: Elsevier.Shah, K., Chiu, P., & Sinnott, S. B. (2006). Comparison of morphology and mechanicalproperties of surfactant aggregates at water-silica and water- graphite interfaces frommolecular dynamics simulations. Journal of Colloidand Interface Science, 296(1), 342-349.Shah, R. K., Hunter, D. L., & Paul, D. R. (2005). Nanocomposites from poly(ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology andproperties. Polymer, 46(8), 2646-2662.Shahil, K. M. F., & Balandin, A. A. (2012). Graphene-multilayer graphenenanocomposites as highly efficient thermal interface materials. Nano Letters, 12(2), 861-867.Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions usingsurfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495-504.Shen, B., Zhai, W., Chen, C., Lu, D., Wang, J., & Zheng, W. (2011). Melt blending in situ enhancesthe interaction between polystyrene and graphene through - stacking. ACS AppliedMaterials & Interfaces, 3(8), 3103-3109.Shen, J., He, Y., Wu, J., Gao, C., Keyshar, K., Zhang, X., Yang, Y., Ye, M., Vajtai, R., & Lou, J.(2015). Liquid phase exfoliation of two-dimensional materials by directly probing and matchingsurface tension components. Nano Letters, 15(8), 5449-5454.Shen, J., Hu, Y., Li, C., Qin, C., & Ye, M. (2009). Synthesis of amphiphilic graphenenanoplatelets. Small, 5(1), 82-85.Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., & Ye, M. (2009). Fast and facile preparationof graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15),3514-3520.Shen, J., Wu, J., Wang, M., Dong, P., Xu, J., Li, X., Zhang, X., Yuan, J., Wang, X., & Ye, M.(2016). Surface tension components based selection of cosolvents for efficient liquid phaseexfoliation of 2D materials. Small, 12(20), 2741-2749.Sherif, A., Izzuddin, Z., Qingshi, M., Nobuyuki, K., Andrew, M., Hsu-Chiang, K., Peter,M., Jun, M., & Liquin, Z. (2013). Melt compounding with graphene to develop functional,high-performance elastomers. Nanotechnology, 24(16), 165601.Shi, G., Araby, S., Gibson Christopher, T., Meng, Q., Zhu, S., & Ma, J. (2018).Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Advanced Functional Materials, 28(19), 1706705.Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2010). Understanding thestabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamicssimulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society,132(41), 14638-14648.Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2015). Understanding thestabilization of single-walled carbon nanotubes and graphene in ionicsurfactant aqueous solutions: large-scale coarse-grained molecular dynamicssimulation-assisted DLVO theory. The Journal of Physical Chemistry C, 119(2), 1047-1060.Shih, C.-J., Paulus, G. L. C., Wang, Q. H., Jin, Z., Blankschtein, D., & Strano, M. S. (2012).Understanding surfactant/graphene interactions using a graphene field effect transistor: relatingmolecular structure to hysteresis and carrier mobility. Langmuir, 28(22), 8579-8586.Shim, Y., & Kim, H. J. (2009). Solvation of carbon nanotubes in a room-temperature ionic liquid.ACS Nano, 3(7), 1693-1702.Shinde, D. B., Brenker, J., Easton, C. D., Tabor, R. F., Neild, A., & Majumder, M. (2016). Shearassisted electrochemical exfoliation of graphite to graphene. Langmuir, 32(14), 3552-3559.Silvera-Batista, C. A., & Ziegler, K. J. (2011). Swelling the hydrophobic core ofsurfactant-suspended single-walled carbon nanotubes: A SANS study. Langmuir, 27(18),11372-11380.Singh, G., Singh, G., & Kang, T. S. (2016). Micellization behavior of surface active ionic liquidshaving aromatic counterions in aqueous media. The Journal of Physical Chemistry B, 120(6),1092-1105.Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene basedmaterials: Past, present and future. Progress in Materials Science, 56(8), 1178-1271.Sir, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocompositematerials: a review. Cellulose, 17(3), 459-494.Skoog, D. A., Holler, E. J., & Crouch, S. R. (2007). Principles of instrumentalanalysis (Vol. 6). Canada: Thomson Brooks/Cole.Smith, G. N., Alexander, S., Brown, P., Gillespie, D. A. J., Grillo, I., Heenan, R. K., James, C.,Kemp, R. Rogers, S. E., & Eastoe, J. (2014). Interaction between surfactants and colloidallatexes in nonpolar solvents studied using contrast- variation small-angle neutron scattering.Langmuir, 30(12), 3422-3431.Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsivepotential barriers for the dispersion of graphene using surfactants. New Journal ofPhysics, 12(12), 125008.Sousa, F. D. B. d., & Scuracchio, C. H. (2014). The use of atomic force microscopy as an importanttechnique to analyze the dispersion of nanometric fillers and morphology innanocomposites and polymer blens based on elastomers.Polimeros, 24(6), 661-672.Spyrou, K., Calvaresi, M., Diamanti, E. K., Tsoufis, T., Gournis, D., Rudolf, P., &Zerbetto, F. (2015). Graphite oxide and aromatic amines: Size matters.Advanced Functional Materials, 25(2), 263-269.Srinivas, G., Nielsen, S. O., Moore, P. B., & Klein, M. L. (2006). Molecular dynamics simulationsof surfactant self-organization at a solid-liquid interface. Journal of the American ChemicalSociety, 128(3), 848-853.Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J.,Stach, E. A., Piner, R. D., Nguyen, S. B. T., & Ruoff, R. S. (2006). Graphene- based compositematerials. Nature, 442(7100), 282-286.Stone, M. T., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2003). Molecular differences between hydrocarbon and fluorocarbon surfactants at the CO?/water interface. Journal ofPhysical Chemistry B, 107(37), 10185-10192.Stone, M. T., Smith, P. G., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P.(2004). Low interfacial free volume of stubby surfactants stabilizes water-in- carbon dioxidemicroemulsions. Journal of Physical Chemistry B, 108(6), 1962-1966.Strano, M. S., Moore, V. C., Miller, M. K., Allen, M. J., Haroz, E. H., Kittrell, C., Hauge, R.H., & Smalley, R. E. (2003). The role of surfactant adsorption during ultrasonicationin the dispersion of single-walled carbon nanotubes. Journal of Nanoscience andNanotechnology, 3(1-2), 81-86.Stubbs, J. M., Durant, Y. G., & Sundberg, D. C. (1999). Competitive adsorption of sodium dodecyl sulfate on two polymer surfaces within latex blends. Langmuir, 15(9), 3250-3255.Subrahmanyam, K. S., Ghosh, A., Gomathi, A., Govindaraj, A., & Rao, C. N. R. (2009).Covalent and noncovalent functionalization and solubilization of graphene. Nanoscience andNanotechnology Letters, 1(1), 28-31.Sun, H., & Yang, X. (2014). Molecular simulation of self-assembly structure andinterfacial interaction for SDBS adsorption on graphene. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 462(0), 82-89.Sun, Z., Nicolosi, V., Rickard, D., Bergin, S. D., Aherne, D., & Coleman, J. N.(2008). Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes:dispersion quality and its correlation with zeta potential. The Journal of PhysicalChemistry C, 112(29), 10692-10699.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K.(2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodesby using a hyper-branched surfactant. Materials& Design, 99, 174-181.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015).A facile one-step method for graphene oxide/natural rubber latexnanocomposite production for supercapacitor applications. Materials Letters, 161, 665-668.Suttipong, M., Tummala, N. R., Kitiyanan, B., & Striolo, A. (2011). Role of surfactantmolecular structure on self-assembly: aqueous SDBS on carbon nanotubes. The Journal ofPhysical Chemistry C, 115(35), 17286-17296.Syurik, Y. V., Ghislandi, M. G., Tkalya, E. E., Paterson, G., McGrouther, D., Ageev,O. A., & Loos, J. (2012). Graphene network organisation in conductive polymer composites.Macromolecular Chemistry and Physics, 213(12), 1251- 1258.Tadros, T. (2007). General principles of colloid stability and the role of surfaceforces. In T. Tadros (Ed.), Colloid stability: The role of surface forces - Part 1 (Vol. 1):Weinheim: Wiley VCH.Tadros, T. (2006). Applied surfactants - principles and applications. Weinheim: Wiley VCH.Tanford, C. (1972). Micelle shape and size. Journal of Physical Chemistry, 76(21), 3020-3024.Tanford, C. (1974). Thermodynamics of micelle formation: prediction of micelle size and sizedistribution. Proceedings of the National Academy of Sciences, 71(5), 1811-1815.Tanford, C. (1978). The hydrophobic effect and the organization of living matter.Science, 200(4345), 1012-1018.Tanford, C. (1979). Interfacial free energy and the hydrophobic effect. Proceedings of the NationalAcademy of Sciences, 76(9), 4175-4176.Tanford, C. (1980). The hydrophobic effect: formation of micelles and biologicalmembranes (2?? ed.). New York: Wiley.Tapaszt, O., Tapaszt, L., Mark, M., Kern, F., Gadow, R., & Balzsi, C. (2011). Dispersionpatterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical PhysicsLetters, 511(4), 340-343.Terrones, M. (2009). Materials science: Nanotubes unzipped. Nature, 458(7240), 845- 846.Texter, J. (2014). Graphene dispersions. Current Opinion in Colloid & InterfaceScience, 19(2), 163-174.Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., & Loos, J. (2010). Latex-basedconcept for the preparation of graphene-based polymer nanocomposites.Journal of Materials Chemistry, 20(15), 3035-3039.Tkalya, E., Ghislandi, M., Otten, R., Lotya, M., Alekseev, A., van der Schoot, P.,Coleman, J., de With, G., & Koning, C. (2014). Experimental and theoretical study of the influenceof the state of dispersion of graphene on the percolation threshold of conductivegraphene/polystyrene nanocomposites. ACS Applied Materials & Interfaces, 6(17), 15113-15121.Tkalya, E., Ghislandi, M., de With, G., & Koning, C. E. (2012). The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites.Current Opinion in Colloid & Interface Science, 17(4), 225- 232.Tummala, N. R., Grady, B. P., & Striolo, A. (2010). Lateral confinement effects on the structuralproperties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 12(40),13137-13143.Tummala, N. R., & Striolo, A. (2009). Curvature effects on the adsorption of aqueoussodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features andcounterion dynamics. Physical Review E, 80(2), 021408.Vadukumpully, S., Paul, J., & Valiyaveettil, S. (2009). Cationic surfactant mediated exfoliation ofgraphite into graphene flakes. Carbon, 47(14), 3288-3294.Vaia, R. A., & Giannelis, E. P. (2001). Polymer nanocomposites: status andopportunities. MRS Bulletin, 26(5), 394-401.Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersionof carbon nanotubes. Advances in Colloid and Interface Science, 128-130(0), 37-46.Vega-Rios, A., Rentera-Baltirrez, F. Y., Hernndez-Escobar, C. A., & Zaragoza-Contreras, E. A. (2013). A new route toward graphene nanosheet/polyaniline composites using areactive surfactant as polyaniline precursor. Synthetic Metals, 184(0), 52-60.Verdejo, R., Bernal, M. M., Romasanta, L. J., & Lopez-Manchado, M. A. (2011). Graphenefilled polymer nanocomposites. Journal of Materials Chemistry, 21(10), 3301-3310.Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the stability of lyophobic colloids. NewYork: Elsevier Publishing Company.Wang, B., Lou, W., Wang, X., & Hao, J. (2012). Relationship between dispersion stateand reinforcement effect of graphene oxide in microcrystalline cellulose- graphene oxidecomposite films. Journal of Materials Chemistry, 22(25),12859-12866.Wang, D., Zhang, X., Zha, J.-W., Zhao, J., Dang, Z.-M., & Hu, G.-H. (2013).Dielectric properties of reduced graphene oxide/polypropylene composites with ultralowpercolation threshold. Polymer, 54(7), 1916-1922.Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphenenanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering, 79,521-529.Wang, G., & Olofsson, G. (1995). Ethyl hydroxyethyl cellulose and ionic surfactants in dilutesolution. Calorimetric and viscosity study of the interaction with sodium dodecyl sulfateand some cationic surfactants. The Journal of Physical Chemistry, 99(15), 5588-5596.Wang, H. (2009). Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid &Interface Science, 14(5), 364-371.Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., & Hobbie,E. K. (2004). Dispersing single-walled carbon nanotubes with surfactants: A small angle neutronscattering study. Nano Letters, 4(9), 1789-1793.Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of polycyclic aromatichydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology,48(9), 4817-4825.Wang, J., Chu, H., & Li, Y. (2008). Why single-walled carbon nanotubes can bedispersed in imidazolium-based ionic liquids. ACS nano, 2(12), 2540-2546.Wang, Q., Han, Y., Wang, Y., Qin, Y., & Guo, Z.-X. (2008). Effect of surfactantstructure on the stability of carbon nanotubes in aqueous solution. The Journal of PhysicalChemistry B, 112(24), 7227-7233.Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on theliquid exfoliation of graphene. RSC Advances, 6(61), 56705-56710.Wang, Z., Liu, J., Wang, W., Chen, H., Liu, Z., Yu, Q., Zeng, H., & Sun, L. (2013). Aqueous phasepreparation of graphene with low defect density and adjustable layers. Chemical Communications,49(92), 10835-10837.Wangmo, S., Song, R., Wang, L., Jin, W., Ding, D., Wang, Z., & Zhang, R.-Q. (2012).Strong interactions and charge transfers between a charged benzene molecule andmultilayer graphenes. Journal of Materials Chemistry, 22(44), 23380-23386.Wanless, E. J., & Ducker, W. A. (1996). Organization of sodium dodecyl sulfate at thegraphite-solution interface. The Journal of Physical Chemistry, 100(8), 3207-3214.Waters, M. L. (2002). Aromatic interactions in model systems. Current opinion inchemical biology, 6(6), 736-741.Weingrtner, H. (2008). Understanding ionic liquids at the molecular level: facts,problems, and controversies. Angewandte Chemie International Edition, 47(4), 654-670.Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., & Cheng, H.-M. (2011). Graphene- cellulosepaper flexible supercapacitors. Advanced Energy Materials, 1(5), 917-922.Wertz, J.-L., Mercier, J. P., & Bdu, O. (2010). Cellulose science and technology: EPFL press.White, B., Banerjee, S., O'Brien, S., Turro, N. J., & Herman, I. P. (2007). Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. The Journalof Physical Chemistry C, 111(37), 13684-13690.Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and RelatedMaterials, 46(0), 25-34.Winey, K. I., & Vaia, R. A. (2007). Polymer nanocomposites. MRS Bulletin, 32(4), 314-322.Woods, L. M., B?descu, ?. C., & Reinecke, T. L. (2007). Adsorption of simple benzenederivatives on carbon nanotubes. Physical Review B, 75(15), 155415.Wu, B., & Yang, X. (2013). Molecular simulation of electrolyte-induced interfacial interactionbetween SDS/graphene assemblies. The Journal of Physical Chemistry C, 117(44),23216-23223.Wu, D., & Yang, X. (2012). Coarse-grained molecular simulation of self-assembly for nonionicsurfactants on graphene nanostructures. The Journal of Physical Chemistry B, 116(39),12048-12056.Wu, T.-M., & Chen, E.-C. (2008). Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology. Composites Science andTechnology, 68(10-11), 2254-2259.Xu, B., Lynn, G. W., Guo, J., Melnichenko, Y. B., Wignall, G. D., McClain, J. B., DeSimone, J.M., & Johnson, C. S. (2005). NMR and SANS studies of aggregation and microemulsionformation by phosphorus fluorosurfactants in liquid and supercritical carbon dioxide. Journalof Physical Chemistry B, 109(20), 10261-10269.Yang, K., Wu, W., Jing, Q., & Zhu, L. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science & Technology, 42(21),7931-7936.Yang, Y.-K., He, C.-E., Peng, R.-G., Baji, A., Du, X.-S., Huang, Y.-L., Xie, X.-L., &Mai, Y.-W. (2012). Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. Journal ofMaterials Chemistry, 22(12), 5666-5675.Ye, W., Li, X., Zhu, H., Wang, X., Wang, S., Wang, H., & Sun, R. (2016). Greenfabrication of cellulose/graphene composite in ionic liquid and itselectrochemical and photothermal properties. Chemical Engineering Journal, 299, 45-55.Yeon, C., Yun, S. J., Lee, K.-S., & Lim, J. W. (2015). High-yield graphene exfoliationusing sodium dodecyl sulfate accompanied by alcohols as surface- tension-reducing agents in aqueoussolution. Carbon, 83, 136-143.Yin, S., Wang, C., Qiu, X., Xu, B., & Bai, C. (2001). Theoretical study of the effects ofintermolecular interactions in self-assembled long-chain alkanes adsorbed on graphitesurface. Surface and interface analysis, 32(1), 248-252.Yoon, S. H., Jin, H.-J., Kook, M.-C., & Pyun, Y. R. (2006). Electrically conductive bacterialcellulose by incorporation of carbon nanotubes. Biomacromolecules, 7(4), 1280-1284.Yoonessi, M., & Gaier, J. R. (2010). Highly conductive multifunctional graphenepolycarbonate nanocomposites. ACS Nano, 4(12), 7211-7220.Young, R. J., Liu, M., Kinloch, I. A., Li, S., Zhao, X., Valls, C., & Papageorgiou, D.G. (2018). The mechanics of reinforcement of polymers by graphene nanoplatelets.Composites Science and Technology, 154, 110-116.Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C. E., & Loos, J. (2007).Characterization of conductive multiwall carbon nanotube/polystyrene compositesprepared by latex technology. Carbon, 45(15), 2897-2903.Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphiteand production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5),329-338.Yue, L., Pircheraghi, G., Monemian, S. A., & Manas-Zloczower, I. (2014). Epoxycomposites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects. Carbon,78(0), 268-278.Yurekli, K., Mitchell, C. A., & Krishnamoorti, R. (2004). Small-angle neutron scatteringfrom surfactant-assisted aqueous dispersions of carbon nanotubes. Journal of the AmericanChemical Society, 126(32), 9902-9903.Zan, R., Bangert, U., Ramasse, Q., & Novoselov, K. S. (2011). Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. NanoLetters, 11(3), 1087-1092.Zhan, Y., Lavorgna, M., Buonocore, G., & Xia, H. (2012). Enhancing electricalconductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. Journal of Materials Chemistry,22(21), 10464-10468.Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., & Yuan, G. (2011). Dispersion andexfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situreduction process. Macromolecular Materials and Engineering, 296(7), 590-602.Zhang, J., Zhang, J., Lin, L., Chen, T., Zhang, J., Liu, S., Li, Z., & Ouyang, P. (2009).Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes andkinetics. Molecules, 14(12), 5027-5041.Zhang, L., Zhang, Z., He, C., Dai, L., Liu, J., & Wang, L. (2014). Rationally designed surfactantsfor few-layered graphene exfoliation: Ionic groups attached to electron-deficient-conjugated unit through alkyl spacers. ACS Nano, 8(7), 6663-6670.Zhang, X., Liu, X., Zheng, W., & Zhu, J. (2012). Regenerated cellulose/graphenenanocomposite films prepared in DMAC/LiCl solution. Carbohydrate polymers, 88(1),26-30.Zhang, X., Wang, J., Jia, H., You, S., Xiong, X., Ding, L., & Xu, Z. (2016).Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidonemodified graphene. Composites Part B: Engineering, 84, 121-129.Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantumHall effect and Berry's phase in graphene. Nature, 438(7065), 201.Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene andrelated applications. Accounts of Chemical Research, 46(10), 2329-2339.Zhao, C. L., Dobler, F., Pith, T., Holl, Y., & Lambla, M. (1989). Surface composition of coalescedacrylic latex films studied by XPS and SIMS. Journal of Colloid and Interface Science, 128(2),437-449.Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites:interfacial interaction and its impact on the durable high-rate performance in lithium-ionbatteries. RSC Advances, 1(5), 782-791.Zhou, J., & Zhang, L. (2000). Solubility of cellulose in NaOH/urea aqueous solution.Polymer Journal, 32(10), 866-870.Zhou, W., Islam, M. F., Wang, H., Ho, D. L., Yodh, A. G., Winey, K. I., & Fischer, J.E. (2004). Small angle neutron scattering from single-wall carbon nanotube suspensions:evidence for isolated rigid rods and rod networks. ChemicalPhysics Letters, 384(1), 185-189.Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., & Wu, G. (2006).Dissolution of cellulose with ionic liquids and its application: a mini-review.Green Chemistry, 8(4), 325-327.Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials,22(35), 3906-3924.Zuberi, M., Sherman, D. M., & Cho, Y. (2011). Carbon nanotube microspheres produced by surfactant-mediated aggregation. The Journal of PhysicalChemistry C, 115(10), 3881-3887.Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How toget between the sheets: a review of recent works on the electrochemical exfoliation ofgraphene materials from bulk graphite. Nanoscale, 7(16), 6944- 6956.Abdul Khalil, H. P. S., Alwani, M. S., & Omar, A. K. M. (2007). Chemical composition,anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers.BioResources, 1(2), 220-232.Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites fromsustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979.Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K.,Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillatedcellulose using various mechanical processes: a review. Carbohydrate polymers, 99,649-665.Abdul Khalil, H. P. S., Ireana Yusra, A. F., Bhat, A. H., & Jawaid, M. (2010). Cell wallultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivatedkenaf fiber. Industrial Crops and Products, 31(1), 113- 121.Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A. H., & Jawaid, M. (2010). Cell wallultrastructure, anatomy, lignin distribution, and chemical composition of Malaysiancultivated kenaf fiber. Industrial Crops and Products, 31(1), 113- 121.Adamczyk, Z., Para, G., & Warszy?ski , P. (1999). Influence of ionic strength onsurface tension of cetyltrimethylammonium bromide. Langmuir, 15(24), 8383- 8387.Agate, S., Joyce, M., Lucia, L., & Pal, L. (2018). Cellulose and nanocellulose-basedflexible-hybrid printed electronics and conductive composites-a review. Carbohydratepolymers, 198, 249-260.Aguilar-Bolados, H., Brasero, J., Lopez-Manchado, M. A., & Yazdani-Pedram, M. (2014).High performance natural rubber/thermally reduced graphite oxide nanocomposites by latextechnology. Composites Part B: Engineering, 67(0),449-454.Alanyal?o?lu, M., Segura, J. J., Or-Sol, J., & Casa-Pastor, N. (2012). Thesynthesis of graphene sheets with controlled thickness and order usingsurfactant-assisted electrochemical processes. Carbon, 50(1), 142-152.Alexander, S., Smith, G. N., James, C., Rogers, S. E., Guittard, F., Sagisaka, M., & Eastoe, J.(2014). Low surface energy surfactants with branched hydrocarbon architectures. Langmuir, 30(12),34133421.Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation,properties and uses of a new class of materials. Materials Science and Engineering: R: Reports,28(1-2), 1-63.Alila, S., Boufi, S., Belgacem, M. N., & Beneventi, D. (2005). Adsorption of acationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir, 21(18), 8106-8113.Alqus, R., Eichhorn, S. J., & Bryce, R. A. (2015). Molecular dynamics of cellulose amphiphilicityat the graphene-water interface. Biomacromolecules, 16(6), 1771-1783.An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K. M., Washington, M., Nayak, S. K., Talapatra,S., & Kar, S. (2010). Stable aqueous dispersions of noncovalently functionalizedgraphene from graphite and their multifunctional high-performance applications. Nano Letters,10(11), 4295-4301.Andrews, L. J. (1954). Aromatic molecular complexes of the electron donor-acceptor type. ChemicalReviews, 54(5), 713-776.Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y., & Ma, J. (2014). Electrically andthermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 55(1), 201-210.Aswal, V. K., & Goyal, P. S. (1998). Mixed micelles of alkyltrimethylammonium halides asmall-angle neutron-scattering study. Physica B: Condensed Matter, 245(1), 73-80.Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau,C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3),902-907.Bandyopadhyay, S., Shelley, J. C., Tarek, M., Moore, P. B., & Klein, M. L. (1998). Surfactantaggregation at a hydrophobic surface. The Journal of Physical Chemistry B, 102(33),6318-6322.Baniasadi, H., Ramazani S.A, A., Mashayekhan, S., & Ghaderinezhad, F. (2014). Preparationof conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synthetic Metals,196(0), 199-205.Bari, R., Tamas, G., Irin, F., Aquino, A. J. A., Green, M. J., & Quitevis, E. L. (2014).Direct exfoliation of graphene in ionic liquids with aromatic groups. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 463(0), 63-69.Barras, R., Cunha, I., Gaspar, D., Fortunato, E., Martins, R., & Pereira, L. (2017).Printable cellulose-based electroconductive composites for sensing elements in paperelectronics. Flexible and Printed Electronics, 2(1), 014006.Baur, J., & Silverman, E. (2007). Challenges and opportunities in multifunctionalnanocomposite structures for aerospace applications. MRS Bulletin, 32(04), 328-334.Bergstrm, M., & Pedersen, J. S. (1998). Small-angle neutron scattering (SANS) study ofaggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) anddodecyltrimethylammonium bromide (DTAB). Langmuir, 14(14), 3754-3761.Bergstrm, M., & Pedersen, J. S. (1999). Structure of pure SDS and DTAB micelles in brinedetermined by small-angle neutron scattering (SANS). Physical Chemistry Chemical Physics,1(18), 4437-4446.Berr, S. S. (1987). Solvent isotope effects on alkytrimethylammonium bromide micelles asa function of alkyl chain length. Journal of Physical Chemistry, 91(18), 4760-4765.Berr, S. S., & Jones, R. R. M. (1989). Small-angle neutron scattering from aqueous solutions of sodium perfluorooctanoate above the critical micelle concentration. The Journal ofPhysical Chemistry, 93(6), 2555-2558.Bhatnagar, A., & Sain, M. (2005). Processing of cellulose nanofiber-reinforced composites.Journal of Reinforced Plastics and Composites, 24(12), 1259- 1268.Bijma, K., Blandamer, M. J., & Engberts, J. B. F. N. (1998). Effect of counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridiniumsurfactants. 2. Microcalorimetry. Langmuir, 14(1), 79-83.Biswal, N. R., & Paria, S. (2010). Effect of electrolyte solutions on the adsorption of surfactantsat PTFE-water interface. Industrial & Engineering Chemistry Research, 49(15), 7060-7067.Bjrk, J., Hanke, F., Palma, C.-A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption ofaromatic and anti-aromatic systems on graphene through stacking. The Journal of PhysicalChemistry Letters, 1(23), 3407-3412.Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer,H. L. (2008). Ultrahigh electron mobility in suspended graphene.Solid State Communications, 146(9-10), 351-355.Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., & Stubos, A. K. (2009).Liquid-phase exfoliation of graphite towards solubilized graphenes. Small, 5(16), 1841-1845.Bowers, J., Butts, C. P., Martin, P. J., Vergara-Gutierrez, M. C., & Heenan, R. K.(2004). Aggregation behavior of aqueous solutions of ionic liquids. Langmuir, 20(6), 2191-2198.Brown, P., Bushmelev, A., Butts, C. P., Cheng, J., Eastoe, J., Grillo, I., Heenan, R. K., &Schmidt, A. M. (2012). Magnetic control over liquid surface properties with responsive surfactants.Angewandte Chemie, 124(10), 2464-2466.Brown, P., Butts, C., Dyer, R., Eastoe, J., Grillo, I., Guittard, F., Rogers, S., &Heenan, R. (2011). Anionic surfactants and surfactant ionic liquids with quaternaryammonium counterions. Langmuir, 27(8), 4563-4571.Brown, P., Butts, C. P., Eastoe, J., Fermin, D., Grillo, I., Lee, H.-C., Parker, D., Plana, D., &Richardson, R. M (2012). Anionic surfactant ionic liquids with 1-butyl- 3-methyl-imidazoliumcations: characterization and application. Langmuir, 28(5), 2502-2509.Brown, P., Butts, C. P., Eastoe, J., Grillo, I., James, C., & Khan, A. (2012). Newcatanionic surfactants with ionic liquid properties. Journal of Colloid and InterfaceScience, 395(0), 185-189.Brown, W., & Zhao, J. (1993). Adsorption of sodium dodecyl sulfate on polystyrene latex particlesusing dynamic light scattering and zeta potential measurements. Macromolecules, 26(11), 2711-2715.Brumfiel, G. (2012). Britain's big bet on graphene: Manchester institute will focus on commercialapplications of atom-thick carbon sheets. Nature, 488(7410), 140- 141.Burlatsky, S. F., Atrazhev, V. V., Dmitriev, D. V., Sultanov, V. I., Timokhina, E. N., Ugolkova, E.A., Tulyani, S., & Vincitore, A. (2013). Surface tension model for surfactant solutions at thecritical micelle concentration. Journal of Colloid and Interface Science.Buwalda, R. T., Stuart, M. C. A., & Engberts, J. B. F. N. (2000). Wormlike micellar and vesicularphases in aqueous solutions of single-tailed surfactants with aromatic counterions.Langmuir, 16(17), 6780-6786.Bystrzejewski, M., Huczko, A., Lange, H., Gemming, T., Bchner, B., & Rmmeli,M. H. (2010). Dispersion and diameter separation of multi-wall carbon nanotubes inaqueous solutions. Journal of Colloid and Interface Science, 345(2), 138-142.Carrasco, P. M., Montes, S., Garca, I., Borghei, M., Jiang, H., Odriozola, I.,Cabaero, G., & Ruiz, V. (2014). High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals.Carbon, 70(0), 157-163.Cataldi, P., Bayer, I. S., Bonaccorso, F., Pellegrini, V., Athanassiou, A., & Cingolani,R. (2015). Foldable conductive cellulose fiber networks modified by graphene nanoplatelet-bio-basedcomposites. Advanced Electronic Materials, 1(12), 1500224(1500221-1500228).Chan, A. J., Steenkeste, K., Canette, A., Eloy, M., Brosson, D., Gaboriaud, F., &Fontaine-Aupart, M.-P. (2015). Natural rubber-filler interactions: what are the parameters?Langmuir, 31(45), 12437-12446.Chan, C. H., Joy, J, Maria, H. J., & Thomas, S. (2013). Natural rubber-basedcomposites and nanocomposites: state of the art, new challenges andopportunities. In Thomas, S., Maria, H. J., Joy, J., Chan, C. H., & Pothen, L.A. (Eds.) Natural Rubber Materials: Volume 2: Composites and Nanocomposites(pp. 1 32). Cambridge: Royal Society of Chemistry.Chen, K., & Xue, D. (2014). Preparation of colloidal graphene in quantity byelectrochemical exfoliation. Journal of Colloid and Interface Science, 436(SupplementC), 41-46.Chen, Y., Zhang, B., Liu, G., Zhuang, X., & Kang, E.-T. (2012). Graphene and itsderivatives: switching ON and OFF. Chemical Society Reviews, 41(13), 4688- 4707.Chen, Y., Zhang, X., Zhang, D., Yu, P., & Ma, Y. (2011). High performancesupercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon,49(2), 573-580.Cheng, D. C. H., & Gulari, E. (1982). Micellization and intermicellar interactions in aqueoussodium dodecyl benzene sulfonate solutions. Journal of Colloid and Interface Science, 90(2),410-423.Cheng, H., Hu, C., Zhao, Y., & Qu, L. (2014). Graphene fiber: a new material platformfor unique applications. NPG Asia Mater, 6, e113.Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: solvent properties and organicreactivity. Journal of Physical Organic Chemistry, 18(4), 275-297.Cho, H. M., Gross, A. S., & Chu, J.-W. (2011). Dissecting force interactions incellulose deconstruction reveals the required solvent versatility forovercoming biomass recalcitrance. Journal of the American Chemical Society, 133(35), 14033-14041.Chua, C. K., & Pumera, M. (2013). Reduction of graphene oxide with substitutedborohydrides. Journal of Materials Chemistry A, 1(5), 1892-1898.Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a syntheticchemistry viewpoint. Chemical Society Reviews, 43(1), 291-312.Ciesielski, A., & Samori, P. (2013). Graphene via sonication assisted liquid-phaseexfoliation. Chemical Society Reviews, 43(1), 381-398.Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene.Advanced Functional Materials, 19(23), 3680-3695.Coleman, J. N. (2012). Liquid exfoliation of defect-free graphene. Accounts of ChemicalResearch, 46(1), 14-22.Collins, A. M. (2012). Nanotechnology cookbook practical, reliable and jargon-free experimentalprocedures (1?? ed.). Oxford: Elsevier.Compton, O. C., & Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, andgraphene: versatile building blocks for carbon-based materials. Small, 6(6), 711-723.Cooper, A. J., Wilson, N. R., Kinloch, I. A., & Dryfe, R. A. W. (2014). Single stageelectrochemical exfoliation method for the production of few-layer graphene via intercalation oftetraalkylammonium cations. Carbon, 66(Supplement C), 340-350.Cornish, K., Wood, D. F., & Windle, J. J. (1999). Rubber particles from four different species, examined by transmission electron microscopy and electron- paramagnetic-resonance spinlabeling, are found to consist of a homogeneous rubber core enclosed by a contiguous,monolayer biomembrane. Planta, 210(1), 85-96.Coro?, M., Pog?cean, F., Ro?u, M.-C., Socaci, C., Borodi, G., Mageru?an, L., Biri?,A. R., & Pruneanu, S. (2015). Simple and cost-effective synthesis of graphene by electrochemicalexfoliation of graphite rods. RSC Advances, 6(4), 2651- 2661.Cristadoro, A., Ai, M., Rder, H. J., Rabe, J. P., & Mllen, K. (2008). Electrical field- inducedalignment of nonpolar hexabenzocoronene molecules into columnar structures on highly orientedpyrolitic graphite investigated by STM and SFM. The Journal of Physical Chemistry C, 112(14),5563-5566.Cui, S., Canet, R., Derre, A., Couzi, M., & Delhaes, P. (2003). Characterization ofmultiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon,41(4), 797-809.Das, A., Kasaliwal, G. R., Jurk, R., Boldt, R., Fischer, D., Stckelhuber, K. W., &Heinrich, G. (2012). Rubber composites based on graphene nanoplatelets, expanded graphite,carbon nanotubes and their combination: A comparativestudy. Composites Science and Technology, 72(16), 1961-1967.Das, S., Irin, F., Tanvir Ahmed, H. S., Cortinas, A. B., Wajid, A. S., Parviz, D.,Jankowski, A. F., Kato, M., & Green, M. J. (2012). Non-covalentfunctionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer, 53(12), 2485-2494.de Heer, W. A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B.,Hankinson, J., & Conrad, E. (2011). Large area and structured epitaxial graphene producedby confinement controlled sublimation of silicon carbide. Proceedings of the National Academy ofSciences, 108(41), 16900-16905.de Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T.,Sprinkle, M., Hass, J., Sadoswki, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene.Solid State Communications, 143(1-2), 92-100.De, S., Aswal, V. K., & Ramakrishnan, S. (2010). Phenyl-ring-bearing cationicsurfactants: effect of ring location on the micellar structure. Langmuir, 26(23), 17882-17889.Derjaguin, B., & Landau, L. (1941). The theory of stability of highly charged lyophobicsols and coalescence of highly charged particles in electrolyte solutions. ActaPhysicochim, 14(633-52), 58.Di Crescenzo, A., Demurtas, D., Renzetti, A., Siani, G., De Maria, P., Meneghetti, M.,Prato, M., & Fontana, A. (2009). Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1- hexadecyl-3-vinyl-imidazolium bromidein aqueous solution. Soft Matter, 5(1), 62-66.Di Crescenzo, A., Di Profio, P., Siani, G., Zappacosta, R., & Fontana, A. (2016).Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates.Langmuir, 32(26), 6559-6570.Dez-Pascual, A. M., Valls, C., Mateos, R., Vera-Lpez, S., Kinloch, I. A., & Andrs,M. P. S. (2018). Influence of surfactants of different nature and chain length on the morphology,thermal stability and sheet resistance of graphene. Soft Matter, 14(29), 6013-6023.Doane, T. L., Chuang, C.-H., Hill, R. J., & Burda, C. (2012). Nanoparticle -potentials. Accounts of Chemical Research, 45(3), 317-326.Docherty, K. M., & Kulpa Jr, C. F. (2005). Toxicity and antimicrobial activity ofimidazolium and pyridinium ionic liquids. Green Chemistry, 7(4), 185-189.Dominguez, H. (2007). Self-aggregation of the SDS surfactant at a solid-liquidinterface. The Journal of Physical Chemistry B, 111(16), 4054-4059.Dong, B., Li, N., Zheng, L., Yu, L., & Inoue, T. (2007). Surface adsorption andmicelle formation of surface active ionic liquids in aqueous solution.Langmuir, 23(8), 4178-4182.Doucet, M., Cho, J. H., Alina, G., Bakker, J., Bouwman, W., Butler, P., Campbell,Kieran., Gonzales, M., Heenan, R., Jackson, A., Juhas, P., King, S., Kienzle, P., Krzywon, J.,Markvardsen, A., Nielsen, T., O'Driscoll, L., Potrzebowski, W., Ferraz Leal, R., Richter,T., Rozycko, P., Snow, T., & Washington, A. SasView Version 4.1.2. Retrieved June 23, 2017.https://zenodo.org/record/825675Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010).Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10(3),751-758.Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S., & Bielawski, C. W. (2011).Reduction of graphite oxide using alcohols. Journal of Materials Chemistry, 21(10), 3443-3447.Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide.Chemical Society Reviews, 39(1), 228-240.Drummond, C. J., Albers, S., & Furlong, D. N. (1992). Polymer-surfactantinteractions:(Hydroxypropyl) cellulose with ionic and ion-ionic surfactants. Colloids andsurfaces, 62(1-2), 75-85.Ducker, W. A., & Grant, L. M. (1996). Effect of substrate hydrophobicity on surfactantsurface-aggregate geometry. The Journal of Physical Chemistry, 100(28), 11507-11511.Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future.Pure and Applied Chemistry, 72(7), 1391-1398.Eastoe, J. (2003). Surfactant chemistry. Bristol: Bristol University.Eastoe, J., & Gold, S. (2005). Self-assembly in green solvents. Physical ChemistryChemical Physics, 7(7), 1352-1362.Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K., & Penfold, J. (2000). Adsorptionof ionic surfactants at the air-solution interface. Langmuir, 16(10), 4511-4518.Eastoe, J., Paul, A., Downer, A., Steytler, D. C., & Rumsey, E. (2002). Effects offluorocarbon surfactant chain structure on stability of water-in-carbon dioxide microemulsions.Links between aqueous surface tension and microemulsion stability. Langmuir, 18(8),3014-3017.Egerton, R. F. (2005). Phsyical principles of electron microscopy. New York: Springer.El Seoud, O. A., Pires, P. A. R., Abdel-Moghny, T., & Bastos, E. L. (2007). Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. Journal of Colloid and Interface Science,313(1), 296-304.Elworthy, P. H., & Mysels, K. J. (1966). The surface tension of sodiumdodecylsulfate solutions and the phase separation model of micelle formation.Journal of Colloid and Interface Science, 21(3), 331-347.Eriksson, J. C., & Ljunggren, S. (1990). Model calculations on the transitions between surfactantaggregates of different shapes. Langmuir, 6(5), 895-904.Evans, D. F., & Ninham, B. W. (1986). Molecular forces in the self-organization of amphiphiles. TheJournal of Physical Chemistry, 90(2), 226-234.Fan, W., Zhang, C., Tjiu, W. W., & Liu, T. (2013). Fabrication of electricallyconductive graphene/polystyrene composites via a combination of latex and layer-by-layerassembly approaches. Journal of Materials Research, 28(04), 611-619.Feigin, L. A., & Svergun, D. I. (1987). Structure analysis by small-angle X-ray and neutronscattering. New York: Springer.Feng, Y., Zhang, X., Shen, Y., Yoshino, K., & Feng, W. (2012). A mechanically strong,flexible and conductive film based on bacterial cellulose/graphene nanocomposite.Carbohydrate polymers, 87(1), 644-649.Fennel Evans, D., & Wennerstrom, H. (1994). The colloidal domain: Where physics, chemistry, biologyand technology meet. New York: Wiley-VCH Weinheim.Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder,electron-phonon coupling, doping and nonadiabatic effects. Solid StateCommunications, 143(1-2), 47-57.Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F.,Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). RamanSpectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401.Florio, G. M., Werblowsky, T. L., Mller, T., Berne, B. J., & Flynn, G. W. (2005). Self-assemblyof small polycyclic aromatic hydrocarbons on graphite: A combined scanning tunneling microscopy and theoretical approach. The Journal of Physical Chemistry B, 109(10),4520-4532.Food and Agricultural Organization of the United Nation: Statistic (FAOSTAT). Productionquantities of rubber by country average 1994 - 2016 (Publication). Retrieved May 31, 2018, fromFood and Agricultural Organization of theUnited Nations: http://www.fao.org/faostat/en/#data/QC.Fornes, T. D., Yoon, P. J., Hunter, D. L., Keskkula, H., & Paul, D. R. (2002). Effectof organoclay structure on nylon 6 nanocomposite morphology and properties.Polymer, 43(22), 5915-5933.Fukushima, T., & Aida, T. (2007). Ionic liquids for soft functional materials withcarbon nanotubes. Chemistry - A European Journal, 13(18), 5048-5058.Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., & Aida, T.(2003). Molecular ordering of organic molten salts triggered by single-walled carbonnanotubes. Science, 300(5628), 2072-2074.Galbraith, J. W., Giles, C. H., Halliday, A. G., Hassan, A. S. A., McAllister, D. C., Macaulay, N.,Macmillan, N. W. (1958). Adsorption at inorganic surfaces. III. The mechanism of adsorption oforganic solutes, including dyes, by graphite. Journal of Applied Chemistry, 8(7), 416-424.Galgano, P. D., & El Seoud, O. A. (2010). Micellar properties of surface active ionic liquids: Acomparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationicsurfactants. Journal of Colloid and Interface Science, 345(1), 1-11.Galgano, P. D., & El Seoud, O. A. (2011). Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison withstructurally related surfactants. Journal of Colloid and Interface Science, 361(1), 186-194.Garg, G., Hassan, P. A., Aswal, V. K., & Kulshreshtha, S. K. (2005). Tuning thestructure of SDS micelles by substituted anilinium ions. The Journal of PhysicalChemistry B, 109(4), 1340-1346.Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534. Geim, A. K.,& Novoselov, K. S. (2007). The rise of graphene. Nature Materials,6(3), 183-191.Geng, Y., Romsted, L. S., Froehner, S., Zanette, D., Magid, L. J., Cuccovia, I. M., & Chaimovich,H. (2005). Origin of the sphere-to-rod transition in cationic micelles with aromaticcounterions: specific ion hydration in the interfacial region matters. Langmuir, 21(2),562-568.George, G., Sisupal, S. J., Tomy, T., Kumaran, A., Vadivelu, P., Suvekbala, V.,Sivaram, S., & Ragupathy, L. (2018). Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparingbiocompatible polymer nanocomposites. Scientific Reports, 8(1), 11228.Ghislandi, M., Tkalya, E., Alekseev, A., Koning, C., & de With, G. (2015). Electrical conductivebehavior of polymer composites prepared with aqueous graphenedispersions. Applied Materials Today, 1(2), 88-94.Ghislandi, M., Tkalya, E., Marinho, B., Koning, C. E., & de With, G. (2013).Electrical conductivities of carbon powder nanofillers and their latex-based polymercomposites. Composites Part A: Applied Science and Manufacturing, 53(0), 145-151.Ghislandi, M., Tkalya, E., Schillinger, S., Koning, C. E., & de With, G. (2013). High performancegraphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion. CompositesScience and Technology, 80(0), 16-22.Gilje, S., Han, S., Wang, M., Wang, K. L., & Kaner, R. B. (2007). A chemical route to graphene fordevice applications. Nano Letters, 7(11), 3394-3398.Glanzer, S., & Sax, A. F. (2013). Carbon nanotubes dressed by aromatic molecules.Molecular Physics, 111(16-17), 2427-2438.Glover, A. J., Adamson, D. H., & Schniepp, H. C. (2012). Charge-driven selectiveadsorption of sodium dodecyl sulfate on graphene oxide visualized by atomic force microscopy.Journal of Physical Chemistry C, 116, 20080-20085.Goodwin, J. (2009). Colloids and interfaces with surfactants and polymers. West Sussex:John Wiley & Sons.Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Effect ofnanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatichydrocarbons. Nano Letters, 7(3), 583-587.Granite, M., Radulescu, A., & Cohen, Y. (2012). Small-angle neutron scattering from aqueousdispersions of single-walled carbon nanotubes with Pluronic F127 and poly(vinylpyrrolidone). Langmuir, 28(30), 11025-11031.Grant, L. M., Tiberg, F., & Ducker, W. A. (1998). Nanometer-scale organization of ethylene oxidesurfactants on graphite, hydrophilic silica, and hydrophobic silica. The Journal of PhysicalChemistry B, 102(22), 4288-4294.Greaves, T. L., & Drummond, C. J. (2008). Ionic liquids as amphiphile self-assembly media. ChemicalSociety Reviews, 37(8), 1709-1726.Green, A. A., & Hersam, M. C. (2009a). Emerging methods for producingmonodisperse graphene dispersions. The Journal of Physical Chemistry Letters, 1(2),544-549.Green, A. A., & Hersam, M. C. (2009b). Solution phase production of graphene with controlledthickness via density differentiation. Nano Letters, 9(12), 4031- 4036.Griffith, A., & Notley, S. M. (2012). pH dependent stability of aqueous suspensions of graphenewith adsorbed weakly ionisable cationic polyelectrolyte. Journalof Colloid and Interface Science, 369(1), 210-215.Grimme, S. (2008). Do special noncovalent stacking interactions really exist?Angewandte Chemie International Edition, 47(18), 3430-3434.Grossiord, N. (2007). A latex-based concept for making carbon nanotube/polymernanocomposites (Doctoral dissertation, Technische Universiteit Eindhoven, Netherlands). Retrieved fromhttps://pure.tue.nl/ws/files/3247483/200712265.pdfGrossiord, N., Hermant, M.-C., & Tkalya, E. (2012). Electrically conductive polymer- graphenecomposites prepared using latex technology. In V. Mittal (Ed.), Polymer-graphenenanocomposites (pp. 66-85). Cambridge: RSC Publishing.Grossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., &Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12),2866-2872.Grossiord, N., van der Schoot, P., Meuldijk, J., & Koning, C. E. (2007).Determination of the surface coverage of exfoliated carbon nanotubes by surfactantmolecules in aqueous solution. Langmuir, 23(7), 3646-3653.Grunlan, J. C., Mehrabi, A. R., Bannon, M. V., & Bahr, J. L. (2004). Water-basedsingle-walled-nanotube-filled polymer composite with an exceptionally low percolationthreshold. Advanced Materials, 16(2), 150-153.Guardia, L., Paredes, J. I., Rozada, R., Villar-Rodil, S., Martnez-Alonso, A., &Tascn, J. M. D. (2014). Production of aqueous dispersions of inorganic grapheneanalogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 4(27),14115-14127.Halle, B., Landgren, M., & Jnsson, B. (1988). The shape of ionic micelles. Journal de Physique,49(7), 1235-1259.Hassan, P. A., Fritz, G., & Kaler, E. W. (2003). Small angle neutron scattering study of sodiumdodecyl sulfate micellar growth driven by addition of a hydrotropic salt. Journal of Colloid andInterface Science, 257(1), 154-162.Hassan, P. A., Raghavan, S. R., & Kaler, E. W. (2002). Microstructural changes in SDS micellesinduced by hydrotropic salt. Langmuir, 18(7), 2543-2548.Hassan, P. A., Rana, S., & Verma, G. (2014). Making sense of Brownian motion: colloidcharacterization by dynamic light scattering. Langmuir, 31(1), 3-12.Hassan, P. A., Sawant, S. N., Bagkar, N. C., & Yakhmi, J. V. (2004). Polyanilinenanoparticles prepared in rodlike micelles. Langmuir, 20(12), 4874-4880.Hayter, J. B., & Penfold, J. (1983). Determination of micelle structure and charge by neutronsmall-angle scattering. Colloid & Polymer Science, 261(12), 1022-1030.Hazell, G., Hinojosa-Navarro, M., McCoy, T. M., Tabor, R. F., & Eastoe, J. (2016).Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up.Journal of Colloid and Interface Science, 464, 285-290.He, Y., Li, Z., Simone, P., & Lodge, T. P. (2006). Self-assembly of block copolymer micelles in anionic liquid. Journal of the American Chemical Society, 128(8), 2745-2750.Heinze, T. (2015). Cellulose: structure and properties. In O. J. Rojas (Ed.), Cellulose chemistryand properties: fibers, nanocelluloses and advanced materials (pp. 1-52). Raleigh: Springer.Hernndez, M., Bernal, M. d. M., Verdejo, R., Ezquerra, T. A., & Lpez-Manchado,M. A. (2012). Overall performance of natural rubber/graphenenanocomposites. Composites Science and Technology, 73(0), 40-46.Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2009).Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery.Langmuir, 26(5), 3208-3213.Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland,B., Byrne, M., & GunKo, Y. K. (2008). High-yield production of graphene by liquid-phaseexfoliation of graphite. Nature nanotechnology, 3(9), 563.Hollamby, M. J. (2013). Practical applications of small-angle neutron scattering.Physical Chemistry Chemical Physics, 15, 10566-10579.Holland, N. B., Ruegsegger, M., & Marchant, R. E. (1998). Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants. Langmuir, 14(10),2790-2795.Holmberg, K., Jnsson, B., Kronberg, B., & Lindman, B. (2003). Surfactants and polymersin aqueous solution (Vol. 2). Surrey: John Wiley & Sons, Ltd.Hou, M., Xu, M., & Li, B. (2018). Enhanced electrical conductivity of cellulosenanofiber/graphene composite paper with a sandwich structure. ACS SustainableChemistry & Engineering, 6(3), 2983-2990.Hsieh, A. G., Korkut, S., Punckt, C., & Aksay, I. A. (2013). Dispersion stability offunctionalized graphene in aqueous sodium dodecyl sulfate solutions. Langmuir,29(48), 14831-14838.Hsieh, A. G., Punckt, C., Korkut, S., & Aksay, I. A. (2013). Adsorption of sodium dodecylsulfate on functionalized graphene measured by conductometrictitration. The Journal of Physical Chemistry B, 117(26), 7950-7958.Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z.,Fan, S., Bloking, J. T., McGehee, M. D., Wagberg, L., & Cui, Y. (2012). Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science, 6(2),513-518.Huang, L., Wu, B., Yu, G., & Liu, Y. (2011). Graphene: learning from carbon nanotubes.Journal of Materials Chemistry, 21(4), 919-929.Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the AmericanChemical Society, 80(6), 1339-1339.Hunter, C. A., & Sanders, J. K. M. (1990). The nature of. pi.-. pi. interactions. Journal of theAmerican Chemical Society, 112(14), 5525-5534.Hunter, R. J. (1981). Zeta potential in colloid science: principles and applications(Vol. 2). London: Academic press.Imae, T. (1996). SANS investigation of supramolecular assemblies constructed in aqueousalkyldimethylamine oxide solutions with organic additives. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 109, 291-304.Imae, T., Kakitani, M., Kato, M., & Furusaka, M. (1996). Effect of organic additives orcounterions on the supramolecular assembly structures constructed by amphiphiles. Asmall-angle neutron scattering investigation. The Journal of Physical Chemistry, 100(51),20051-20055.Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fractionsurfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2),269-273.Israelachvili, J., & Pashley, R. (1982). The hydrophobic interaction is long range,decaying exponentially with distance. Nature, 300(5890), 341-342.Israelachvili, J. (2011). Intermolecular and surface forces: revised third edition.Boston: Academic Press.Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the ChemicalSociety, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.Javadian, S., Nasiri, F., Heydari, A., Yousefi, A., & Shahir, A. A. (2014). Modifying effect of imidazolium-based ionic liquids on surface activity and self- assemblednanostructures of sodium dodecyl sulfate. The Journal of Physical Chemistry B, 118(15), 4140-4150.Jiang, D.-E., Sumpter, B. G., & Dai, S. (2006). How do aryl groups attach to agraphene sheet? The Journal of Physical Chemistry B, 110(47), 23628-23632.Jiang, L., Gao, L., & Sun, J. (2003). Production of aqueous colloidal dispersions ofcarbon nanotubes. Journal of Colloid and Interface Science, 260(1), 89-94.Jiang, S., Gui, Z., Bao, C., Dai, K., Wang, X., Zhou, K., Shi, Y., Lo, S., & Hu, Y. (2013).Preparation of functionalized graphene by simultaneous reduction and surface modification andits polymethyl methacrylate composites through latex technology and melt blending.Chemical Engineering Journal, 226(0), 326-335.Jiao, J., Dong, B., Zhang, H., Zhao, Y., Wang, X., Wang, R., & Yu, L. (2012).Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids inwater. The Journal of Physical Chemistry B, 116(3), 958-965.John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate polymers,71(3), 343-364.Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose fromvarious natural resources and residues: a review. Cellulose, 22(2), 935-969.Juhu, D., & Lang, J. (1993). Effect of surfactant postadded to latex dispersion onfilm formation: a study by atomic force microscopy. Langmuir, 9(3), 792-796.Juhu, D., & Lang, J. (1994). Latex film surface morphology studied by atomic force microscopy:effect of a non-ionic surfactant postadded to latex dispersion. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 87(3), 177-185.Kabe, R., Feng, X., Adachi, C., & Mllen, K. (2014). Exfoliation of graphite intographene in polar solvents mediated by amphiphilic hexa-peri-hexabenzocoronene. Chemistry - An Asian Journal, 9(11), 3125-3129.Kakaei, K., & Hasanpour, K. (2014). Synthesis of graphene oxide nanosheets byelectrochemical exfoliation of graphite in cetyltrimethylammonium bromide and itsapplication for oxygen reduction. Journal of Materials Chemistry A, 2(37), 15428-15436.Kang, H., Zuo, K., Wang, Z., Zhang, L., Liu, L., & Guo, B. (2014). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier andmechanical performance. Composites Science and Technology, 92(0), 1-8.Kang, Y.-R., Li, Y.-L., Hou, F., Wen, Y.-Y., & Su, D. (2012). Fabrication of electric papers ofgraphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexibleelectrodes for energy storage. Nanoscale, 4(10), 3248-3253.Kastrisianaki-Guyton, E. S., Chen, L., Rogers, S. E., Cosgrove, T., & VanDuijneveldt, J. S. (2015). Adsorption of F127 onto single-walled carbon nanotubes characterized using small-angle neutron scattering. Langmuir, 31(10), 3262-3268.Katsnelson, M. I. (2007). Graphene: carbon in two dimensions. Materials Today, 10(1-2),20-27.Kim, B. S., Hayes, R. A., & Ralston, J. (1995). The adsorption of anionic naphthalene derivativesat the graphite-aqueous solution interface. Carbon, 33(1), 25-34.Kim, H. (2009). Processing, morphology and properties of graphene reinforced polymernanocomposites (Doctoral dissertation, University of Minnesotta). Retrieved fromhttps://conservancy.umn.edu/handle/11299/56729.Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymernanocomposites. Macromolecules, 43(16), 6515-6530.Kim, H., Kobayashi, S., AbdurRahim, M. A., Zhang, M. J., Khusainova, A., Hillmyer,M. A., Abdala, A. A., & Macosko, C. W. (2011). Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 52(8), 1837-1846.Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., & Kim,J. (2015). Review of nanocellulose for sustainable future materials. InternationalJournal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197-213.Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: new faces of grapheneoxide. Accounts of Chemical Research, 45(8), 1356-1364.Kim, J. S., Hong, S., Park, D., & Shim, S. (2010). Water-borne graphene-derivedconductive SBR prepared by latex heterocoagulation. Macromolecular Research, 18(6),558-565.Kim, J. S., Yun, J. H., Kim, I., & Shim, S. E. (2011). Electrical properties ofgraphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature.Journal of Industrial and Engineering Chemistry, 17(2), 325-330.Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574.Kiziltas, E. E., Kiziltas, A., Rhodes, K., Emanetoglu, N. W., Blumentritt, M., &Gardner, D. J. (2016). Electrically conductive nano graphite-filled bacterialcellulose composites. Carbohydrate polymers, 136, 1144-1151.Klemm, D., Schumann, D., Kramer, F., Heler, N., Koth, D., & Sultanova, B. (2009). Nanocellulose materials-different cellulose, different functionality. Paper presented at theMacromolecular symposia.Klevens, H. B. (1953). Structure and aggregation in dilate solution of surface active agents.Journal of the American Oil Chemists Society, 30(2), 74-80.Koga, H., Nogi, M., Komoda, N., Nge, T. T., Sugahara, T., & Suganuma, K. (2014). Uniformlyconnected conductive networks on cellulose nanofiber paper for transparent paperelectronics. NPG Asia Materials, 6(3), e93.Kotlarchyk, M., & Chen, S. H. (1983). Analysis of small angle neutron scatteringspectra from polydisperse interacting colloids. The Journal of chemical physics,79(5), 2461-2469.Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., & Car,R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. NanoLetters, 8(1), 36-41.Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recentadvances in graphene based polymer composites. Progress in Polymer Science, 35(11),1350-1375.Kumar, S., Sharma, D., & Sharma, D. (2006). Small-angle neutron scattering studies on sodium dodecylbenzenesulfonate-tetra-n-butylammonium bromide systems. Journal of surfactants anddetergents, 9(1), 77-82.Kyowa. What is surface tension? Retrieved April 23, 2018, from http://www.face-kyowa.co.jp/english/Lagaly, G. (1999). Editorial. Applied clay science, 15(1-2), 1-9.Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose- Itsbarrier properties and applications in cellulosic materials: A review. Carbohydratepolymers, 90(2), 735-764.LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicatenanocomposites: an overview. Applied Clay Science, 15(1), 11-29.Lechner, C., & Sax, A. F. (2014). Adhesive forces between aromatic molecules and graphene. TheJournal of Physical Chemistry C, 118(36), 20970-20981.Lewis, K. E., & Robinson, C. P. (1970). The interaction of sodium dodecyl sulfate withmethyl cellulose and polyvinyl alcohol. Journal of Colloid and Interface Science, 32(3), 539-546.Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueousdispersions of graphene nanosheets. Nature Nanotechnology, 3(2),101-105.Li, Z. X., Lu, J. R., Thomas, R. K., & Penfold, J. (1997). Neutron reflectivity studiesof the adsorption of aerosol-ot at the air-water interface: the structure of the sodium salt. TheJournal of Physical Chemistry B, 101(9), 1615-1620.Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology,42(19), 7254-7259.Lin, S., Shih, C.-J., Sresht, V., Rajan, A. G., Strano, M. S., & Blankschtein, D. (2016).Understanding the colloidal dispersion stability of 1D and 2D materials: perspectivesfrom molecular simulations and theoretical modeling. Advances in Colloid and Interface Science,244, 36-53.Lin, S., Shih, C.-J., Strano, M. S., & Blankschtein, D. (2011). Molecular insights into the surface morphology, layering structure, and aggregation kinetics ofsurfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 133(32),12810-12823.Lindman, B., Karlstrm, G., & Stigsson, L. (2010). On the mechanism of dissolution of cellulose.Journal of Molecular Liquids, 156(1), 76-81.Lisunova, M. O., Lebovka, N. I., Melezhyk, O. V., & Boiko, Y. P. (2006). Stability of the aqueoussuspensions of nanotubes in the presence of nonionic surfactant. Journal of Colloid and InterfaceScience, 299(2), 740-746.Liu, J., Notarianni, M., Will, G., Tiong, V. T., Wang, H., & Motta, N. (2013).Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness onthe sheet resistance and capacitive properties. Langmuir, 29(43), 13307-13314.Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., Liu, X., Gopal Sahoo, N.,:I, C., Shen, Z., & Lin, J. (2013). Improved synthesis of graphene flakes from the multipleelectrochemical exfoliation of graphite rod. Nano Energy, 2(3), 377-386.Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). Onestep ionicliquidassisted electrochemical synthesis of ionic functionalized graphene sheets directlyfrom graphite. Advanced Functional Materials, 18(10), 1518- 1525.Liu, S., Wu, B., & Yang, X. (2014). Electrolyte-induced reorganization of SDS self- assembly ongraphene: a molecular simulation study. ACS Applied Materials & Interfaces, 6(8), 5789-5797.Liu, X., Wang, L.-Y., Zhao, L.-F., He, H.-F., Shao, X.-Y., Fang, G.-B., Wan, Z.-G., &Zeng, R.-C. (2016). Research progress of graphene-based rubbernanocomposites. Polymer Composites, 39(4), 1006-1022.Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S.,Blighe, F. M., De, S., Wang, Z., McGovern, I. T., Duesberg, G. S., & Coleman, J. N.(2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/watersolutions. Journal of the American Chemical Society, 131(10), 3611-3620.Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High- concentration, surfactant-stabilized graphene dispersions. ACS Nano, 4(6), 3155-3162.Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science.Progress in Polymer Science, 34(5), 431-448.Lu, J., Yang, J.-x., Wang, J., Lim, A., Wang, S., & Loh, K. P. (2009). One-potsynthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliationof graphite in ionic liquids. ACS Nano, 3(8), 2367-2375.?uczak, J., Hupka, J., Thming, J., & Jungnickel, C. (2008). Self-organization ofimidazolium ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 329(3), 125-133.Magid, L. J., Li, Z., & Butler, P. D. (2000). Flexibility of elongated sodium dodecyl sulfatemicelles in aqueous sodium chloride: a small-angle neutron scattering study. Langmuir, 16,10028-10036.Mahajan, R. K., Vohra, K. K., Kaur, N., & Aswal, V. K. (2008). Organic additives and electrolytesas cloud point modifiers in octylphenol ethoxylate solutions. Journal of surfactants anddetergents, 11(3), 243-250.Malaysia Rubber Board. (2018). Natural Rubber Market Review. Retrieved. fromhttp://www3.lgm.gov.my/Digest/digest/digest-5-2018.pdf.Manne, S., Cleveland, J. P., Gaub, H. E., Stucky, G. D., & Hansma, P. K. (1994).Direct visualization of surfactant hemimicelles by force microscopy of the electricaldouble layer. Langmuir, 10(12), 4409-4413.Mariano, M., El Kissi, N., & Dufresne, A. (2014). Cellulose nanocrystals and relatednanocomposites: review of some properties and challenges. Journal of PolymerScience Part B: Polymer Physics, 52(12), 791-806.Martinez, C. R., & Iverson, B. L. (2012). Rethinking the term "pi-stacking". Chemical Science,3(7), 2191-2201.Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., & Resasco, D. E. (2003).Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B,107(48), 13357-13367.Matos, C. F., Galembeck, F., & Zarbin, A. J. G. (2014). Multifunctional andenvironmentally friendly nanocomposites between natural rubber and graphene orgraphene oxide. Carbon, 78(0), 469-479.Matsuo, Y., Niwa, T., & Sugie, Y. (1999). Preparation and characterization of cationicsurfactant-intercalated graphite oxide. Carbon, 37(6), 897-901.May, S., & Ben-Shaul, A. (2001). Molecular theory of the sphere-to-rod transition and the secondCMC in aqueous micellar solutions. The Journal of Physical Chemistry B, 105(3), 630-640.McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J.,Herrera-Alonso, M., Millius, D. L., Car, R., & Prudhomme, R. K. (2007). Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite. Chemistry ofMaterials, 19(18), 4396-4404.McCoy, T. M., Brown, P., Eastoe, J., & Tabor, R. F. (2015). Noncovalent magnetic control andreversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACSApplied Materials & Interfaces, 7(3), 2124-2133.McCoy, T. M., de Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor,R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry ChemicalPhysics, 20(24), 16801-16816.Medronho, B., & Lindman, B. (2014). Competing forces during cellulose dissolution: from solvents tomechanisms. Current Opinion in Colloid & Interface Science, 19(1), 32-40.Medronho, B., & Lindman, B. (2015). Brief overview on cellulosedissolution/regeneration interactions and mechanisms. Advances in colloid and interface science,222, 502-508.Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., & Lindman, B. (2012).Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects androle of hydrophobic interactions. Cellulose, 19(3), 581-587.Menger, F. M., & Rizvi, S. A. A. (2011). Relationship between surface tension and surface coverage.Langmuir, 27(23), 13975-13977.Meyer, E. E., Rosenberg, K. J., & Israelachvili, J. (2006). Recent progress inunderstanding hydrophobic interactions. Proceedings of the National Academy of Sciences, 103(43),15739-15746.Michler, G. H. (2008). Electron microscopy of polymer. Leipzig: Springer-Verlag BerlinHeidelberg.Milner, E. M., Skipper, N. T., Howard, C. A., Shaffer, M. S. P., Buckley, D. J.,., Cullen, E. L., Heenan, R. K., Lindner, P., & Schweins, R.(2012). Structure and morphology of charged graphene platelets in solution bysmall-angle neutron scattering. Journal of the American Chemical Society, 134(20),8302-8305.Mohamed, A., Anas, A., Abu Bakar, S., Aziz, A., Sagisaka, M., Brown, P., Eastoe, J., Kamari, A.,Hashim, N., & Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised byhighly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites.Colloid and Polymer Science, 292(11), 3013-3023.Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., Sagisaka, M., Brown, P., & Eastoe, J. (2015). Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journalof Colloid and Interface Science, 455, 179-187.Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J.(2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances inColloid and Interface Science, 230, 54-69.Mohamed, A., Sagisaka, M., Guittard, F., Cummings, S., Paul, A., Rogers, S. E., Heenan,R. K., Dyer, R., & Eastoe, J. (2011). Low fluorine content co?-philic surfactants. Langmuir,27(17), 10562-10569.Mohamed, A., Sagisaka, M., Hollamby, M., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J.(2012). Hybrid CO?-philic surfactants with low fluorine content. Langmuir, 28(15),6299-6306.Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., Nave,S., Dyer, R., Rogers, S. E., Heenan, R. K., & Eastoe, J. (2010). Universal surfactantfor water, oils, and CO?. Langmuir, 26(17), 13861-13866.Mohanty, A., & Dey, J. (2007). Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n-dodecyloxy)benzoyl]-l-aminoacidates in Water. Langmuir, 23(3), 1033-1040.Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewableresources: opportunities and challenges in the green materials world. Journal of Polymersand the Environment, 10(1-2), 19-26.Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbonnanotubes. Macromolecules, 39(16), 5194-5205.Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterialsreview: structure, properties and nanocomposites. ChemicalSociety Reviews, 40(7), 3941-3994.Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J., & Talmon, Y.(2003). Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters,3(10), 1379-1382.Moulik, S. P., Haque, M. E., Jana, P. K., & Das, A. R. (1996). Micellar properties of cationic surfactants in pure and mixed states. The Journal of Physical Chemistry, 100(2),701-708.Myers, D. (1999). Surfaces, interfaces, and colloids (2?? ed.). New York: Wiley-Vch New York.Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected roleof the surfactant tail. Langmuir, 18(1), 31-38.Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N.M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene.Science, 320(5881), 1308.Najafabadi, A. T., & Gyenge, E. (2014). High-yield graphene production byelectrochemical exfoliation of graphite: Novel ionic liquid (IL)-acetonitrile electrolytewith low IL content. Carbon, 71(0), 58-69.Nave, S., Eastoe, J., Heenan, R. K., Steytler, D., & Grillo, I. (2002). What is sospecial about Aerosol-OT? Part III - glutaconate versus sulfosuccinate headgroupsand oil-water interfacial tensions. Langmuir, 18(5), 1505-1510.Nave, S., Eastoe, J., & Penfold, J. (2000). What is so special about Aerosol-OT? 1.Aqueous systems. Langmuir, 16(23), 8733-8740.Nave, S., Paul, A., Eastoe, J., Pitt, A. R., & Heenan, R. K. (2005). What is so special aboutAerosol-OT? Part IV. Phenyl-tipped surfactants. Langmuir, 21(22), 10021-10027.Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surfacenanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 390(1-3), 157-166.Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen- bondingsystem in cellulose I from synchrotron X-ray and neutron fiber diffraction. Journal ofthe American Chemical Society, 124(31), 9074-9082.Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically transparent nanofiber paper.Advanced materials, 21(16), 1595-1598.Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonicexfoliation with continuous surfactant addition. Langmuir, 28(40),14110-14113.Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I.,Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Diracfermions in graphene. Nature, 438(7065), 197.Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva,I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films.Science, 306(5696), 666-669.Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S. B., Piccinini, M.,Illescas, J., & Mariani, A. (2011). High concentration few-layer graphene sheets obtainedby liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 21(10),3428-3431.O'Dea, A. R., Smart, R. S. C., & Gerson, A. R. (1999). Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous solutions onto graphite. Carbon,37(7), 1133-1142.Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamicsinvestigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7(19),9148-9156.Pang, H., Xu, L., Yan, D.-X., & Li, Z.-M. (2014). Conductive polymer composites withsegregated structures. Progress in Polymer Science, 39(11), 1908-1933.Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomernanocomposites. Carbon, 95, 460-484.Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J.M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphenenanosheets derived from graphite oxide. Langmuir, 25(10), 5957- 5968.Paria, S., Manohar, C., & Khilar, K. C. (2005). Adsorption of anionic and non-ionic surfactants ona cellulosic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2),221-229.Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011).Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019- 3023.Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes.Nature Nanotechnology, 4(4), 217-224.Paruchuri, V. K., Nguyen, A. V., & Miller, J. D. (2004). Zeta-potentials of self-assembled surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces.Colloids and Surfaces A: Physicochemical and EngineeringAspects, 250(1), 519-526.Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., & Mllen, K. (2014).Exfoliation of graphite into graphene in aqueous solutions of inorganic salts.Journal of the American Chemical Society, 136(16), 6083-6091.Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., & Green, M. J. (2012).Dispersions of non-covalently functionalized graphene with minimal stabilizer.ACS Nano, 6(10), 8857-8867.Pashley, R., & Karaman, M. (2005). Applied colloid and surface chemistry. Cornwall: John Wiley &Sons.Patole, A. S., Patole, S. P., Kang, H., Yoo, J.-B., Kim, T.-H., & Ahn, J.-H. (2010). Afacile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Journal of Colloid and Interface Science, 350(2),530-537.Patrick, H. N., & Warr, G. G. (2000). Self-assembly structures of nonionic surfactants atgraphite-solution interfaces. 2. Effect of polydispersity and alkyl chain branching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 162(13), 149-157.Patrick, H. N., Warr, G. G., Manne, S., & Aksay, I. A. (1997). Self-assemblystructures of nonionic surfactants at graphite/solution interfaces. Langmuir, 13(16),4349-4356.Paul, A., Griffiths, P. C., Pettersson, E., Stilbs, P., Bales, B. L., Zana, R., & Heenan,R. K. (2005). Nuclear magnetic resonance and small-angle neutron scattering studies of anionicsurfactants with macrocounterions: tetramethylammonium dodecyl sulfate. The Journal of PhysicalChemistry B, 109(33), 15775-15779.Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites.Polymer, 49(15), 3187-3204.Peng, H., Meng, L., Niu, L., & Lu, Q. (2012). Simultaneous reduction and surfacefunctionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid.The Journal of Physical Chemistry C, 116(30), 16294-16299.Peng, R., Wang, Y., Tang, W., Yang, Y., & Xie, X. (2013). Progress in imidazolium ionic liquidsassisted fabrication of carbon nanotube and graphene polymer composites. Polymers, 5(2),847.Prez, E. M., & Martn, N. (2015). - interactions in carbon nanostructures.Chemical Society Reviews, 44(18), 6425-6433.Pham, V. H., Dang, T. T., Hur, S. H., Kim, E. J., & Chung, J. S. (2012). Highlyconductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite preparedby self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACSApplied Materials & Interfaces, 4(5),2630-2636.Pichayakorn, W., Suksaeree, J., Boonme, P., Taweepreda, W., & Ritthidej, G. C. (2012).Preparation of deproteinized natural rubber latex and properties of films formed byitself and several adhesive polymer blends. Industrial & Engineering Chemistry Research,51(41), 13393-13404.Pinkert, A., Marsh, K. N., Pang, S., & Staiger, M. P. (2009). Ionic liquids and their interactionwith cellulose. Chemical Reviews, 109(12), 6712-6728.Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymernanocomposites. Polymer, 52(1), 5-25.Potts, J. R., Shankar, O., Du, L., & Ruoff, R. S. (2012). Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/naturalrubber nanocomposites. Macromolecules, 45(15), 6045-6055.Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites.Composites Science and Technology, 74(0), 166-172.Price, B. K., Hudson, J. L., & Tour, J. M. (2005). Green chemical functionalization ofsingle-walled carbon nanotubes in ionic liquids. Journal of the American Chemical Society,127(42), 14867-14870.Quennouz, N., Hashmi, S. M., Choi, H. S., Kim, J. W., & Osuji, C. O. (2016).Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 12(1), 157-164.Rabe, J. P., & Buchholz, S. (1991). Commensurability and mobility in two-dimensional molecular patterns on graphite. Science, 253(5018), 424-427.Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges- origin ofstability and potential for magnetism in carbon materials. Journal of the American ChemicalSociety, 127(16), 5917-5927.Rahman, R., Foster, J. T., & Haque, A. (2013). Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites. The Journal of Physical Chemistry A, 117(25),5344-5353.Rajter, R. F., French, R. H., Ching, W. Y., Carter, W. C., & Chiang, Y. M. (2007). Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbonnanotubes in water from ab initio optical properties. Journal of Applied Physics, 101(5),054303.Ramalingam, P., Pusuluri, S. T., Periasamy, S., Veerabahu, R., & Kulandaivel, J. (2013).Role of deoxy group on the high concentration of graphene in surfactant/water media. RSCAdvances, 3(7), 2369-2378.Ramli, N. (2017). Kenaf production. Retrieved May 31, 2018. from/www.mpic.gov.my.Rausch, J., Zhuang, R.-C., & Mder, E. (2010). Surfactant assisted dispersion offunctionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Scienceand Manufacturing, 41(9), 1038-1046.Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review frompreparation to processing. Progress in Polymer Science, 28(11), 1539- 1641.Reczek, J. J., & Iverson, B. L. (2006). Using aromatic donor acceptor interactions to affectmacromolecular assembly. Macromolecules, 39(17), 5601-5603.Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M., & Iverson, B. L. (2006).Tunable columnar mesophases utilizing C2 symmetric aromatic donor- acceptorcomplexes. Journal of the American Chemical Society, 128(24), 7995-8002.Regev, O., ElKati, P. N. B., Loos, J., & Koning, C. E. (2004). Preparation ofconductive nanotube-polymer composites using latex technology. Advanced Materials, 16(3),248-251.Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., &Kong, J. (2008). Large area, few-layer graphene films on arbitrary substrates by chemical vapordeposition. Nano Letters, 9(1), 30-35.Remsing, R. C., Swatloski, R. P., Rogers, R. D., & Moyna, G. (2006). Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and35/37 Cl NMR relaxation study on model systems. Chemical Communications(12), 1271-1273.Rippel, M. M., Lee, L.-T., Leite, C. A. P., & Galembeck, F. (2003). Skim and cream natural rubberparticles: colloidal properties, coalescence and film formation. Journal of Colloid and InterfaceScience, 268(2), 330-340.Rochette, C. N., Crassous, J. J., Drechsler, M., Gaboriaud, F., Eloy, M., de Gaudemaris, B., & Duval, J. F. L. (2013). Shell structure of natural rubberparticles: evidence of chemical stratification by electrokinetics and cryo-TEM. Langmuir, 29(47),14655-14665.Rojas, O. J. (2016). Cellulose chemistry and properties: fibers, nanocelluloses andadvanced materials (Vol. 271). New York: Springer.Rosen, M. J., & Kunjappu, J. T. (2004). Surfactants and interfacial phenomena (3?? ed.). NewJersey: John Wiley & Sons.Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S . (2009). Cellulose modification by polymergrafting: a review. Chemical Society Reviews, 38(7), 2046-2064.Sa, V., & Kornev, K. G. (2011). Analysis of stability of nanotube dispersions usingsurface tension isotherms. Langmuir, 27(22), 13451-13460.Sadasivuni, K. K., Ponnamma, D., Thomas, S., & Grohens, Y. (2014). Evolution fromgraphite to graphene elastomer composites. Progress in Polymer Science, 39(4), 749-780.Sagisaka, M., Iwama, S., Hasegawa, S., Yoshizawa, A., Mohamed, A., Cummings, S., Rogers, S. E.,Heenan, R. K., & Eastoe, J. (2011). Super-efficient surfactant for stabilizing water-in-carbondioxide microemulsions. Langmuir, 27(10), 5772-5780.Sagisaka, M., Iwama, S., Yoshizawa, A., Mohamed, A., Cummings, S., & Eastoe, J. (2012). Effective and efficient surfactant for CO? having only short fluorocarbon chains. Langmuir,28(30), 10988-10996.Sagisaka, M., Narumi, T., Niwase, M., Narita, S., Ohata, A., James, C., Yoshizawa, A., Taffin deGivenchy, E. P., Guittard, F., & Alexander, S. (2014). Hyper- branched hydrocarbonsurfactants give fluorocarbon-like low surface energies. Langmuir, 30(21), 6057-6063.Samsuri, A. (2013). Theory and mechanisms of filler reinforcement in natural rubber. In S. Thomas,H. J. Maria, J. Joy, C. H. Chan & L. A. Pothen (Eds.), Natural Rubber-Based Composites and Nanocomposites: State of the Art, New Challenges and Opportunities (pp. 73-109).Cambridge: Royal Society of Chemistry.Sansatsadeekul, J., Sakdapipanich, J., & Rojruthai, P. (2011). Characterization ofassociated proteins and phospholipids in natural rubber latex. Journal of Bioscience andBioengineering, 111(6), 628-634.Schaefer, D. W., & Justice, R. S. (2007). How nano are nanocomposites?Macromolecules, 40(24), 8501-8517.Schramm, L. L. (2006). Emulsions, foams, and suspensions: fundamentals and applications.Weinheim: Wiley VCH.Sefcik, J., Verduyn, M., Storti, G., & Morbidelli, M. (2003). Charging of latexparticles stabilized by sulfate surfactant. Langmuir, 19(11), 4778-4783.Seo, J.-W. T., Green, A. A., Antaris, A. L., & Hersam, M. C. (2011). High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. TheJournal of Physical Chemistry Letters, 2(9), 1004- 1008.Sethuraj, M. R., & Mathew, N. T. (1922). Natural rubber: biology, cultivation and technology(Vol. 23). Netherlands: Elsevier.Shah, K., Chiu, P., & Sinnott, S. B. (2006). Comparison of morphology and mechanicalproperties of surfactant aggregates at water-silica and water- graphite interfaces frommolecular dynamics simulations. Journal of Colloidand Interface Science, 296(1), 342-349.Shah, R. K., Hunter, D. L., & Paul, D. R. (2005). Nanocomposites from poly(ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology andproperties. Polymer, 46(8), 2646-2662.Shahil, K. M. F., & Balandin, A. A. (2012). Graphene-multilayer graphenenanocomposites as highly efficient thermal interface materials. Nano Letters, 12(2), 861-867.Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions usingsurfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495-504.Shen, B., Zhai, W., Chen, C., Lu, D., Wang, J., & Zheng, W. (2011). Melt blending in situ enhancesthe interaction between polystyrene and graphene through - stacking. ACS AppliedMaterials & Interfaces, 3(8), 3103-3109.Shen, J., He, Y., Wu, J., Gao, C., Keyshar, K., Zhang, X., Yang, Y., Ye, M., Vajtai, R., & Lou, J.(2015). Liquid phase exfoliation of two-dimensional materials by directly probing and matchingsurface tension components. Nano Letters, 15(8), 5449-5454.Shen, J., Hu, Y., Li, C., Qin, C., & Ye, M. (2009). Synthesis of amphiphilic graphenenanoplatelets. Small, 5(1), 82-85.Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., & Ye, M. (2009). Fast and facile preparationof graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15),3514-3520.Shen, J., Wu, J., Wang, M., Dong, P., Xu, J., Li, X., Zhang, X., Yuan, J., Wang, X., & Ye, M.(2016). Surface tension components based selection of cosolvents for efficient liquid phaseexfoliation of 2D materials. Small, 12(20), 2741-2749.Sherif, A., Izzuddin, Z., Qingshi, M., Nobuyuki, K., Andrew, M., Hsu-Chiang, K., Peter,M., Jun, M., & Liquin, Z. (2013). Melt compounding with graphene to develop functional,high-performance elastomers. Nanotechnology, 24(16), 165601.Shi, G., Araby, S., Gibson Christopher, T., Meng, Q., Zhu, S., & Ma, J. (2018).Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Advanced Functional Materials, 28(19), 1706705.Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2010). Understanding thestabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamicssimulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society,132(41), 14638-14648.Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2015). Understanding thestabilization of single-walled carbon nanotubes and graphene in ionicsurfactant aqueous solutions: large-scale coarse-grained molecular dynamicssimulation-assisted DLVO theory. The Journal of Physical Chemistry C, 119(2), 1047-1060.Shih, C.-J., Paulus, G. L. C., Wang, Q. H., Jin, Z., Blankschtein, D., & Strano, M. S. (2012).Understanding surfactant/graphene interactions using a graphene field effect transistor: relatingmolecular structure to hysteresis and carrier mobility. Langmuir, 28(22), 8579-8586.Shim, Y., & Kim, H. J. (2009). Solvation of carbon nanotubes in a room-temperature ionic liquid.ACS Nano, 3(7), 1693-1702.Shinde, D. B., Brenker, J., Easton, C. D., Tabor, R. F., Neild, A., & Majumder, M. (2016). Shearassisted electrochemical exfoliation of graphite to graphene. Langmuir, 32(14), 3552-3559.Silvera-Batista, C. A., & Ziegler, K. J. (2011). Swelling the hydrophobic core ofsurfactant-suspended single-walled carbon nanotubes: A SANS study. Langmuir, 27(18),11372-11380.Singh, G., Singh, G., & Kang, T. S. (2016). Micellization behavior of surface active ionic liquidshaving aromatic counterions in aqueous media. The Journal of Physical Chemistry B, 120(6),1092-1105.Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene basedmaterials: Past, present and future. Progress in Materials Science, 56(8), 1178-1271.Sir, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocompositematerials: a review. Cellulose, 17(3), 459-494.Skoog, D. A., Holler, E. J., & Crouch, S. R. (2007). Principles of instrumentalanalysis (Vol. 6). Canada: Thomson Brooks/Cole.Smith, G. N., Alexander, S., Brown, P., Gillespie, D. A. J., Grillo, I., Heenan, R. K., James, C.,Kemp, R. Rogers, S. E., & Eastoe, J. (2014). Interaction between surfactants and colloidallatexes in nonpolar solvents studied using contrast- variation small-angle neutron scattering.Langmuir, 30(12), 3422-3431.Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsivepotential barriers for the dispersion of graphene using surfactants. New Journal ofPhysics, 12(12), 125008.Sousa, F. D. B. d., & Scuracchio, C. H. (2014). The use of atomic force microscopy as an importanttechnique to analyze the dispersion of nanometric fillers and morphology innanocomposites and polymer blens based on elastomers.Polimeros, 24(6), 661-672.Spyrou, K., Calvaresi, M., Diamanti, E. K., Tsoufis, T., Gournis, D., Rudolf, P., &Zerbetto, F. (2015). Graphite oxide and aromatic amines: Size matters.Advanced Functional Materials, 25(2), 263-269.Srinivas, G., Nielsen, S. O., Moore, P. B., & Klein, M. L. (2006). Molecular dynamics simulationsof surfactant self-organization at a solid-liquid interface. Journal of the American ChemicalSociety, 128(3), 848-853.Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J.,Stach, E. A., Piner, R. D., Nguyen, S. B. T., & Ruoff, R. S. (2006). Graphene- based compositematerials. Nature, 442(7100), 282-286.Stone, M. T., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2003). Molecular differences between hydrocarbon and fluorocarbon surfactants at the CO?/water interface. Journal ofPhysical Chemistry B, 107(37), 10185-10192.Stone, M. T., Smith, P. G., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P.(2004). Low interfacial free volume of stubby surfactants stabilizes water-in- carbon dioxidemicroemulsions. Journal of Physical Chemistry B, 108(6), 1962-1966.Strano, M. S., Moore, V. C., Miller, M. K., Allen, M. J., Haroz, E. H., Kittrell, C., Hauge, R.H., & Smalley, R. E. (2003). The role of surfactant adsorption during ultrasonicationin the dispersion of single-walled carbon nanotubes. Journal of Nanoscience andNanotechnology, 3(1-2), 81-86.Stubbs, J. M., Durant, Y. G., & Sundberg, D. C. (1999). Competitive adsorption of sodium dodecyl sulfate on two polymer surfaces within latex blends. Langmuir, 15(9), 3250-3255.Subrahmanyam, K. S., Ghosh, A., Gomathi, A., Govindaraj, A., & Rao, C. N. R. (2009).Covalent and noncovalent functionalization and solubilization of graphene. Nanoscience andNanotechnology Letters, 1(1), 28-31.Sun, H., & Yang, X. (2014). Molecular simulation of self-assembly structure andinterfacial interaction for SDBS adsorption on graphene. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 462(0), 82-89.Sun, Z., Nicolosi, V., Rickard, D., Bergin, S. D., Aherne, D., & Coleman, J. N.(2008). Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes:dispersion quality and its correlation with zeta potential. The Journal of PhysicalChemistry C, 112(29), 10692-10699.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K.(2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodesby using a hyper-branched surfactant. Materials& Design, 99, 174-181.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015).A facile one-step method for graphene oxide/natural rubber latexnanocomposite production for supercapacitor applications. Materials Letters, 161, 665-668.Suttipong, M., Tummala, N. R., Kitiyanan, B., & Striolo, A. (2011). Role of surfactantmolecular structure on self-assembly: aqueous SDBS on carbon nanotubes. The Journal ofPhysical Chemistry C, 115(35), 17286-17296.Syurik, Y. V., Ghislandi, M. G., Tkalya, E. E., Paterson, G., McGrouther, D., Ageev,O. A., & Loos, J. (2012). Graphene network organisation in conductive polymer composites.Macromolecular Chemistry and Physics, 213(12), 1251- 1258.Tadros, T. (2007). General principles of colloid stability and the role of surfaceforces. In T. Tadros (Ed.), Colloid stability: The role of surface forces - Part 1 (Vol. 1):Weinheim: Wiley VCH.Tadros, T. (2006). Applied surfactants - principles and applications. Weinheim: Wiley VCH.Tanford, C. (1972). Micelle shape and size. Journal of Physical Chemistry, 76(21), 3020-3024.Tanford, C. (1974). Thermodynamics of micelle formation: prediction of micelle size and sizedistribution. Proceedings of the National Academy of Sciences, 71(5), 1811-1815.Tanford, C. (1978). The hydrophobic effect and the organization of living matter.Science, 200(4345), 1012-1018.Tanford, C. (1979). Interfacial free energy and the hydrophobic effect. Proceedings of the NationalAcademy of Sciences, 76(9), 4175-4176.Tanford, C. (1980). The hydrophobic effect: formation of micelles and biologicalmembranes (2?? ed.). New York: Wiley.Tapaszt, O., Tapaszt, L., Mark, M., Kern, F., Gadow, R., & Balzsi, C. (2011). Dispersionpatterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical PhysicsLetters, 511(4), 340-343.Terrones, M. (2009). Materials science: Nanotubes unzipped. Nature, 458(7240), 845- 846.Texter, J. (2014). Graphene dispersions. Current Opinion in Colloid & InterfaceScience, 19(2), 163-174.Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., & Loos, J. (2010). Latex-basedconcept for the preparation of graphene-based polymer nanocomposites.Journal of Materials Chemistry, 20(15), 3035-3039.Tkalya, E., Ghislandi, M., Otten, R., Lotya, M., Alekseev, A., van der Schoot, P.,Coleman, J., de With, G., & Koning, C. (2014). Experimental and theoretical study of the influenceof the state of dispersion of graphene on the percolation threshold of conductivegraphene/polystyrene nanocomposites. ACS Applied Materials & Interfaces, 6(17), 15113-15121.Tkalya, E., Ghislandi, M., de With, G., & Koning, C. E. (2012). The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites.Current Opinion in Colloid & Interface Science, 17(4), 225- 232.Tummala, N. R., Grady, B. P., & Striolo, A. (2010). Lateral confinement effects on the structuralproperties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 12(40),13137-13143.Tummala, N. R., & Striolo, A. (2009). Curvature effects on the adsorption of aqueoussodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features andcounterion dynamics. Physical Review E, 80(2), 021408.Vadukumpully, S., Paul, J., & Valiyaveettil, S. (2009). Cationic surfactant mediated exfoliation ofgraphite into graphene flakes. Carbon, 47(14), 3288-3294.Vaia, R. A., & Giannelis, E. P. (2001). Polymer nanocomposites: status andopportunities. MRS Bulletin, 26(5), 394-401.Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersionof carbon nanotubes. Advances in Colloid and Interface Science, 128-130(0), 37-46.Vega-Rios, A., Rentera-Baltirrez, F. Y., Hernndez-Escobar, C. A., & Zaragoza-Contreras, E. A. (2013). A new route toward graphene nanosheet/polyaniline composites using areactive surfactant as polyaniline precursor. Synthetic Metals, 184(0), 52-60.Verdejo, R., Bernal, M. M., Romasanta, L. J., & Lopez-Manchado, M. A. (2011). Graphenefilled polymer nanocomposites. Journal of Materials Chemistry, 21(10), 3301-3310.Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the stability of lyophobic colloids. NewYork: Elsevier Publishing Company.Wang, B., Lou, W., Wang, X., & Hao, J. (2012). Relationship between dispersion stateand reinforcement effect of graphene oxide in microcrystalline cellulose- graphene oxidecomposite films. Journal of Materials Chemistry, 22(25),12859-12866.Wang, D., Zhang, X., Zha, J.-W., Zhao, J., Dang, Z.-M., & Hu, G.-H. (2013).Dielectric properties of reduced graphene oxide/polypropylene composites with ultralowpercolation threshold. Polymer, 54(7), 1916-1922.Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphenenanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering, 79,521-529.Wang, G., & Olofsson, G. (1995). Ethyl hydroxyethyl cellulose and ionic surfactants in dilutesolution. Calorimetric and viscosity study of the interaction with sodium dodecyl sulfateand some cationic surfactants. The Journal of Physical Chemistry, 99(15), 5588-5596.Wang, H. (2009). Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid &Interface Science, 14(5), 364-371.Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., & Hobbie,E. K. (2004). Dispersing single-walled carbon nanotubes with surfactants: A small angle neutronscattering study. Nano Letters, 4(9), 1789-1793.Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of polycyclic aromatichydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology,48(9), 4817-4825.Wang, J., Chu, H., & Li, Y. (2008). Why single-walled carbon nanotubes can bedispersed in imidazolium-based ionic liquids. ACS nano, 2(12), 2540-2546.Wang, Q., Han, Y., Wang, Y., Qin, Y., & Guo, Z.-X. (2008). Effect of surfactantstructure on the stability of carbon nanotubes in aqueous solution. The Journal of PhysicalChemistry B, 112(24), 7227-7233.Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on theliquid exfoliation of graphene. RSC Advances, 6(61), 56705-56710.Wang, Z., Liu, J., Wang, W., Chen, H., Liu, Z., Yu, Q., Zeng, H., & Sun, L. (2013). Aqueous phasepreparation of graphene with low defect density and adjustable layers. Chemical Communications,49(92), 10835-10837.Wangmo, S., Song, R., Wang, L., Jin, W., Ding, D., Wang, Z., & Zhang, R.-Q. (2012).Strong interactions and charge transfers between a charged benzene molecule andmultilayer graphenes. Journal of Materials Chemistry, 22(44), 23380-23386.Wanless, E. J., & Ducker, W. A. (1996). Organization of sodium dodecyl sulfate at thegraphite-solution interface. The Journal of Physical Chemistry, 100(8), 3207-3214.Waters, M. L. (2002). Aromatic interactions in model systems. Current opinion inchemical biology, 6(6), 736-741.Weingrtner, H. (2008). Understanding ionic liquids at the molecular level: facts,problems, and controversies. Angewandte Chemie International Edition, 47(4), 654-670.Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., & Cheng, H.-M. (2011). Graphene- cellulosepaper flexible supercapacitors. Advanced Energy Materials, 1(5), 917-922.Wertz, J.-L., Mercier, J. P., & Bdu, O. (2010). Cellulose science and technology: EPFL press.White, B., Banerjee, S., O'Brien, S., Turro, N. J., & Herman, I. P. (2007). Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. The Journalof Physical Chemistry C, 111(37), 13684-13690.Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and RelatedMaterials, 46(0), 25-34.Winey, K. I., & Vaia, R. A. (2007). Polymer nanocomposites. MRS Bulletin, 32(4), 314-322.Woods, L. M., B?descu, ?. C., & Reinecke, T. L. (2007). Adsorption of simple benzenederivatives on carbon nanotubes. Physical Review B, 75(15), 155415.Wu, B., & Yang, X. (2013). Molecular simulation of electrolyte-induced interfacial interactionbetween SDS/graphene assemblies. The Journal of Physical Chemistry C, 117(44),23216-23223.Wu, D., & Yang, X. (2012). Coarse-grained molecular simulation of self-assembly for nonionicsurfactants on graphene nanostructures. The Journal of Physical Chemistry B, 116(39),12048-12056.Wu, T.-M., & Chen, E.-C. (2008). Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology. Composites Science andTechnology, 68(10-11), 2254-2259.Xu, B., Lynn, G. W., Guo, J., Melnichenko, Y. B., Wignall, G. D., McClain, J. B., DeSimone, J.M., & Johnson, C. S. (2005). NMR and SANS studies of aggregation and microemulsionformation by phosphorus fluorosurfactants in liquid and supercritical carbon dioxide. Journalof Physical Chemistry B, 109(20), 10261-10269.Yang, K., Wu, W., Jing, Q., & Zhu, L. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science & Technology, 42(21),7931-7936.Yang, Y.-K., He, C.-E., Peng, R.-G., Baji, A., Du, X.-S., Huang, Y.-L., Xie, X.-L., &Mai, Y.-W. (2012). Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. Journal ofMaterials Chemistry, 22(12), 5666-5675.Ye, W., Li, X., Zhu, H., Wang, X., Wang, S., Wang, H., & Sun, R. (2016). Greenfabrication of cellulose/graphene composite in ionic liquid and itselectrochemical and photothermal properties. Chemical Engineering Journal, 299, 45-55.Yeon, C., Yun, S. J., Lee, K.-S., & Lim, J. W. (2015). High-yield graphene exfoliationusing sodium dodecyl sulfate accompanied by alcohols as surface- tension-reducing agents in aqueoussolution. Carbon, 83, 136-143.Yin, S., Wang, C., Qiu, X., Xu, B., & Bai, C. (2001). Theoretical study of the effects ofintermolecular interactions in self-assembled long-chain alkanes adsorbed on graphitesurface. Surface and interface analysis, 32(1), 248-252.Yoon, S. H., Jin, H.-J., Kook, M.-C., & Pyun, Y. R. (2006). Electrically conductive bacterialcellulose by incorporation of carbon nanotubes. Biomacromolecules, 7(4), 1280-1284.Yoonessi, M., & Gaier, J. R. (2010). Highly conductive multifunctional graphenepolycarbonate nanocomposites. ACS Nano, 4(12), 7211-7220.Young, R. J., Liu, M., Kinloch, I. A., Li, S., Zhao, X., Valls, C., & Papageorgiou, D.G. (2018). The mechanics of reinforcement of polymers by graphene nanoplatelets.Composites Science and Technology, 154, 110-116.Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C. E., & Loos, J. (2007).Characterization of conductive multiwall carbon nanotube/polystyrene compositesprepared by latex technology. Carbon, 45(15), 2897-2903.Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphiteand production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5),329-338.Yue, L., Pircheraghi, G., Monemian, S. A., & Manas-Zloczower, I. (2014). Epoxycomposites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects. Carbon,78(0), 268-278.Yurekli, K., Mitchell, C. A., & Krishnamoorti, R. (2004). Small-angle neutron scatteringfrom surfactant-assisted aqueous dispersions of carbon nanotubes. Journal of the AmericanChemical Society, 126(32), 9902-9903.Zan, R., Bangert, U., Ramasse, Q., & Novoselov, K. S. (2011). Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. NanoLetters, 11(3), 1087-1092.Zhan, Y., Lavorgna, M., Buonocore, G., & Xia, H. (2012). Enhancing electricalconductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. Journal of Materials Chemistry,22(21), 10464-10468.Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., & Yuan, G. (2011). Dispersion andexfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situreduction process. Macromolecular Materials and Engineering, 296(7), 590-602.Zhang, J., Zhang, J., Lin, L., Chen, T., Zhang, J., Liu, S., Li, Z., & Ouyang, P. (2009).Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes andkinetics. Molecules, 14(12), 5027-5041.Zhang, L., Zhang, Z., He, C., Dai, L., Liu, J., & Wang, L. (2014). Rationally designed surfactantsfor few-layered graphene exfoliation: Ionic groups attached to electron-deficient-conjugated unit through alkyl spacers. ACS Nano, 8(7), 6663-6670.Zhang, X., Liu, X., Zheng, W., & Zhu, J. (2012). Regenerated cellulose/graphenenanocomposite films prepared in DMAC/LiCl solution. Carbohydrate polymers, 88(1),26-30.Zhang, X., Wang, J., Jia, H., You, S., Xiong, X., Ding, L., & Xu, Z. (2016).Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidonemodified graphene. Composites Part B: Engineering, 84, 121-129.Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantumHall effect and Berry's phase in graphene. Nature, 438(7065), 201.Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene andrelated applications. Accounts of Chemical Research, 46(10), 2329-2339.Zhao, C. L., Dobler, F., Pith, T., Holl, Y., & Lambla, M. (1989). Surface composition of coalescedacrylic latex films studied by XPS and SIMS. Journal of Colloid and Interface Science, 128(2),437-449.Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites:interfacial interaction and its impact on the durable high-rate performance in lithium-ionbatteries. RSC Advances, 1(5), 782-791.Zhou, J., & Zhang, L. (2000). Solubility of cellulose in NaOH/urea aqueous solution.Polymer Journal, 32(10), 866-870.Zhou, W., Islam, M. F., Wang, H., Ho, D. L., Yodh, A. G., Winey, K. I., & Fischer, J.E. (2004). Small angle neutron scattering from single-wall carbon nanotube suspensions:evidence for isolated rigid rods and rod networks. ChemicalPhysics Letters, 384(1), 185-189.Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., & Wu, G. (2006).Dissolution of cellulose with ionic liquids and its application: a mini-review.Green Chemistry, 8(4), 325-327.Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials,22(35), 3906-3924.Zuberi, M., Sherman, D. M., & Cho, Y. (2011). Carbon nanotube microspheres produced by surfactant-mediated aggregation. The Journal of PhysicalChemistry C, 115(10), 3881-3887.