Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif

Kajian ini dijalankan untuk membangunkan satu model pencapaian regresi logistikberdasarkan faktor-faktor bukan kognitif yang mempengaruhi pencapaian pelajar dalam kursus Kaedah dan Penggunaan Statistik (SMS3033). Kajian ini adalah berbentukpembangunan model. Populasi kajian adalah terdiri daripada 1...

Full description

Saved in:
Bibliographic Details
Main Author: Noor Hidayah Amir Ruddin
Format: thesis
Language:zsm
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=5474
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:5474
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language zsm
topic LB Theory and practice of education
spellingShingle LB Theory and practice of education
Noor Hidayah Amir Ruddin
Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
description Kajian ini dijalankan untuk membangunkan satu model pencapaian regresi logistikberdasarkan faktor-faktor bukan kognitif yang mempengaruhi pencapaian pelajar dalam kursus Kaedah dan Penggunaan Statistik (SMS3033). Kajian ini adalah berbentukpembangunan model. Populasi kajian adalah terdiri daripada 140 pelajar tahun pertama sesi2 2016/2017 program Ijazah Pendidikan Matematik Fakulti Sains dan Matematik. Persampelanyang digunakan dalam kajian ini berbentuk persampelan rawak mudah yang melibatkan 103responden berdasarkan kepada jadual Krejie dan Morgan. Kajian ini melibatkan dua fasa. Fasapertama adalah mengenal pasti faktor- faktor bukan kognitif yang mempengaruhi pencapaiandan fasa kedua merupakan pembangunan model regresi logistik. Analisis regresi bergandamenunjukkan bahawa terdapat pengaruh kebimbangan matematik, gaya pembelajaran mendalam, gaya pembelajaran permukaan, gaya pembelajaran gigih usaha, motivasi dalaman dan juga motivasiluaran terhadap pencapaian pelajar bagi kursus SMS3033. Model regresi logistik yang telahdibangunkan pula menunjukkan faktor utama yang menyumbang kepada pencapaian pelajar dalam kursus ini adalah kebimbangan matematik (? = 0.039 , ? = 6.329 ), gaya pembelajaran mendalam ( ? = 0.047 , ? = 0.145 ) dan juga motivasiluaran ( ? = 0.049, ? = -4.159 ). Kesimpulannya pencapaian pelajar adalah bergantung kepadafaktor kendiri pelajar itu sendiri dan juga motivasi luaran. Implikasinya,pembinaan model pencapaian regresi logistik dapat memberi panduan kepada pendidik untukmeramal pencapaian bagi pelajar. Oleh demikian, ia dapat membantu pihak fakulti atauuniversiti merancang program yang boleh meningkatkanmotivasi dan faktor kendiri pelajar untuk berjaya.
format thesis
qualification_name
qualification_level Master's degree
author Noor Hidayah Amir Ruddin
author_facet Noor Hidayah Amir Ruddin
author_sort Noor Hidayah Amir Ruddin
title Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
title_short Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
title_full Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
title_fullStr Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
title_full_unstemmed Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
title_sort pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=5474
_version_ 1747833199945318400
spelling oai:ir.upsi.edu.my:54742021-01-08 Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif 2019 Noor Hidayah Amir Ruddin LB Theory and practice of education Kajian ini dijalankan untuk membangunkan satu model pencapaian regresi logistikberdasarkan faktor-faktor bukan kognitif yang mempengaruhi pencapaian pelajar dalam kursus Kaedah dan Penggunaan Statistik (SMS3033). Kajian ini adalah berbentukpembangunan model. Populasi kajian adalah terdiri daripada 140 pelajar tahun pertama sesi2 2016/2017 program Ijazah Pendidikan Matematik Fakulti Sains dan Matematik. Persampelanyang digunakan dalam kajian ini berbentuk persampelan rawak mudah yang melibatkan 103responden berdasarkan kepada jadual Krejie dan Morgan. Kajian ini melibatkan dua fasa. Fasapertama adalah mengenal pasti faktor- faktor bukan kognitif yang mempengaruhi pencapaiandan fasa kedua merupakan pembangunan model regresi logistik. Analisis regresi bergandamenunjukkan bahawa terdapat pengaruh kebimbangan matematik, gaya pembelajaran mendalam, gaya pembelajaran permukaan, gaya pembelajaran gigih usaha, motivasi dalaman dan juga motivasiluaran terhadap pencapaian pelajar bagi kursus SMS3033. Model regresi logistik yang telahdibangunkan pula menunjukkan faktor utama yang menyumbang kepada pencapaian pelajar dalam kursus ini adalah kebimbangan matematik (? = 0.039 , ? = 6.329 ), gaya pembelajaran mendalam ( ? = 0.047 , ? = 0.145 ) dan juga motivasiluaran ( ? = 0.049, ? = -4.159 ). Kesimpulannya pencapaian pelajar adalah bergantung kepadafaktor kendiri pelajar itu sendiri dan juga motivasi luaran. Implikasinya,pembinaan model pencapaian regresi logistik dapat memberi panduan kepada pendidik untukmeramal pencapaian bagi pelajar. Oleh demikian, ia dapat membantu pihak fakulti atauuniversiti merancang program yang boleh meningkatkanmotivasi dan faktor kendiri pelajar untuk berjaya. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=5474 https://ir.upsi.edu.my/detailsg.php?det=5474 text zsm closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Adawiyah Abdul Aziz & Leong K.U.(2016). Penakulan Statistik MenggunakanTinkerplots. 105-117.Adebayo, B. (2008). Cognitive and Non-Cognitive Factors Affecting the Academic Performanceand Retention of Conditionally Admitted Freshmen. Journal of College Admission, 1-7.Ahmad Johari Sihes & Hanisah Abdullah (2010). Gaya Pembelajaran Dan Hubungannya Dengan Pencapaian Akademik Pelajar Tahun Tiga. UTM,Skudai , 1-7.Ali, U., & Haydar, G. A. (2011). Factors Associated with Student Performance inFinancial Accounting Course. European Journal of Economic & Political Studies, 141-156.Ali, H. O. (2013). Factors Affecting Students Academic Performance inMathematical Sciences Department in Tertiary Institutions in Negeria. David Publishing, 905-913.Alireza Pourmoslemi, Nasrolah Erfani & Iraj Firoozfar (2013). Mathematics Anxiety, Mathematics Performance and Gender differences among Undergraduate Students. International Journal ofScientific and Research Publications, 1-6.Amirah Mohamed Shahiri, Wahidah Husain & Nuraini Abdul Rashid. A Review on Predicting Student'sPerformance Using Data Mining Techniques. Procedia Computer Science, 414-422.Arif Hassan (2007). Human resource development and organizational values. Journal of EuropeanIndustrial Training, 435-448.Aromolaran, A.D., Oyeyinka I.K., Olukotun O.O & Benjamin, E(2013). Binary LogisticRegression of Students Academic Performance in Tertiary Institution in Nigeria by Socio-Demographic and Economic Factors. International Journal of Engineering Scienceand Innovative Technology (IJESIT). 2(4), 4.590-596.Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post-secondarylevel. In F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 1011-1049). Greenwich, CT:Information Age Publishing, Inc., and NCTM.Ashby, J., Sadera, W. A., & McNary, S. W. (2011). Comparing student success betweendevelopmental math courses offered online, blended, and face-to- face. Journal ofInteractive Online Learning, 128-140.Ben-Zvi, D., & Garfield, J. (2004). Introducing the emerging discipline of statistics education.School Science and Mathematics, 355-361.Ben, C. F. Y., Shanmugan, M. & Zulkifflee Mohamed (2012). Evaluating Company Failure In MalaysiaUsing Financial Ratios and Logistic Regression. Asian Journal of Finance & Accounting ,330-344.Bernabeu, C. B. (2011). Teaching Statistics in School Mathematics. Challenges forTeaching and Teacher Education. Conferencia Interamericana De Educacion Matematica, (pp. 1-7).Resife,Brazil.Chiesi, F., & Primi, C. (2010). Cognitive and Non-Cognitive Factors Related to StudentsStatistic Achievement. Statistics Education Research Journal, 6-26.Choi, S. L., Zaiton Ibrahim & Tan, O. K. (2014). An Analysis on the Relationshipbetween Lecturers Competencies and Students Satisfaction. Canadian Center of Scienceand Education , 37-46.Danili, E., & Reid, N. (2006). Cognitive factors that can potentially affect pupils testperformance. Chemistry Education Research and Practice, 64-83.Dunn, R., & Dunn, K. (1992). Teaching Elementary Students Through theirIndividual Learning Styles:Practical Approach for Grades 3-6.Euzent, P., Martin, T., Moskal, P., & Moskal, P.(2011). Assessing StudentPerformance and Perceptions in Lecture Capture vs. Face-to-Face Course Delivery. Journal ofInformation Technolgy Education, 295-307.Fagoyinbo, I. S., Akinbo, R. Y. & Ajibode, I. A. (2013). Modelling Academic Risks of Students in aPolytechnic System With the Use of Discriminant Analysis Modelling Academic. Progress in AppliedMathematics vol.6, 59-68..Fagoyinbo, I. S., Ajibode, I. A., & Olaniran, Y. O. A. (2014). The Application ofLogistic Regression Analysis to the Cummulative Grade Point Average of GraduatingStudents:A Case Study of Students of Applied Science, Federal Polytechnic,Ilaro. 26-30.Fang, J. (2013). Why Logistic Regression Analyses Are More Reliable Than Multiple RegressionAnalyses . Journal of Business and Economics, 620-633.Farhad Kazemi, Anvar Shahmohammadi & Majeed Sharei (2013). The Survey onRelationship Between the Attitude and Academi achievement of In-ServiceMathematics Teachers in Introductory Probability and Statistics. WorldApplied Sciences Journal, 886-891.Farg, M. H. (2015). Application Of Logistic Model For Studying The Factors Affect AcademicAchievement Of The Student - Case Study Of Faculty Of Sciences And Humanities (Thadiq) -ShaqraaUniversity-Ksa. International Journal Of Engineering Sciences & Research, 54-65Fauzi Mohd Ayub (2009). Analisis Kesukaran Pembelajaran Dalam Matematik Kalkulus. MathDigest: Research Bulletin Institute for Mathematical Research, 2(2). pp. 26-3.Ghazvini, S. D., & Khajehpour, M. (2011). Gender differences in factors affectingacademic performance of high school students. Procedia - Social and BehavioralSciences, 1040-1045.Gbollie, C. & Keamu, H. P. (2017). Student Academic Performance: The Role ofMotivation, Strategies, and Perceived Factors Hindering Liberian Junior and Senior HighSchool Students Learning. Education Research International.Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., H.Oliver, P., & Guerin, D. W. (2007).Multivariate latent change modeling of developmental decline in academic intrinsic mathmotivation and achievement: Childhood through adolescence. International Journal of BehavioralDevelopment, 317-327.Graf, S., Kinshuk, & Liu, T.-C. (2009). Supporting Teachers in Identifying Students LearningStyles in Learning Management Systems: An Automatic Student Modelling Approach . EducationalTechnology & Society, 3-14.Hairulliza Mohamad Judi, Noraidah Sahari Ashaari, Hazura Mohamed & Tengku Merian TengkuWook (2011). Students profile based on attitude towards statistics. Procedia - Social andBehavioral Sciences, 266-272.Hazura Mohamed, Noraidah Sahari, Hairulliza Mohamad Judi & Tengku Siti Meriam Tengku Wook (2012).Factors affecting FTSM students achievement in statistics course. Procedia - Social andBehavioral Sciences, 125-129.Hidi, S., & Harackiewicz, J. M. (2000). Motivating the Academically Unmotivated: A Critical Issuefor the 21st Century. SAGE Journal, 151-179.Huang, S., & Fang, N. (2010). Prediction of student academic performance in anengineering dynamics course: development and validation of multivariate regression models.International Journal of Engineering Education, 26(4),10081017.Isabel, R. & Antonia, A. (2008). Two Profiles of Teacher Education Graduates:adiscriminant analysis of teaching commitment . European EducationalResearch Journal , 524-534.Julianti Kasih & Sani Susanto (2012). Predicting Students Final Results ThroughDiscriminant Analysis. World Transactions on Engineering and TechnologyEducation, 144-147Kamaruddin Llias, Roshidah Abdul Rahman, Mubin Md Noor & Nurul Azwa Saidon(2010). Pengaruh gaya pembelajaran terhadap motivasi dan pencapaianakademik pelajar Pra Ijazah Sarjana Muda Perguruan Institut Pendidikan GuruKampus Ipoh. Jurnal Penyelidikan Dedikasi, 141-153Khine, M. S., & Areepattamannil, S. (2016). Non-cognitive Skills and Factor inEducational Attainment. Rotterdam: Sense Publishers.Kolb, D. A. (1984). Experiential learning: Experience as the source of learning anddevelopment. New Jersey : Prentice-Hall.Krejcie, R.V., & Morgan, D.W. (1970). Determining Sample Size for ResearchActivities. Educational and Psychological Measurement, 30, 607-610.Krishnan, S & Noraini Idris. (2014). Aspects of Reform in Improving MalaysianStudents Learning of Statistics. International Conference on Education,Research and Innovation, 109-113.Krosnick, J. A., & Presser, S. (2010). Questionnaire design. In J. D. Wright & P. V.Marsden (Eds.), Handbook of Survey Research (Second Edition). WestYorkshire, England: Emerald G.Lizzio, A., Wilson, K., & Simons, R. (2002). University Student's Perceptions of theLearning Environment and Academic Outcomes:Implications for Theory andPractice. Study in Higher Education, 27-52.Livieris, I. E., Drakopoulou, K., & Panagiotis, P. (2012). Predicting studentsperformance using artificial neural networks. Journal of Machine LearningResearch, 27-66.Luttenberger, S., Wimmer, S. & Paechter, M. (2018). Spotlight on math anxiety.Psychology Research and Behavior Management, 311-322.Mabula, S. (2015). Modeling Student Performance in Mathematics Using BinaryLogistic Regression at Selected Secondary Schools A Case Study of MtwaraMunicipality and Ilemela District. Journal of Education and Practice, 96-103.Maja, P., Mateja, B. & Sandra, T. (2004). Comparison of Logistic Regression andLinear Discriminat Analysis:A simulation study. Metodoloki zvezki,, 143-161.Marcela, V. (2015). Learning Strategy, Personality Traits and Academic Achievementof University Students. Procedia - Social and Behavioral Sciences, 3473-3478.Maria Chong Abdullah, Samsilah Roslan & Tajularipin Sulaiman (2011). Strategipengajaran pembelajaran di Institusi Pengajian Tinggi: Satu AnjakanParadigma. Malaysian Education Dean Council Journal, 8, 101-115Meylani, R., Bitter, G. G., & Castaneda, R. (2014). Predicting Student Performance inStatewide High-Stakes Tests for Middle School Mathematics Using theResults from Third Party. Journal of Education and Learning, 135-143.Mlambo, V. (2011). An analysis of some factors affecting student academicperformance in an introductory biochemistry course at the University of theWest Indies. ERA Educational Research Association, 79-92.Mushtaq, I., & Khan, S. N. (2012). Factors Affecting Students' AcademicPerformance. Global Journal of Management and Business Research, 17-22.Nizoloman. (2013). Relationship between Mathematical Ability and Achievement inMathematics among Female Secondary School Students in Bayelsa StateNigeria. Procedia Social and Behavioral Sciences, 2230-2240.Nooraini Othman & Khairul Anuar Abdul Rahman (2010). Hubungan AntaraKompetensi Pensyarah Dengan Pencapaian Akademik Pelajar. UniversitiTeknologi Malaysia.Noraini Idris. (2005). Pedagogi Dalam Pendidikan Matematik. Kuala Lumpur:Utusan Publications & Distributors.Noraini Idris. (2010). Penyelidikan dalam pendidikan. Kuala Lumpur: Mc Graw-Hill(M) Sdn. Bhd.Noraini Omar. (2008). Faktor-faktor yang Mempengaruhi Pencapaian Pelajar DalamMata Pelajaran Pendidikan Islam Tingkatan Lima. Jurnal Pendidikan: InstitutPerguruan Tun Abdul Razak, Sarawak..Norhidayah Ali, Kamaruzaman Jusoff, Syukriah Ali, Najah Mokhtar & Azni SyafenaAndin Salamat (2009). The Factors Influencing Students Performance atUniversiti Teknologi MARA Kedah, Malaysia. Management Science andEngineering, 81-90.Norlia Abd Aziz, T. Subahan M. Meerah, Lilia Halim & Kamisah Osman (2006).Hubungan Antara Motivasi, Gaya Pembelajaran Dengan PencapaianMatematik Tambahan Pelajar Tingkatan 4. Jurnal Pendidikan, 123-14.Nur Maizatul Azra Mukhtar, Faizal Hashim, Marina Mokhtar, Nor Aimi AbdulWahab, Noorezal Atfyinna Mohd Napiah & Suhaiza Hasan (2017). FaktorYang Mempengaruhi Pencapaian Pelajar Dalam Mata Pelajaran Fizik:SatuSudut Pandangan. International Academic Research Journal of Social Science,195-201.Ogunjuyigbe, A. S., & Alawode, K. (2007). Application of Neural Network to LoadForecasting . The Pacific Journal of Sience and Technology.Oladokun, V. O., Adebanjo, A. T., & Charles Owaba, O.E (2008). PredictingStudents Academic Performance using Artificial Neural Network:A CaseStudy of Engineering Course. The Pacific Journal of Science and Technology ,72-79.O'Leary, K., Fitzpatrick, C. L. & Hallett, D. (2017). Math Anxiety Is Related toSome, but Not All, Experiences with Math. Frontier in Psychology.Onwuegbuzie, A. J. (2013). Modeling statistics achievement among graduatestudents. Educational and Psychological Measurement, 1020-1038.Prima Vitasari, Tutut Herawan, Muhammad Nubli Abdul Wahab, Ahmad Othman &S. Suriya Kumar (2010). Exploring Mathematics Anxiety among Engineeringstudents. Procedia Socials and Behavioral Sciences, 482-489.Rahmani, & Jahanbakhsh. (2012). Learning Styles and Academic Achievement: aCase Study of Iranian High School Girl's Students. Procedia Social andBehavioral Sciences, 1030-1034.Rkaa, J., Krmena, D., Susana, F., Kinga, K. J., Edita, M., & Kinga, S. (2015).Implications of Motivational Factors Regarding the Academic Success of Fulltimeand Distance Learning Undergraduate Students: A Self-determinationTheory Perspective. Procedia - Social and Behavioral Sciences, 50-55.Rossnan, S. (2006). Overcoming Math Anxiety . 1-4. Diperoleh 10 Mei 2017, dimuatturun daripada:http://coe.fau.edu/centersandprograms/mathitudes/documents/Math%20Anxiety%20Research%20Paper%202.pdf.Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation ofintrinsic motivation, social development, and well-being. The Americanpsychologist, 68-78.Sampath., V., Flagel, A. & Figueroa, C. (2009). A Logistic Regression Model toPredict Freshmen Enrollments. 1-12.Savelsbergh, E. R., Prins, G. T., Rietbergen, C., SabineFechne, Vaessen, B. E.,Draijer, J. M., & Brakker, A. (2016). Effects of innovative science andmathematics teaching on student attitudes and achievement: A meta-analyticstudy. Procedia Social Sciences, 158-172.Sargent, D. J. (2001). Comparison of artificial neural networks with other statisticalapproaches. American Cancer Society.Schunk, D. H., Pintrich, P. R., & Meece, J. R. (2008). Motivation in Education:Theory, Research, and Applications, 3rd Edition. Pearson.Sekaran, U. (2003). Research mehtods for business: A skill building approach NewYork John Wiley & Sons, Inc.Selmes, I. (1987). Improving study skills: Changing perspective in education. GreatBritain: Hodder and Stoughton Ltd.Sena, J. D., Lowe, P. A., & Lee, S. W. (2007). Significant Predictors of Test AnxietyAmong Students With and Without Learning Disabilities. Journal of LearningDisabilities, 360-376.Shakil, M. (2008). A Multiple Linear Regression Model to Predict the Student's FinalGrade in a Mathematics Class. Multi-Disciplinary Publication of Miami DadeCollege, Hialeah Campus,U.S.A.Sharifah Norhuda Syed Wahid, Yusharina Yusof & Mohd Rizal Razak (2014). Mathanxiety among students in higher education level. Procedia Social andBehavioral Sciences, 232-237.Shukla, N. J., Hassani, H., & Casleton, R. (2014). A Comparison of Delivery Methodsfor Distance Learning Mathematics Courses. Journal of DevelopmentalEducation.Siti Hamad Mohamed & Rohani Ahmad Tarmizi (2010). Anxiety in MathematicsLearning Among Secondary School Learners: A Comparative Study betweenTanzania and Malaysia. International Conference on Mathematics EducationResearch, 498-504.Siti Noor Asyikin Mohd Razali, Suliadi Firdaus Sufahani & Norazman Arbin.(2015). Pencapaian Kursus Matematik Dan Statistik Di Kalangan PelajarUthm : Faktor Mempengaruhi Dan Teknik Pengajaran Dan PembelajaranYang Lebih Diminati. Journal of techno social issue on society, technology &Governance, 39-50.Stankov, L., Morony, S. & Yim, P. L. (2014). Confidence: the best non-cognitivepredictor of academic achievement. International Journal of ExperimentalEducational Psychology, 9-28.Suhar, V., Rohani Ahmad Tarmizi, Habshah Midi & Mohd Bakri Adam (2010).Students Beliefs on Mathematics and Achievement of UniversityStudents:Logistics Regression Analysis . Procedia Social and BehavioralSciences, 525-531.Sule, & Saporu. (2015). A Logistic Regression Model of Students AcademicPerformance in University of Maiduguri, Maiduguri, Nigeria. MathematicalTheory and Modeling , 124-136.Tariq, S., Mubeen, S., & Mahmood, S. (2011). Relationship Between IntrinsicMotivation and Goal Orientation among College Students In PakistaniContext. Journal of Education and Practice , 12-18.Vijaya Sengodan & Zanaton Ikhsan. (2012). Students Learning Styles and IntrinsicMotivation in Learning Mathematics. Asian Social Science, 17-23.Wan Muhamad Amir Wan Ahmad, Mohamad Arif Awang Nawi, Nor Azlida Aleng,Nurfadhlina Abdul Halim, Mustafa Mamat, Mohd Pouzi Hamzah & Zalila Ali(2014). Association of Hypertension with Risk Factors Using LogisticRegression . Applied Mathematical Sciences, 2563 - 2572.Xie, S., Mahdi Imani, Dougherty, E. R. & Ulisses M. B. (2017). Nonstationary LinearDiscriminant Analysis. 161-165.Xueying, Z. (2016). Analysis of the Application of Statistics to EconomicManagement. Management Science and Engineering, 13-17.Yilmaz, M., & Orhan, F. (2010). The use of Internet by high school students foreducational purposes in respect to their learning approaches. Procedia Socialand Behavioral Sciences, 2143-2150.Zaharah Hassan. (2009). Keberkesanan Penyampaian Kuliah. Prosiding SeminarPendidikan Sains Sosial, UKM, 611-618.