Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes

This study aimed to determine the composition, source apportionment and health riskassessment (HRA) of indoor particulate matter (PM2.5) in selected Malaysia traininginstitutes. PM2.5 samples were collected from lecture halls, laboratories and lecturer offices inInstitut Latihan Kementerian Kesihata...

Full description

Saved in:
Bibliographic Details
Main Author: Intan Idura Mohamad Isa
Format: thesis
Language:eng
Published: 2020
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=5555
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:5555
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QD Chemistry
spellingShingle QD Chemistry
Intan Idura Mohamad Isa
Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
description This study aimed to determine the composition, source apportionment and health riskassessment (HRA) of indoor particulate matter (PM2.5) in selected Malaysia traininginstitutes. PM2.5 samples were collected from lecture halls, laboratories and lecturer offices inInstitut Latihan Kementerian Kesihatan Malaysia Sungai Buloh (SB) and Institut Latihan KementerianKesihatan Malaysia Sultan Azlan Shah (SAS). Sampling were conducted over a period of eighthours sampling for five consecutive days with a total number of 30 samples. The samples werecollected on 47 mm micro fiber glass filter paper (0.2 m pore size, Whatman) using low volumeair sampler (LVS) at 5 L min? flow rate. The composition of PM2.5 for water-solubleionic species (WSIS) and trace metals were determined using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Sourceapportionment of PM2.5 was determined using the combination of Principal Component Analysisand Multiple Linear Regression (PCA-MLR) receptor model. HRA was conducted to evaluate thepotential health hazard to adolescent and adult groups in the institutes. The result showed thatthe mean of PM2.5 at SB (51.39 29.95 g m?) was higher than SAS (45.83 20.47 g m?). However,most of WSIS and trace metals were found higher at SAS compared to SB. PCA-MLR results identifiedfour factors, where the main sources of PM2.5 in SB and SAS were biomass burning (48%) andbuilding material / crustal origin (81%), respectively. The adult group has higher hazard index(HI) and incremental lifetime carcinogenic risk (ILCR) values than adolescent group for bothinstitutes. In conclusion, these two institutes have moderate level of air quality, but theyhave the potential to develop adverse health effects. As an implication, this study hasprovided a holistic view of indoor air quality, hence the effective control strategies need to beimplemented to enhance indoor air quality for the comfort ofall building occupants.
format thesis
qualification_name
qualification_level Master's degree
author Intan Idura Mohamad Isa
author_facet Intan Idura Mohamad Isa
author_sort Intan Idura Mohamad Isa
title Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
title_short Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
title_full Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
title_fullStr Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
title_full_unstemmed Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
title_sort composition, source apportionment and health risk assessment of indoor particulate matter (pm2.5) in selected malaysia training institutes
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2020
url https://ir.upsi.edu.my/detailsg.php?det=5555
_version_ 1747833207749869568
spelling oai:ir.upsi.edu.my:55552021-02-15 Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes 2020 Intan Idura Mohamad Isa QD Chemistry This study aimed to determine the composition, source apportionment and health riskassessment (HRA) of indoor particulate matter (PM2.5) in selected Malaysia traininginstitutes. PM2.5 samples were collected from lecture halls, laboratories and lecturer offices inInstitut Latihan Kementerian Kesihatan Malaysia Sungai Buloh (SB) and Institut Latihan KementerianKesihatan Malaysia Sultan Azlan Shah (SAS). Sampling were conducted over a period of eighthours sampling for five consecutive days with a total number of 30 samples. The samples werecollected on 47 mm micro fiber glass filter paper (0.2 m pore size, Whatman) using low volumeair sampler (LVS) at 5 L min? flow rate. The composition of PM2.5 for water-solubleionic species (WSIS) and trace metals were determined using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Sourceapportionment of PM2.5 was determined using the combination of Principal Component Analysisand Multiple Linear Regression (PCA-MLR) receptor model. HRA was conducted to evaluate thepotential health hazard to adolescent and adult groups in the institutes. The result showed thatthe mean of PM2.5 at SB (51.39 29.95 g m?) was higher than SAS (45.83 20.47 g m?). However,most of WSIS and trace metals were found higher at SAS compared to SB. PCA-MLR results identifiedfour factors, where the main sources of PM2.5 in SB and SAS were biomass burning (48%) andbuilding material / crustal origin (81%), respectively. The adult group has higher hazard index(HI) and incremental lifetime carcinogenic risk (ILCR) values than adolescent group for bothinstitutes. In conclusion, these two institutes have moderate level of air quality, but theyhave the potential to develop adverse health effects. As an implication, this study hasprovided a holistic view of indoor air quality, hence the effective control strategies need to beimplemented to enhance indoor air quality for the comfort ofall building occupants. 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=5555 https://ir.upsi.edu.my/detailsg.php?det=5555 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdul-Wahab, S. A. (2006). Indoor and Outdoor Relationships of Atmospheric Particulates in Oman. Indoor and Built Environment, 15(3), 247255.https://doi.org/10.1177/1420326X06066322Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A. & Latif, M. T. (2012). Compositions ofdust fall around semi-Urban Areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629642.https://doi.org/10.4209/aaqr.2012.02.0027Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A. & Galloo, J. C. (2010). PM10 metalconcentrations and source identification using positive matrix factorization and wind sectoring ina French industrial zone. Atmospheric Research, 96(4), 612 625.https://doi.org/10.1016/j.atmosres.2010.02.008Almeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., Pio,C. A. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45(40), 75947599.https://doi.org/10.1016/j.atmosenv.2010.11.052Alsmo, T. & Holmberg, S. (2007). Sick Buildings or Not: Indoor Air Quality and Health Problems in Schools. Indoor and Built Environment, 16(6), 548555.https://doi.org/10.1177/1420326X07084414Amato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C. & lvarez-pedrerol,M. (2014). Science of the Total Environment Sources of indoor and outdoor PM2.5 concentrations inprimary schools. Science of the Total Environment, The, 490, 757765.https://doi.org/10.1016/j.scitotenv.2014.05.051Amil, N., Latif, M. T., Khan, M. F. & Mohamad, M. (2016). Seasonal variability of PM2.5 compositionand sources in the Klang Valley urban-industrial environment. Atmospheric Chemistry and Physics, 16(8), 53575381. https://doi.org/10.5194/acp-16-5357-2016Anake, W. U., Ana, G. R. E. E. & Benson, N. U. (2016). Study of Surface Morphology, ElementalComposition and Sources of Airborne Fine Particulate Matter in Agbara Industrial Estate ,Nigeria. Internacional Journal of Applied Environmental Sciences, 11(4), 881890.Andrews, R. E., Shah, K. M., Wilkinson, J. M. & Gartland, A. (2011). Effects of cobalt and chromiumions at clinically equivalent concentrations after metal-on-metal hip replacement on humanosteoblasts and osteoclasts: Implications for skeletal health. Bone, 49(4), 717723.https://doi.org/10.1016/j.bone.2011.06.007Arlian, L. G., Neal, J. S. & Vyszenski-Moher, D. L. (1999). Reducing relative humidity to controlthe house dust mite Dermatophagoides farinae. The Journal of Allergy and Clinical Immunology, 104(4Pt 1), 852856.Ashmore, M. R., & Dimitroulopoulou, C. (2009). Personal exposure of children to air pollution. Atmospheric Environment, 43(1), 128141.https://doi.org/10.1016/j.atmosenv.2008.09.024Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M. & Armstrong, B. (2010). UrbanAmbient Particle Metrics and Health. Epidemiology, 21(4), 501 511.https://doi.org/10.1097/EDE.0b013e3181debc88Baxi, S. N., Portnoy, J. M., Larenas-Linnemann, D., Phipatanakul, W., Barnes, C.,Grimes, C.,Williams, B. (2016). Exposure and Health Effects of Fungi on Humans. Journalof Allergy and Clinical Immunology: In Practice, 4(3), 396404.https://doi.org/10.1016/j.jaip.2016.01.008Bell, M. L., Ebisu, K. & Belanger, K. (2007). Ambient air pollution and low birthweight in Connecticut and Massachusetts. Environmental Health Perspectives, 115(7),11181125. https://doi.org/10.1289/ehp.9759Borgini, A., Tittarelli, A., Ricci, C., Bertoldi, M., De Saeger, E. & Crosignani, P.(2011). Personal exposure to PM2.5 among high-school students in Milan and backgroundmeasurements: The EuroLifeNet study. Atmospheric Environment, 45(25), 41474151.https://doi.org/10.1016/j.atmosenv.2011.05.026Bornehag, C. G., Sundell, J., Bonini, S., Custovic, A., Malmberg, P., Skerfving, S., Verhoeff, A.(2004). Dampness in buildings as a risk factor for health effects, EUROEXPO: A multidisciplinary review of the literature (1998-2000) on dampness and mite exposure inbuildings and health effects. Indoor Air, 14(4), 243257.https://doi.org/10.1111/j.1600-0668.2004.00240.xBowers, R. M., McLetchie, S., Knight, R. & Fierer, N. (2011). Spatial variability in airbornebacterial communities across land-use types and their relationship to the bacterial communities ofpotential source environments. The ISME Journal, 5(4), 601612.https://doi.org/10.1038/ismej.2010.167Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Knight, R. & Fierer, N. (2011).Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbiology, 77(18), 63506356. https://doi.org/10.1128/AEM.05498-11Brani, M., ?ez?ov, P., & Domasov, M. (2005). The effect of outdoor air and indoor humanactivity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environmental Research, 99(2), 143149.https://doi.org/10.1016/j.envres.2004.12.001Brown, J. S., Gordon, T., Price, O. & Asgharian, B. (2013). Thoracic and respirable particle definitions for human health risk assessment. Particle and Fibre Toxicology, 10(1),12. https://doi.org/10.1186/1743-8977-10-12Cabo Verde, S., Almeida, S. M., Matos, J., Guerreiro, D., Meneses, M., Faria,T.,Viegas, C. (2015). Microbiological assessment of indoor air quality at different hospital sites. Research in Microbiology, 166(7), 557563.https://doi.org/10.1016/j.resmic.2015.03.004Cadelis, G., Tourres, R., & Molinie, J. (2014). Short-term effects of the particulatepollutants contained in Saharan dust on the visits of children to the emergency department due toasthmatic conditions in Guadeloupe (French archipelago of theCaribbean). PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091136Cao, J., Yang, C., Li, J., Chen, R., Chen, B., Gu, D. & Kan, H. (2011). Associationbetween long-term exposure to outdoor air pollution and mortality in China: Acohort study. Journal of Hazardous Materials, 186(23), 15941600.https://doi.org/10.1016/j.jhazmat.2010.12.036Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Wei, F. (2014). Health risksfrom the exposure of children to As, Se, Pb and other heavy metals near the largestcoking plant in China. Science of the Total Environment, 472, 10011009.https://doi.org/10.1016/j.scitotenv.2013.11.124Cavallari, J. M., Eisen, E. A., Fang, S. C., Schwartz, J., Hauser, R., Herrick, R. F., &Christiani, D. C. (2008). PM2.5 metal exposures and nocturnal heart ratevariability: A panel study of boilermaker construction workers. EnvironmentalHealth: A Global Access Science Source, 7, 18. https://doi.org/10.1186/1476-069X-7-36Chang, C. H., Hsiao, Y. L. & Hwang, C. (2015). Evaluating spatial and temporalvariations of aerosol optical depth and biomass burning over southeast asia basedon satellite data products. Aerosol and Air Quality Research, 15(7), 26252640.https://doi.org/10.4209/aaqr.2015.10.0589Chen, A. & Chang, V. W. (2012). Human health and thermal comfort of of fi ce workersin Singapore. Building and Environment, 58, 172178.https://doi.org/10.1016/j.buildenv.2012.07.004Chen, C. & Zhao, B. (2011). Review of relationship between indoor and outdoorparticles: I/O ratio, infiltration factor and penetration factor. AtmosphericEnvironment, 45(2), 275288. https://doi.org/10.1016/j.atmosenv.2010.09.048Chen, H.-W., Chuang, C.-Y. & Lin, H.-T. (2009). Indoor air distribution of nitrogendioxide and ozone in urban hospitals. Bulletin of Environmental Contaminationand Toxicology, 83(2), 147150. https://doi.org/10.1007/s00128-009-9631-xChen, P., Bi, X., Zhang, J., Wu, J. & Feng, Y. (2015). Assessment of heavy metalpollution characteristics and human health risk of exposure to ambient PM2.5 inTianjin, China. Particuology, 20, 104109.https://doi.org/10.1016/j.partic.2014.04.020Chithra, V. S. & Nagendra, S. M. S. (2013). Chemical and morphologicalcharacteristics of indoor and outdoor particulate matter in an urban environment.Atmospheric Environment, 77, 579587.https://doi.org/10.1016/j.atmosenv.2013.05.044Chithra, V. S. & Shiva Nagendra, S. M. (2012). Indoor air quality investigations in anaturally ventilated school building located close to an urban roadway in Chennai,India. Building and Environment, 54, 159167.https://doi.org/10.1016/j.buildenv.2012.01.016Choo, C. P., Jalaludin, J. & Hashim, Z. (2014). Schools Indoor Air Quality andRespiratory Health Implications among Children. Aensi Journals, 8(14), 112121de Gennaro, G., Farella, G., Marzocca, A., Mazzone, A. & Tutino, M. (2013). Indoor and outdoormonitoring of volatile organic compounds in school buildings: Indicators based on health risk assessment to single out critical issues. International Journal ofEnvironmental Research and Public Health, 10(12), 62736291.https://doi.org/10.3390/ijerph10126273Deng, G., Li, Z., Wang, Z., Gao, J., Xu, Z., Li, J. & Wang, Z. (2015). Indoor/outdoor relationshipof PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor and Built Environment, 26(1), 6068.https://doi.org/10.1177/1420326X15604349Deshmukh, D. K., Deb, M. K., Suzuki, Y. & Kouvarakis, G. N. (2013). Water-soluble ionic compositionof PM2.5-10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, theeastern central India. Air Quality, Atmosphere and Health, 6(1), 95110.https://doi.org/10.1007/s11869-011-0149-0Diapouli, E., Chaloulakou, A., Mihalopoulos, N. & Spyrellis, N. (2008). Indoor and outdoor PM massand number concentrations at schools in the Athens area. In Environmental Monitoring and Assessment (Vol. 136, pp. 1320). https://doi.org/10.1007/s10661-007-9724-0Diociaiuti, M., Balduzzi, M., De Berardis, B., Cattani, G., Stacchini, G., Ziemacki, G., Paoletti,L. (2001). The Two PM2.5 (Fine) and PM2.510 (Coarse) Fractions: Evidence of DifferentBiological Activity. Environmental Research, 86(3), 254 262.https://doi.org/10.1006/enrs.2001.4275DOSH. (2010). Industry Code of Practice on Indoor Air Quality. Ministry of Human ResourcesDepartment of Occupational Safety and Health, 150.Douglas W.Dockery, Sc.D; C.Arden Pope III, Ph.D; Xiping Xu, M.D, Ph.D, John D. Spenngler, Ph.D;James H.Ware, Ph.D; Martha E. Fay, M.P.H;Benjamin G. Ferris, Jr, M.D and Frank E. Speizer, M. .(1993). The New England Journal of Medicine Downloaded from nejm.org at Arizona HealthSciences Center and UMC on August 13, 2013. For personal use only. No other useswithout permission. Copyright 1993 Massachusetts Medical Society. All rights reserved. Massachusetts Medical Society, 329(24). https://doi.org/10.1145/1077246.1077257Ekmekcioglu, D. & Keskin, S. S. (2007). Characterization of indoor air particulatematter in selected elementary schools in Istanbul, Turkey. Indoor and Built Environment,16(2), 169176. https://doi.org/10.1177/1420326X07076777Esworthy, R. (2013). Air Quality?: EPA s 2013 Changes to the Particulate Matter (PM) Standard.congressional research service (Vol. 75700).Flora, S. J. S., Mittal, M. & Mehta, A. (2008). Heay metal induced oxidative stress & its possiblereversal by chelation therapy. Indian J MEd Res.Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Twardella, D. (2008).Chemical and morphological properties of particulate matter (PM10, PM ) in schoolclassrooms and outdoor air. Atmospheric Environment, 42(27),65976605. https://doi.org/10.1016/j.atmosenv.2008.04.047Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B. & Rden,H. (2007). Particulate matter in the indoor air of classrooms-exploratory results from Munich andsurrounding area. Atmospheric Environment, 41(4), 854866.https://doi.org/10.1016/j.atmosenv.2006.08.053Fromme, H. (2012). Particles in the Indoor Environment. In S. Kumar (Ed.), Air Quality Monitoring and Modeling (pp. 117144). Shanghai: InTech.Galindo, N., Gil-Molt, J., Varea, M., Chofre, C., & Yubero, E. (2013). Seasonal and interannualtrends in PM levels and associated inorganic ions in southeastern Spain. Microchemical Journal, 110(3), 8188.https://doi.org/10.1016/j.microc.2013.02.009Garca-Aleix, J. R., Delgado-Saborit, J. M., Verd-Martn, G., Amig-Descarrega, J.M. & Esteve-Cano, V. (2014). Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in anindustrialized area. Environmental Science and Pollution Research, 21(1), 695703.https://doi.org/10.1007/s11356-013-1950-0Garca, J. H., Li, W. W., Crdenas, N., Arimoto, R., Walton, J. & Trujillo, D. (2006).Determination of PM2.5 sources using time-resolved integrated source and receptor models. Chemosphere, 65(11), 20182027.https://doi.org/10.1016/j.chemosphere.2006.06.071Gilli, G., Traversi, D., Rovere, R., Pignata, C. & Schilir, T. (2007). Chemicalcharacteristics and mutagenic activity of PM10 in Torino, a Northern Italian City. Science of the Total Environment, 385(13), 97107.https://doi.org/10.1016/j.scitotenv.2007.07.006Gioda, A., Fuentes-Mattei, E. & Jimenez-Velez, B. (2011). Evaluation of cytokineexpression in BEAS cells exposed to fine particulate matter (PM2.5) from specializedindoor environments. International Journal of Environmental Health Research, 21(2), 106119.https://doi.org/10.1080/09603123.2010.515668Gonzlez-Flecha, B. (2004). Oxidant mechanisms in response to ambient air particles. Molecular Aspects of Medicine, 25(12), 169182.https://doi.org/10.1016/j.mam.2004.02.017Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Tsai, C. J., Roam, G. D., Chen, C. F. (2012).Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive MatrixFactorization. Aerosol and Air Quality Research, 12(4), 476491.https://doi.org/10.4209/aaqr.2012.04.0084Habil, M., Massey, D. D. & Taneja, A. (2013). Exposure of children studying in schools of India toPM levels and metal contamination: Sources and their identification. Air Quality, Atmosphere and Health, 6(3), 575587.https://doi.org/10.1007/s11869-013-0201-3Han, L., Zhou, W., Li, W., & Li, L. (2014). Impact of urbanization level on urban air quality: Acase of fine particles (PM ) in Chinese cities. Environmental Pollution,194, 163170. https://doi.org/10.1016/j.envpol.2014.07.022Han, N. M., M., Latif, M. T., Othman, M., Dominick, D., Mohamad, N., Juahir, H. & Tahir, N. M.(2014). Composition of selected heavy metals in road dust from Kuala Lumpur citycentre. Environmental Earth Sciences, 72(3), 849859.https://doi.org/10.1007/s12665-013-3008-5Hasheminassab, S., Daher, N., Ostro, B. D., & Sioutas, C. (2014). Long-term source apportionment ofambient fine particulate matter (PM2.5) in the Los Angeles Basin: A focus on emissions reductionfrom vehicular sources. Environmental Pollution, 193(x), 5464.https://doi.org/10.1016/j.envpol.2014.06.012Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J. & Gullett, B. K. (2005). Open burning ofagricultural biomass: Physical and chemical properties of particle- phase emissions. Atmospheric Environment, 39(36), 67476764.https://doi.org/10.1016/j.atmosenv.2005.07.072Heal, M. R., Kumar, P. & Harrison, R. M. (2012). Particles, air quality, policy and health. Chemical Society Reviews, 41(19), 66066630.https://doi.org/10.1039/c2cs35076aHitzfeld, B., Friedrichs, K. H., Ring, J. & Behrendt, H. (1997). Airborne particulate matter modulates the production of reactive oxygen species in human polymorphonuclear granulocytes. Toxicology, 120(3), 185195.https://doi.org/10.1016/S0300-483X(97)03664-0Hospodsky, D., Qian, J., Nazaroff, W. W., Yamamoto, N., Bibby, K., Rismani-Yazdi,H. & Peccia, J. (2012). Human occupancy as a source of indoor airborne bacteria.PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0034867Hsu, Y. C., Lai, M. H., Wang, W. C., Chiang, H. L. & Shieh, Z. X. (2008).Characteristics of Water-Soluble Ionic Species in Fine (PM2.5) and Coarse ParticulateMatter (PM102.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association, 58(12), 15791589.https://doi.org/10.3155/1047-3289.58.12.1579Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012).Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) inTSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, 146152.https://doi.org/10.1016/j.atmosenv.2012.04.056Huang, Wei, Cao, J., Tao, Y., Dai, L., Lu, S. E., Hou, B., Zhu, T. (2012). Seasonal variation ofchemical species associated with short-term mortality effects of PM2.5 in Xian, a central city in China. American Journal of Epidemiology, 175(6), 556566.https://doi.org/10.1093/aje/kwr342Huang, Wen, Duan, D., Zhang, Y., Cheng, H. & Ran, Y. (2014). Heavy metals inparticulate and colloidal matter from atmospheric deposition of urban Guangzhou South China. Marine Pollution Bulletinhttps://doi.org/10.1016/j.marpolbul.2013.12.041Huttunen, K., Rintala, H., Hirvonen, M. R., Vepslinen, A., Hyvrinen, A., Meklin, T., Nevalainen,A. (2008). Indoor air particles and bioaerosols before and after renovation of moisture-damagedbuildings: The effect on biological activity and microbial flora. Environmental Research, 107(3), 291298.https://doi.org/10.1016/j.envres.2008.02.008Ismail, M., Mohd Sofian, N. Z., & Abdullah, A. M. (2010). Indoor Air Quality inSelected Samples of Environment Asia. EnvironmentAsia 3, special is, 103108.https://doi.org/10.14456/ea.2010.48J.L., P., M., K., W., D. F., J.A., M., G., F., & P.E., T. (2011). Ambient air pollution and apneaand bradycardia in high-risk infants on home monitors. Environmental Health Perspectives,119(9), 13211327. https://doi.org/10.1289/ehp.1002739Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. InterdisciplinaryToxicology, 7(2), 6072. https://doi.org/10.2478/intox-2014-0009Kadiiska, M. B., Mason, R. P., Dreher, K. L., Costa, D. L., & Ghio, a J. (1997). In vivo evidenceof free radical formation in the rat lung after exposure to an emission source air pollutionparticle. Chemical Research in Toxicology, 10(10), 1104 1108.https://doi.org/10.1021/tx970049rKam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2012). Size-segregated composition of particulate matter (PM) in major roadways and surface streets. Atmospheric Environment, 55, 9097.https://doi.org/10.1016/j.atmosenv.2012.03.028Kasier, H. F. (1960). The application of electronic computers to factor analysis.Educational and Psychological Measurement, XX(1), 141151.Keegan, G. M., Learmonth, I. D., & Case, C. P. (2008). A systematic comparison of the actual,potential, and theoretical health effects of cobalt and chromium exposures from industryand surgical implants. Critical Reviews in Toxicology. https://doi.org/10.1080/10408440701845534Kembel, S. W., Jones, E., Kline, J., Northcutt, D., Stenson, J., Womack, A. M., Green, J. L.(2012). Architectural design influences the diversity and structure of the built environment microbiome. The ISME Journal, 6(8), 14691479. https://doi.org/10.1038/ismej.2011.211Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., Chung,J. X. (2016). Fine particulate matter in the tropical environment: Monsoonal effects,source apportionment, and health risk assessment. Atmospheric Chemistry and Physics, 16(2),597617. https://doi.org/10.5194/acp-16-597-2016Khan, Md Firoz, Hirano, K., & Masunaga, S. (2012). Assessment of the sources of suspendedparticulate matter aerosol using US EPA PMF 3.0. Environmental Monitoring and Assessment,184(2), 10631083. https://doi.org/10.1007/s10661- 011-2021-yKhan, Md Firoz, Sulong, N. A., Latif, M. T., Nadzir, M. S. M., Amil, N., Hussain, D.F. M., Mizohata, A. (2016). Comprehensive assessment of PM2.5 physicochemicalproperties during the Southeast Asia dry season (southwest monsoon). Journal of Geophysical Research, 121(24), 1458914611.https://doi.org/10.1002/2016JD025894Kim, K., Kabir, E., & Kabir, S. (2015). A review on the human health impact ofairborne particulate matter. Environment International, 74, 136143.https://doi.org/10.1016/j.envint.2014.10.005Kitto, M. E. (1993). Trace-element patterns in fuel oils and gasolines for use in sourceapportionment. Air and Waste, 43(10), 13811388.https://doi.org/10.1080/1073161X.1993.10467213Kleeman, M. J., Ying, Q., & Kaduwela, A. (2005). Control strategies for the reduction of airborneparticulate nitrate in Californias San Joaquin Valley. Atmospheric Environment, 39(29), 53255341.https://doi.org/10.1016/j.atmosenv.2005.05.044Koak, M., Mihalopoulos, N., & Kubilay, N. (2009). Origin and source regions of PM 10 in theEastern Mediterranean atmosphere. Atmospheric Research, 92(4), 464 474.https://doi.org/10.1016/j.atmosres.2009.01.005Kong, S., Lu, B., Ji, Y., Zhao, X., Chen, L., Li, Z., Bai, Z. (2011). Levels, riskassessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal, 98(2), 280290.https://doi.org/10.1016/j.microc.2011.02.012Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 andPM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407(24), 61966204.https://doi.org/10.1016/j.scitotenv.2009.08.050Latif, M. T., Yong, S. M., Saad, A., Mohamad, N., Baharudin, N. H., Mokhtar, M. Bin, & Tahir, N.M. (2014). Composition of heavy metals in indoor dust and their possible exposure: A casestudy of preschool children in Malaysia. Air Quality, Atmosphere and Health, 7(2), 181193. https://doi.org/10.1007/s11869-013-0224-9Laumbach, R., Meng, Q., & Kipen, H. (2015). What can individuals do to reduce personalhealth risks from air pollution? Journal of Thoracic Disease, 7(1), 96 107.https://doi.org/10.3978/j.issn.2072-1439.2014.12.21Lazaridis, M., Aleksandropoulou, V., Hanssen, J. E., Dye, C., Eleftheriadis, K., &Katsivela, E. (2008). Inorganic and carbonaceous components in indoor/outdoor particulate matter intwo residential houses in Oslo, Norway. Journal of the Air and Waste Management Association, 58(3), 346356. https://doi.org/10.3155/1047-3289.58.3.346Lee, B. K., & Hieu, N. T. (2011). Seasonal Variation and Sources of Heavy Metals in AtmosphericAerosols in a esidential Area of Ulsan, Korea. Aerosol and Air Quality Research, 11(6),679688. https://doi.org/10.4209/aaqr.2010.10.0089Lestari, P., & Mauliadi, Y. D. (2009). Source apportionment of particulate matter at urban mixedsite in Indonesia using PMF. Atmospheric Environment, 43(10), 17601770.https://doi.org/10.1016/j.atmosenv.2008.12.044Leung, M., & Chan, A. H. S. (2006). Control and management of hospital indoor air quality. MedicalScience Monitor?: International Medical Journal of Experimentaland Clinical Research, 12(3), SR17-R23.Li, J., Psfai, M., Hobbs, P. V., & Buseck, P. R. (2003). Individual aerosol particles from biomassburning in southern Africa: 2, Compositions and aging of inorganic particles. Journal ofGeophysical Research: Atmospheres, 108(D13), n/a-n/a. https://doi.org/10.1029/2002jd002310Li, W., Shao, L., Wang, Z., Shen, R., Yang, S., & Tang, U. (2010). Size, composition, and mixingstate of individual aerosol particles in a South China coastal city Weijun. Journal ofEnvironmental Sciences, 22(4), 561569Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., Ezzati,M. (2012). A comparative risk assessment of burden of disease and injury attributable to67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for theGlobal Burden of Disease Study 2010. The Lancet, 380(9859), 22242260.https://doi.org/10.1016/S0140-6736(12)61766-8Liu, Y., Gao, Y., Zhang, L., Wang, T., Wang, J., Jiao, F., Chen, C. (2009). Potential Health Impacton Mice after Nasal Instillation of Nano-Sized Copper Particles and Their Translocation in Mice.Journal of Nanoscience and Nanotechnology, 9(11), 63356343. https://doi.org/10.1166/jnn.2009.1320Lndahl, J., Massling, A., Pagels, J., Swietlicki, E., Vaclavik, E., & Loft, S. (2007).Size-Resolved Respiratory-Tract Deposition of Fine and Ultrafine Hydrophobic and Hygroscopic Aerosol Particles During Rest and Exercise. Inhalation Toxicology, 19(2), 109116.https://doi.org/10.1080/08958370601051677Lndahl, J., Pagels, J., Swietlicki, E., Zhou, J., Ketzel, M., Massling, A., & Bohgard,M. (2006). A set-up for field studies of respiratory tract deposition of fine and ultrafineparticles in humans. Journal of Aerosol Science, 37(9), 11521163.https://doi.org/10.1016/j.jaerosci.2005.11.004M.B., A., A.B., J., A.M., A., M.B., I., M.N., H., R., A., Noor, H. (2000). Air quality inMalaysia: Impacts, management issues and future challenges. Respirology, 5(2), 183196.https://doi.org/http://dx.doi.org/10.1046/j.1440-1843.2000.00248.xManousakas, M., Diapouli, E., Papaefthymiou, H., Migliori, A., Karydas, A. G.,Padilla-Alvarez, R., Eleftheriadis, K. (2015). Source apportionment by PMF on elementalconcentrations obtain3qed by PIXE analysis of PM10 samples collected at the vicinity of lignitepower plants and mines in Megalopolis, Greece. Nuclear Instruments and Methods in Physics Research,Section B: Beam Interactions with Materials and Atoms, 349, 114124.https://doi.org/10.1016/j.nimb.2015.02.037Mansha, M., Ghauri, B., Rahman, S., & Amman, A. (2012). Characterization and sourceapportionment of ambient air particulate matter ( PM2.5) in Karachi. Science of the Total Environment, 425(July 2001), 176183.https://doi.org/10.1016/j.scitotenv.2011.10.056Mariani, R. L., & de Mello, W. Z. (2007). PM2.5-10, PM2.5 and associated water-soluble inorganicspecies at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmospheric Environment, 41(13), 28872892.https://doi.org/10.1016/j.atmosenv.2006.12.009Martin, R., Dowling, K., Pearce, D. C., Florentine, S., Mcknight, S., Stelcer, E.,Bennett, J. W. (2016). Trace metal content in inhalable particulate matter deposits using alaboratory-based approach. Environmental Geochemistry and Health.https://doi.org/10.1007/s10653-016-9833-1Masiol, M., Squizzato, S., Rampazzo, G., & Pavoni, B. (2014). Source apportionment of PM2.5 atmultiple sites in Venice (Italy): Spatial variability and the role of weather. Atmospheric Environment, 98(2014), 7888.https://doi.org/10.1016/j.atmosenv.2014.08.059Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and theirrelated metal toxicity in rural residential environment of semi-arid region of India. AtmosphericEnvironment, 67, 278286.Massey, D., Kulshrestha, A., Masih, J., & Taneja, A. (2012). Seasonal trends of PM10, PM5.0, PM2.5& PM1.0 in indoor and outdoor environments of residential homes located in North-Central India.Building and Environment, 47(1), 223231. https://doi.org/10.1016/j.buildenv.2011.07.018Matson, U. (2005). Indoor and outdoor concentrations of ultrafine particles in some Scandinavianrural and urban areas. Science of the Total Environment, 343(13), 169176.https://doi.org/10.1016/j.scitotenv.2004.10.002Mazlan, S. M., Hamzah, A., Mahmud, M., Pengajian, Pusat, Pembangunan, S.,Persekitaran, D., Mazlan, S. M. (2015). Kualiti udara dalam bangunan di bangunan Sains Biologi,Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia. Malaysian Journal of Society andSpace 11, 1(1), 8796.Mazzei, F., DAlessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008).Characterization of particulate matter sources in an urban environment. Science of the Total Environment, 401(13), 8189.https://doi.org/10.1016/j.scitotenv.2008.03.008Meadow, J. F., Altrichter, A. E., Kembel, S. W., Kline, J., Mhuireach, G., Moriyama, M., Bohannan,B. J. M. (2014). Indoor airborne bacterial communities are influenced by ventilation,occupancy, and outdoor air source. Indoor Air, 24(1), 4148. https://doi.org/10.1111/ina.12047Miller, J. D., Sun, M., Gilyan, A., Roy, J., & Rand, T. G. (2010). Inflammation-associated gene transcription and expression in mouse lungs induced by low molecularweight compounds from fungi from the built environment. Chemico- Biological Interactions, 183(1), 113124.https://doi.org/10.1016/j.cbi.2009.09.023Mohai, P., Kweon, B. S., Lee, S., & Ard, K. (2011). Air pollution around schools is linked topoorer student health and academic performance. Health Affairs, 30(5), 852862.https://doi.org/10.1377/hlthaff.2011.0077Mohamad, N., Latif, M. T. & Khan, M. F. (2016). Source apportionment and health risk assessment ofPM10 in a naturally ventilated school in a tropical environment. Ecotoxicology and Environmental Safety, 124, 351362.https://doi.org/10.1016/j.ecoenv.2015.11.002Mohd Talib Latif, Mohamed Rozali Othman, Chong Lee Kim, Siti Aminah Murayadi, & Khairul NazriAhmad Sahaimi. (2009). Composition of Household Dust in Semi-urban Areas in Malaysia. Indoorand Built Environment, 18(2), 155161. https://doi.org/10.1177/1420326X09103014Morawska, L., Afshari, A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Hnninen,Wierzbicka, A. (2013). Indoor aerosols: From personal exposure to riskassessment. Indoor Air. https://doi.org/10.1111/ina.12044Morawska, Lidia, & Zhang, J. (2002). Combustion sources of particles. 1. Healthrelevance and source signatures. Chemosphere, 49(9), 10451058.https://doi.org/10.1016/S0045-6535(02)00241-2Mudipalli, A. (2007). Lead hepatotoxicity & potential health effects. Indian Journal of MedicalResearch.Murillo-Tovar, M. A., Saldarriaga-Norea, H., Hernndez-Mena, L., Campos-Ramos, A.,Crdenas-Gonzlez, B., Ospina-Norea, J. E., Smith, W. (2015). Potential sources of trace metalsand ionic species in PM2.5 in Guadalajara, Mexico: A case study during dry season. Atmosphere, 6(12), 18581870. https://doi.org/10.3390/atmos6121834Mustaffa, N. I. H., Latif, M. T., Ali, M. M., & Khan, M. F. (2014). Sourceapportionment of surfactants in marine aerosols at different locations along the Malacca Straits.Environmental Science and Pollution Research, 21(10), 6590 6602.https://doi.org/10.1007/s11356-014-2562-zNazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, Supplement, 14(SUPPL.7), 175183. https://doi.org/10.1111/j.1600-0668.2004.00286.xNevalainen, A., Tubel, M., & Hyvrinen, A. (2015). Indoor fungi: Companions and contaminants.Indoor Air, 25(2), 125156. https://doi.org/10.1111/ina.12182Nur Fadilah, & Juliana, J. (2012). Indoor Air Quality ( IAQ ) and Sick BuildingsSyndrome ( SBS ) among Office Workers in New and Old Building in Universiti. Health and theEnvironment Journal, 3(2).Ocskay, R., Salma, I., Wang, W., & Maenhaut, W. (2006). Characterization and diurnal variation ofsize-resolved inorganic water-soluble ions at a rural background site. Journalof Environmental Monitoring, 8(2), 300306.https://doi.org/10.1039/b513915eOlujimi, O., Steiner, O., & Goessler, W. (2015). Journal of African Earth SciencesPollution indexing and health risk assessments of trace elements in indoor dusts from classrooms ,living rooms and offices in Ogun State , Nigeria. Journal of African Earth Sciences, 101, 396404.https://doi.org/10.1016/j.jafrearsci.2014.10.007Othman, M., Latif, M. T., & Mohamed, A. F. (2016). The PM10 compositions, sources and health risksassessment in mechanically ventilated office buildings in an urban environment. Air Quality, Atmosphere and Health, 9(6), 597612.https://doi.org/10.1007/s11869-015-0368-xPappas, G. P., Stover, B., Barnhart, S., Herbert, R. J., Henderson, W., & Koenig, J. (2000). Therespiratory effects of volatile organic compounds. International Journal of Occupational and Environmental Health, 6(1), 18.https://doi.org/10.1179/oeh.2000.6.1.1Paul, W. L., & Taylor, P. A. (2008). A comparison of occupant comfort and satisfaction between agreen building and a conventional building. Building and Environment, 43(11), 18581870.https://doi.org/10.1016/j.buildenv.2007.11.006Pegas, P. N., Nunes, T., Alves, C. A., Silva, J. R., Vieira, S. L. A., Caseiro, A., & Pio,C. A. (2012). Indoor and outdoor characterisation of organic and inorganic compounds incity centre and suburban elementary schools of Aveiro, Portugal. Atmospheric Environment, 55, 8089.https://doi.org/10.1016/j.atmosenv.2012.03.059Qin, Y., & Oduyemi, K. (2003). Chemical composition of atmospheric aerosol in Dundee, UK. Atmospheric Environment, 37(1), 93104.https://doi.org/10.1016/S1352-2310(02)00658-1Ramos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2014). Exposure to indoor air pollutants duringphysical activity in fitness centers. Building and Environment, 82, 349360.https://doi.org/10.1016/j.buildenv.2014.08.026Raysoni, A. U., Stock, T. H., Sarnat, J. A., Montoya Sosa, T., Ebelt Sarnat, S., Holguin, F., Li,W. W. (2013). Characterization of traffic-related air pollutant metrics at four schools in El Paso,Texas, USA: Implications for exposure assessment and siting schools in urban areas. Atmospheric Environment, 80, 140151. https://doi.org/10.1016/j.atmosenv.2013.07.056Rintala, H., Pitkaranta, M., Toivola, M., Paulin, L., & Nevalainen, A. (2008). Diversity andseasonal dynamics of bacterial community in indoor environment. BMC Microbiology, 8(1), 56.https://doi.org/10.1186/1471-2180-8-56Sahu, V., Elumalai, S. P., Gautam, S., Singh, N. K., & Singh, P. (2018).Characterization of indoor settled dust and investigation of indoor air quality in differentmicro-environments. International Journal of Environmental Health Research, 28(4), 419431.https://doi.org/10.1080/09603123.2018.1481498Saliba, N. A., Atallah, M., & Al-Kadamany, G. (2009). Levels and indoor-outdoorrelationships of PM10 and soluble inorganic ions in Beirut, Lebanon. Atmospheric Research, 92(1),131137. https://doi.org/10.1016/j.atmosres.2008.09.010Saraga, D., Pateraki, S., Papadopoulos, A., Vasilakos, C., & Maggos, T. (2011). Studyingthe indoor air quality in three non-residential environments of different use: A museum, aprintery industry and an office. Building and Environment, 46(11), 23332341.https://doi.org/10.1016/j.buildenv.2011.05.013Schoeters, G., Den Hond, E., Zuurbier, M., Naginiene, R., Van Den Hazel, P.,Stilianakis, N., Koppe, J. G. (2006). Cadmium and children: Exposure and health effects. ActaPaediatrica, International Journal of Paediatrics, 95(SUPPL. 453), 5054.https://doi.org/10.1080/08035320600886232Seppnen, O., Fisk, W. J., & Lei, Q. H. (2006). Ventilation and performance in office work. Indoor Air, 16(1), 2836. https://doi.org/10.1111/j.1600-0668.2005.00394.xSeppnen, Olli. (2007). Ventilation strategies for good indoor air quality and energy efficiency.International Journal of Ventilation, 6(4), 297306.Shah, A. S. V, Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., Mills,N. L. (2013). Global association of air pollution and heart failure: A systematic review and meta-analysis. The Lancet, 382(9897), 10391048.https://doi.org/10.1016/S0140-6736(13)60898-3Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambientparticulate matter at rural and urban location of Delhi. Journal of Hazardous Materials,175(13), 600607. https://doi.org/10.1016/j.jhazmat.2009.10.047Sierra-Vargas, M. P., & Teran, L. M. (2012). Air pollution: Impact and prevention. Respirology, 17(7), 10311038. https://doi.org/10.1111/j.1440- 1843.2012.02213.xSimon, M., & Butala, V. (2004). The influence of indoor environment in office buildingson their occupants: Expected-unexpected. Building and Environment, 39(3), 289296.https://doi.org/10.1016/j.buildenv.2003.09.011Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and livingsystems: An overview. Indian Journal of Pharmacology, 43(3), 246.https://doi.org/10.4103/0253-7613.81505Sloan, C. D., Andrew, A. S., Gruber, J. F., Mwenda, K. M., Moore, J. H., Onega, T., Duell, E. J.(2012). Indoor and outdoor air pollution and lung cancer in New Hampshire and Vermont.Toxicological & Environmental Chemistry, 94(3), 605 615.https://doi.org/10.1080/02772248.2012.659930Srimuruganandam, B., & Shiva Nagendra, S. M. (2012). Application of positive matrix factorizationin characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere, 88(1), 120130.https://doi.org/10.1016/j.chemosphere.2012.02.083Srivastava, A., & Jain, V. K. (2007). A study to characterize the suspended particulate matter inan indoor environment in Delhi, India. Building and Environment, 42(5), 20462052.https://doi.org/10.1016/j.buildenv.2006.03.007Steinemann, A., Wargocki, P., & Rismanchi, B. (2016). Ten questions concerning greenbuildings and indoor air qiality. Building and Environment, xxx, 16.https://doi.org/10.1016/j.buildenv.2016.11.010Sternbeck, J., Sjdin, ., & Andrasson, K. (2002). Metal emissions from road traffic and theinfluence of resuspension - Results from two tunnel studies. Atmospheric Environment, 36(30),47354744. https://doi.org/10.1016/S1352-2310(02)00561-7Straus, D. C. (2009). Molds, mycotoxins, and sick building syndrome. Toxicology and Industrial Health, 25(910), 617635.https://doi.org/10.1177/0748233709348287Sulaiman, F. R., Bakri, N. I. F., Nazmi, N., & Latif, M. T. (2017). Assessment of heavymetals in indoor dust of a university in a tropical environment. EnvironmentalForensics, 18(1), 7482. https://doi.org/10.1080/15275922.2016.1263903Sun, J. L., Jing, X., Chang, W. J., Chen, Z. X., & Zeng, H. (2015). Cumulative health riskassessment of halogenated and parent polycyclic aromatic hydrocarbons associated withparticulate matters in urban air. Ecotoxicology and Environmental Safety, 113, 3137.https://doi.org/10.1016/j.ecoenv.2014.11.024Tahir, N. M., Suratman, S., Fong, F. T., Hamzah, M. S., & Latif, M. T. (2013).Temporal distribution and chemical characterization of atmospheric particulate matter inthe eastern coast of Peninsular Malaysia. Aerosol and Air Quality Research, 13(2),584595. https://doi.org/10.4209/aaqr.2012.08.0216Tubel, M., Rintala, H., Pitkranta, M., Paulin, L., Laitinen, S., Pekkanen, J.,Nevalainen, A. (2009). The occupant as a source of house dust bacteria. Journal of Allergy and Clinical Immunology, 124(4).https://doi.org/10.1016/j.jaci.2009.07.045Tauler, R., Paatero, P., Henry, R. C., Spiegelman, C., Park, E. S., Poirot, R. L., Hopke,P. K. (2008). Chapter Fiveteen Identification, Resolution and Apportionment of ContaminationSources. Developments in Integrated Environmental Assessment, 3, 269284.https://doi.org/10.1016/S1574-101X(08)00615-7Taylor S.R. (1964). Abundance of chemical elements in the continental crust?: a new table.Geochimica et Cosmochimica Acta, 28, 12731285.Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., & Samara,C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric Environment, 44(18), 22312239.https://doi.org/10.1016/j.atmosenv.2010.02.019Thornburg, J., Ensor, D. S., Rodes, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R.B. (2001). Penetration of Particles into Buildings and Associated Physical Factors. Part I: ModelDevelopment and Computer Simulations. Aerosol Science and Technology, 34(3), 284296.https://doi.org/10.1080/02786820150217858Thurston, G. D., Ito, K., & Lall, R. (2011). A source apportionment of U . S . fi ne particulatematter air pollution. Atmospheric Environment, 45(24), 39243936.https://doi.org/10.1016/j.atmosenv.2011.04.070Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of sourcecontributions to inhalable particulate matter pollution in metropolitan Boston. AtmosphericEnvironment (1967), 19(1), 925. https://doi.org/10.1016/0004-6981(85)90132-5Tsitouridou, R., Voutsa, D., & Kouimtzis, T. (2003). Ionic composition of PM10 in the area of Thessaloniki, Greece. Chemosphere, 52(5), 883891.https://doi.org/10.1016/S0045-6535(03)00313-8Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonaryoxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozoneas major causes of lung carcinogenesis through reactive oxygen species mechanisms. InternationalJournal of Environmental Research and PublicHealth, 10(9), 38863907. https://doi.org/10.3390/ijerph10093886Voutsa, D., Samara, C., Manoli, E., Lazarou, D., & Tzoumaka, P. (2014). Ioniccomposition of PM2.5 at urban sites of northern Greece: Secondary inorganic aerosolformation. Environmental Science and Pollution Research, 21(7), 4995 5006.https://doi.org/10.1007/s11356-013-2445-8Wahid, N. B A, Latif, M. T., Suan, L. S., Dominick, D., Sahani, M., Jaafar, S. A., & Mohd Tahir, N.(2014). Source identification of particulate matter in a semi-urban area of Malaysia using multivariate techniques. Bulletin of Environmental Contamination and Toxicology, 92(3),317322. https://doi.org/10.1007/s00128-014-1201-1Wahid, N.B.A., Latif, M. T., & Suratman, S. (2013). Composition and source apportionmentof surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere, 91(11), 15081516.https://doi.org/10.1016/j.chemosphere.2012.12.029Wahid, Nurul Bahiyah Abd, Latif, M. T., & Suratman, S. (2017). Composition and possible sourcesof anionic surfactants from urban and semi-urban street dust. Air Quality, Atmosphere and Health, 10(9), 10511057.https://doi.org/10.1007/s11869-017-0493-9Wang, Q., Zhao, H. H., Chen, J. W., Gu, K. D., Zhang, Y. Z., Zhu, Y. X., Ye, L. X.(2009). Adverse health effects of lead exposure on children and exploration to internal leadindicator. Science of the Total Environment, 407(23), 59865992.https://doi.org/10.1016/j.scitotenv.2009.08.038Wang, S. K., Chew, S. P., Jusoh, M. T., Khairunissa, A., Leong, K. Y., & Azid, A. A. (2017). WSNbased indoor air quality monitoring in classrooms. American Institute of Physics,020063(1808), 020063. https://doi.org/10.1063/1.4975296Wang, Y. F., Chao, H. R., Wang, L. C., Chang-Chien, G. P., & Tsou, T. C. (2010). Characteristics ofheavy metals emitted from a heavy oil-fueled power plant in Northern Taiwan. Aerosol and Air Quality Research, 10(2), 111118. https://doi.org/10.4209/aaqr.2009.09.0056Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., & Zheng, A. (2005). The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment, 39(21), 37713784.https://doi.org/10.1016/j.atmosenv.2005.03.013Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health riskassessment of heavy metals in street dusts from different functional areas in Beijing, China.Ecotoxicology and Environmental Safety, 112, 186192. https://doi.org/10.1016/j.ecoenv.2014.11.005Wolkoff, P., & Kjaergaard, S. . (2007). The dichotomy of relative humidity on indoor air quality. Environment International, 33(6), 850857.https://doi.org/10.1016/j.envint.2007.04.004Woloszyn, M., Kalamees, T., Abadie, M. O., Steeman, M., & Sasic Kalagasidis, A. (2009). The effectof combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacityof materials on indoor climate and energy efficiency of buildings. Building and Environment, 44(3), 515524.https://doi.org/10.1016/j.buildenv.2008.04.017Xu, Z., Wu, Y., Shen, F., Chen, Q., Tan, M., & Yao, M. (2011). Bioaerosol science, technology, andengineering: Past, present, and future. Aerosol Science and Technology, 45(11), 13371349.https://doi.org/10.1080/02786826.2011.593591Yang Razali, N. Y., Latif, M. T., Dominick, D., Mohamad, N., Sulaiman, F. R., & Srithawirat,T. (2015). Concentration of particulate matter, CO and CO2 in selected schools in Malaysia. Building and Environment, 87, 108116.https://doi.org/10.1016/j.buildenv.2015.01.015Young, S. H., Cox-Ganser, J. M., Shogren, E. S., Wolfarth, M. G., Li, S. Q., Antonini,J. M., Park, J. H. (2011). Pulmonary inflammation induced by office dust and the relation to 13--glucan using different extraction techniques. Toxicological and Environmental Chemistry, 93(4), 806823.https://doi.org/10.1080/02772248.2011.554229Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., Chu, J. (2013).Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research, 13(2), 574583.https://doi.org/10.4209/aaqr.2012.07.0192Zannoni, D., Valotto, G., Visin, F., & Rampazzo, G. (2016). Sources and distribution of tracerelements in road dust?: The Venice mainland case of study. Journal of Geochemical Exploration, 166, 6472.https://doi.org/10.1016/j.gexplo.2016.04.007Zhang, L., Jin, X., Johnson, A. C., & Giesy, J. P. (2016). Hazard posed by metals and As in PM 2.5in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. EnvironmentalScience and Pollution Research, 23(17), 17603 17612.https://doi.org/10.1007/s11356-016-6863-2Zheng, S., Pozzer, A., Cao, C. X., & Lelieveld, J. (2015). Long-term (2001-2012)concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing,China. Atmospheric Chemistry and Physics, 15(10), 57155725.https://doi.org/10.5194/acp-15-5715-2015Zhong, J. N. M., Latif, M. T., Mohamad, N., Wahid, N. B. A., Dominick, D., & Juahir,H. (2014). Source Apportionment of Particulate Matter (PM10) and Indoor Dust in a University Building. Environmental Forensics, 15(1), 816.https://doi.org/10.1080/15275922.2013.872712Zhu, C. S., Cao, J. J., Shen, Z. X., Liu, S. X., Zhang, T., Zhao, Z. Z., Zhang, E. K. (2012).Indoor and outdoor chemical components of PM2.5 in the rural areas of Northwestern China.Aerosol and Air Quality Research, 12(6), 11571165.https://doi.org/10.4209/aaqr.2012.01.0003