An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting
The research is aimed to find the most efficient implementation strategies by Gauss numericalmethods for solving stiff problems and the best error estimation in the variablestepsize setting. The numerical methods considered as a research methodology are the 2-stage(G2) and 3-stage (G3) implicit Rung...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2021
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=5865 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:5865 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Sara Syahrunnisaa Mustapha An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting |
description |
The research is aimed to find the most efficient implementation strategies by Gauss numericalmethods for solving stiff problems and the best error estimation in the variablestepsize setting. The numerical methods considered as a research methodology are the 2-stage(G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods. Two strategies by Hairer andWanner (HW) and Gonzalez-Pinto, Montijano and Randez (GMR) schemes were implemented. Thevariable stepsize setting employed the simplified Newton is modified to fit according to HW andGMR schemes in solving the nonlinear algebraic systems of the equations. The errorestimation for the variablestepsize setting is computed using extrapolation technique with stepsizes h and h 2 .HW and GMR schemes used the transformation matrix T to improve the efficiency of the methods andalso compared with the modified Hairer and Wanner (MHW) schemewithout using any transformation matrix T . Findings showed that G2 method usingMHW scheme gave an efficient implementation in solving Kaps, Oreganator and HIRESproblems while for G3 method, it was efficient in solving Kaps, Brusselator, Oreganator, Van derPol and HIRES problems. In terms of error estimation, the G2 method gave the best error estimationfor Brusselator, Oreganator, Van der Pol and HIRES problems, while for the G3 method it wasefficient in solving Kaps, Brusselator, Oreganator, Van der Pol and HIRES problems, both byusing HW scheme. In conclusion, the MHW scheme without any transformation matrix T can be asefficient as the HW and GMR schemes by using the variable stepsize setting and the MHW scheme isrecommended in solving stiff problems. As for the implications, this research could be extendedto other different types of problems such as delay and fuzzyrential equations. |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Sara Syahrunnisaa Mustapha |
author_facet |
Sara Syahrunnisaa Mustapha |
author_sort |
Sara Syahrunnisaa Mustapha |
title |
An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting |
title_short |
An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting |
title_full |
An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting |
title_fullStr |
An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting |
title_full_unstemmed |
An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting |
title_sort |
efficient implementation of runge-kutta gauss methods using variable stepsize setting |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2021 |
url |
https://ir.upsi.edu.my/detailsg.php?det=5865 |
_version_ |
1747833233195663360 |
spelling |
oai:ir.upsi.edu.my:58652021-04-16 An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting 2021 Sara Syahrunnisaa Mustapha QA Mathematics The research is aimed to find the most efficient implementation strategies by Gauss numericalmethods for solving stiff problems and the best error estimation in the variablestepsize setting. The numerical methods considered as a research methodology are the 2-stage(G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods. Two strategies by Hairer andWanner (HW) and Gonzalez-Pinto, Montijano and Randez (GMR) schemes were implemented. Thevariable stepsize setting employed the simplified Newton is modified to fit according to HW andGMR schemes in solving the nonlinear algebraic systems of the equations. The errorestimation for the variablestepsize setting is computed using extrapolation technique with stepsizes h and h 2 .HW and GMR schemes used the transformation matrix T to improve the efficiency of the methods andalso compared with the modified Hairer and Wanner (MHW) schemewithout using any transformation matrix T . Findings showed that G2 method usingMHW scheme gave an efficient implementation in solving Kaps, Oreganator and HIRESproblems while for G3 method, it was efficient in solving Kaps, Brusselator, Oreganator, Van derPol and HIRES problems. In terms of error estimation, the G2 method gave the best error estimationfor Brusselator, Oreganator, Van der Pol and HIRES problems, while for the G3 method it wasefficient in solving Kaps, Brusselator, Oreganator, Van der Pol and HIRES problems, both byusing HW scheme. In conclusion, the MHW scheme without any transformation matrix T can be asefficient as the HW and GMR schemes by using the variable stepsize setting and the MHW scheme isrecommended in solving stiff problems. As for the implications, this research could be extendedto other different types of problems such as delay and fuzzyrential equations. 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=5865 https://ir.upsi.edu.my/detailsg.php?det=5865 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Ababneh, O. Y. & Ahmad, R. (2009). Construction of third-order diagonal implicitRunge-Kutta methods for stiff problems. Chinese Physics Letters, 26(8), 080503.Abia, L. & Sanz-Serna, J. M. (1993). Partitioned Runge-Kutta methods for separable Hamiltonianproblems. Mathematics of Computation, 60(202), 617-634.Agam, S. A. & Yahaya, Y. A. (2014). A highly efficient implicit Runge-Kutta method for first orderordinary differential equations. African Journal of Mathematics and Computer Science Research,7(5), 55-60.Aiken, R. C. (1985). Stiff Computation. Oxford: Oxford University Press.Antoana, M., Makazaga, J. & Murua, A. (2018). Efficient implementation of symplecticimplicit Runge-Kutta schemes with simplified Newton iterations. Numerical Algorithms, 78(1), 63-86.Araz, S. ?. (2020). Numerical analysis of a new Volterra integro-differential equation involvingfractal-fractional operators. Chaos, Solitons & Fractals, 130, 109396.Atangana, A. & Araz, S. ?. (2020). New numerical method for ordinary differential equations: Newton polynomial. Journal of Computational and Applied Mathematics, 372, 112622.Atkinson, K., Han, W. & Stewart, D. E. (2009). Numerical Solution of OrdinaryDifferential Equations. New Jersey: John Wiley & Sons, Inc.Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., et al. (2009).Accelerating scientific computations with mixed precisionalgorithms. Computer Physics Communications, 180(12), 2526-2533.Bader, G. & Deuflhard, P. (1983). A semi-implicit mid-point rule for stiff systems of ordinarydifferential equations. Numerische Mathematik, 41(3), 373-398.Berghe, G. V. & Daele, M. V. (2011). Symplectic exponentially-fitted four-stageRunge-Kutta methods of the Gauss type. Numerical Algorithms, 56(4), 591- 608.Bjurel, G., Dahlquist, G., Lindberg, B., Linde, S. & Oden, L. (1970). Survey of stiff ordinarydifferential equations. Department of Information Processing, RoyalInstitute of Technology, Stockholm.Blanes, S., Casas, F. & Thalhammer, M. (2019). Splitting and composition methods with embeddederror estimators. Applied Numerical Mathematics. 146 (2019), 400-415.Boom, P. D. & Zingg, D. W. (2015). Investigation of efficient high-order implicitRunge-Kutta methods based on generalized summation-by-parts operators. 22nd AIAAComputational Fluid Dynamics Conference, 2757, 1-15.Branch, M. & Mahshahr, I. R. I. (2016). Computing simulation of the generalized duffingoscillator basedon EBM and MHPM. Mechanics and Mechanical Engineering, 20(4), 595-604.Burrage, K. & Butcher, J. C. (1979). Stability criteria for implicit Runge-Kuttamethods. SIAM Journal on Numerical Analysis, 16(1), 46-57.Butcher, J. C. (1964). Implicit Runge-Kutta processes. Mathematics ofComputation, 18(85), 50-64.Butcher, J. C. (1996). A history of Runge-Kutta methods. Applied Numerical Mathematics,20(3), 247-260.Butcher, J. C. (1997). An introduction to Almost Runge-Kutta methods. Applied NumericalMathematics, 24(2-3), 331-342.Butcher, J. C. (2016). Numerical Methods for Ordinary Differential Equations. United Kingdom: JohnWiley & Sons.Calvo, M., Franco, J. M., Montijano, J. I. & Rndez, L. (2009). Sixth-order symmetric andsymplectic exponentially fitted Runge-Kutta methods of the Gauss type. Journal of Computational andApplied Mathematics, 223(1), 387398.Cash, J. R. (1975). A class of implicit Runge-Kutta methods for the numericalintegration of stiff ordinary differential equations. Journal of the ACM (JACM),22(4), 504-511.Cerrolaza, M., Shefelbine, S. & Garzn-Alvarado, D. (Eds.). (2018). Numerical Methods andAdvanced Simulation in Biomechanics and Biological Processes. London, UK: Academic Press.Chan, R. P. K. (1990). On symmetric Runge-Kutta methods of high order. Computing, 45(4), 301309.Chan, R. P. K. & Gorgey, A. (2013). Active and passive symmetrization of Runge- Kutta Gaussmethods. Applied Numerical Mathematics, 67, 6477.Chan, R. P. K. & Razali, N. (2014). Smoothing effects on the IMR and ITR. NumericalAlgorithms, 65(3), 401-420.Cong, N. H. (1994). Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial-valueproblems. Journal of Computational and Applied Mathematics, 51(1), 117125.Cooper, G. J. & Butcher, J. C. (1983). An iteration scheme for implicit Runge-Kutta methods. IMAJournal of Numerical Analysis, 3(2), 127-140.Dahlquist, G. G. (1963). A special stability problem for linear multistep methods. BIT NumericalMathematics, 3(1), 27-43.Dekker, K. & Verwer J.G. (1984). Stability of Runge-Kutta methods for stiff nonlinear differentialequations. North-Holland: CWI Monographs.DeVries, P. & Hasbun, J. (2011). A First Course in Computational Physics. Sudbury, MA: Jones andBartlett Publishers.Dormand, J. R. (2018). Numerical Methods for Differential Equations: AComputational Approach. Boca Raton, FL: CRC Press.Ehle, B. L. (1973). A-stable methods and Pad approximations to theexponential. SIAM Journal on Mathematical Analysis, 4(4), 671-680.Enright, W. H., Hull, T. E. & Lindberg, B. (1975). Comparing numerical methods for stiff systems ofODEs. BIT Numerical Mathematics, 15(1), 10-48.Fan, Z., Song, M. & Liu, M. (2009). The th moment stability for the stochasticpantograph equation. Journal of Computational and AppliedMathematics, 233(2), 109-120.Farag, I., Havasi, . & Zlatev, Z. (2013). The convergence of diagonally implicitRunge-Kutta methods combined with Richardson extrapolation. Computers and Mathematics withApplications, 65(3), 395401.Fatunla, S. O. (2014). Numerical Methods for Initial Value Problems in OrdinaryDifferential Equations. San Diego, CA: Academic Press, Inc.Gear, C. W. (1980). Runge-Kutta starters for multistep methods. ACM Transactions on MathematicalSoftware (TOMS), 6(3), 263-279.Gonzlez-Pinto, S., Gonzlez-Concepcin, C. & Montijano, J. I. (1994). Iterative schemes for Gauss methods. Computers and Mathematics with Applications, 27(7),67-81.Gonzlez-Pinto, S., Hernndez-Abreu, D. & Montijano, J. I. (2019). Variable step-size control based on two-steps for Radau IIA methods. Preprint:https://www.researchgate.net/publication/331687918_Variable_step-l_based_on_two-steps_for_Radau_IIA_methodsGonzlez-Pinto, S., Montijano, J. I. & Rndez, L. (1995). Iterative schemes for three-stage implicit Runge-Kutta methods. Applied Numerical Mathematics, 17(4), 363382.Gorgey, A. (2012). Extrapolation of symmetrized Runge-Kutta methods. PhD thesis, ResearchSpace @University of Auckland.Gorgey, A. (2015). Extrapolation of symmetrized Runge-Kutta methods in the variable stepsize setting. International Journal of Applied Mathematics and Statistics, 55(2),14-22.Gorgey, A. & Chan, R. P. K. (2015). Choice of strategies for extrapolation withsymmetrization in the constant stepsize setting. Applied NumericalMathematics, 87, 31-37.Gorgey, A. & Mat, N. A. A. (2018). Efficiency of Runge-Kutta methods in solving simple harmonicoscillators. Matematika, 34(1), 1-12.Gorgey, A. & Muhammad, H. (2017). Efficiency of Runge-Kutta methods in solving Kepler problem. AIPConference Proceedings. 1847(1), 020016.Guo, P. & Li, C. J. (2019). Razumikhin-type technique on stability of exact andnumerical solutions for the nonlinear stochastic pantograph differential equations.BIT Numerical Mathematics, 59(1), 77-96.Gustafsson, K. (1994). Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods. ACM Transactions on Mathematical Software (TOMS), 20(4), 496-517.Hairer, E. & Wanner, G. (1981). Algebraically stable and implementable Runge-Kutta methods of highorder. SIAM Journal on Numerical Analysis, 18(6), 1098-1108.Hairer, E. & Wanner, G. (1996). Solving Ordinary Differential Equations II. London: Springer-VerlagBerlin Heidelberg.Hairer, E. & Wanner, G. (1999). Stiff differential equations solved by Radau methods.Journal of Computational and Applied Mathematics, 111(1-2), 93-111.Higham, N. J. (1993). The accuracy of floating point summation. SIAM Journal on ScientificComputing, 14(4), 783-799.Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differentialequation solvers. ACM Signum Newsletter, 15(4), 10-11.Hitchens, F. (2015). Propeller Aerodynamics: The History, Aerodynamics & Operation of AircraftPropellers. Wellington, NZ: Andrews UK Limited.Holder, A. & Eichholz, J. (2019). Modeling with delay differential equations. In AnIntroduction to Computational Science. Switzerland: Springer, Cham. 377-387.Hussain, E. A. & Abdul-Abbass, Y. M. (2019). On Fuzzy differential equation. Journalof Al-Qadisiyah for Computer Science and Mathematics, 11(2), 1-9.Iserles, A. (2009). A first course in the numerical analysis of differential equations.New York, US: Cambridge University Press.Ismail, A. & Gorgey, A. (2015). Behaviour of the extrapolated implicit midpoint and implicit trapezoidal rules with and without compensated summation. Matematika, 31(1), 4757.Kennedy, C. A. & Carpenter, M. H. (2019). Diagonally implicit Runge-Kutta methods for stiff ODEs.Applied Numerical Mathematics, 146(6), 221-244.Kim, I. P. & Kruter, A. R. (2018). Decompositions of a matrix by means of its dual matrices withapplications. Linear Algebra and its Applications, 537, 100-117.Kulikov, G. Y. (2015). Embedded symmetric nested implicit Runge-Kutta methods of Gauss and Lobattotypes for solving stiff ordinary differential equations and Hamiltonian systems. ComputationalMathematics and Mathematical Physics, 55(6), 9831003.Kuntzmann, J. (1961). Neuere entwicklungen der methode von runge und kutta.ZAMM?Journal of Applied Mathematics and Mechanics/Zeitschrift fr Angewandte Mathematik undMechanik, 41(1), 28-31.Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems: The InitialValue Problem. New York, US: John Wiley & Sons, Inc.Lapidus, L. & Schiesser, W. E. (1976). Numerical Methods for Differential Systems: Recent Developments in Algorithms, Software, and Applications. United Kingdom: Academic PressInc.Liu, Y. (1995). Stability analysis of -methods for neutral functional-differentialequations. Numerische Mathematik, 70(4), 473-485.Liu, M. Y., Zhang, L. & Zhang, C. F. (2019). Study on banded implicit Runge-Kutta methods forsolving stiff differential equations. Mathematical Problems in Engineering, 2019, 4850872.Muhammad, M. H. (2018). An Efficient Implementation Technique for Implicit Runge- Kutta Methods inSolving the Stiff Problems. Universiti Pendidikan Sultan Idris.Muhammad, M. H. & Gorgey, A. (2018). Investigation on the most efficient ways to solve the implicitequations for Gauss methods in the constant stepsize setting. Applied Mathematical Sciences, 12(2),93-103.Najafi, R. & Nemati, S. B. (2017). Numerical solution of the forced Duffing equations using Legendre multiwavelets. Computational Methods for Differentialtions, 5(1), 43-55.Nazari, F., Mohammadian, A., Charron, M. & Zadra, A. (2014). Optimal high-orderdiagonally-implicit Runge-Kutta schemes for nonlinear diffusive systems on atmosphericboundary layer. Journal of Computational Physics, 271, 118-130.Owolabi, K. M. (2019). Mathematical modelling and analysis of love dynamics: A fractionalapproach. Physica A: Statistical Mechanics and its Applications, 525, 849-865.Peat, K. D. & Thomas, R. M. (1989). Implementation of iteration schemes for implicit Runge-Kuttamethods. University of Manchester. Department of Mathematics.Prothero, A., & Robinson, A. (1974). On the stability and accuracy of one-step methods for solvingstiff systems of ordinary differential equations. Mathematics of Computation, 28(125),145-162.Ramos, H. (2019). Development of a new Runge?Kutta method and its economical implementation.Computational and Mathematical Methods, 1(2), e1016.Rang, J. (2016). The Prothero and Robinson example: Convergence studies for Runge- Kutta andRosenbrock-Wanner methods. Applied Numerical Mathematics, 108, 37-56.Rasedee, A. F. N., Ishak, N., Hamzah, S. R., Ijam, H. M., Suleiman, M., Ibrahim, Z. B., et al.(2017). Variable order variable stepsize algorithm for solving nonlinear Duffng oscillator. Journalof Physics: Conference Series, 890, 012045.Razali, N., Nopiah, Z. M. & Othman, H. (2018). Comparison of one-step and two-step symmetrizationin the variable stepsize setting. Sains Malaysiana, 47(11), 2927-2932.Rechenberg, H. (2001). The Historical Development of Quantum Theory, Volume 1.New York, US: Springer Science & Business Media.Robertson, H. H. (1966). The solution of a set of reaction rate equations. Cambridge,Massachusetts: Academic Press. 178-182.Roussel, M. R. (2019). Nonlinear Dynamics: A hands-on introductory survey. Bristol, UK: Morgan &Claypool Publishers.Rushanan, J. J. (1989). On the Vandermonde matrix. The American Mathematical Monthly,96(10), 921-924.Sanderse, B. & Koren, B. (2012). Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations. Journal of Computational Physics,231(8), 3041 3063.Sanz-Serna, J. (1988). Runge-Kutta schemes for Hamiltonian systems. BIT NumericalMathematics, 28(4), 877-883.Sanz-Serna, J. M. (2016). Symplectic Runge-Kutta schemes for adjoint equations,automatic differentiation, optimal control, and more. SIAM Review, 58(1), 3-33.Schfer, E. (1975). A new approach to explain the high irradiance responses ofphotomorphogenesis on the basis of phytochrome. Journal of Mathematical Biology, 2(1),41-56.Shampine, L. F. (1984). Stability of explicit Runge-Kutta methods. Computers &Mathematics with Applications, 10(6), 419-432.Shampine, L. F. (1985). Local error estimation by doubling. Computing, 34(2), 179- 190.Shampine, L. F. (2018). Numerical Solution of Ordinary Differential Equations. Boca Raton, FL:Routledge.Skvortsov, L. M. & Kozlov, O. S. (2014). Efficient implementation of diagonally implicit Runge-Kutta methods. Mathematical Models and Computer Simulations, 6(4), 415-424.Sun, G. A. (2000). Simple way constructing symplectic Runge-Kutta methods. Journal of ComputationalMathematics, 18(1), 6168.Swart, D., Jacques, J. B. & Lioen, W. M. (1998). Collecting real-life problems to test solvers forimplicit differential equations. CWI Quarterly, 11(1), 83-100.Toufik, M. & Atangana, A. (2017). New numerical approximation of fractional derivativewith non-local and non-singular kernel: application to chaotic models. The European PhysicalJournal Plus, 132(10), 444.Varah, J. M. (1979). On the efficient implementation of implicit Runge-Kutta methods.Mathematics of Computation, 33(146), 557.Wang, P., Zhou, J., Wang, R. & Chen, J. (2017). New generalized variable stepsizes of the CQ algorithm for solving the split feasibility problem. Journal of Inequalities andApplications, 2017(1), 135.Wang, Y. & Chen, Y. (2020). Shifted Legendre Polynomials algorithm used for the dynamic analysis ofviscoelastic pipes conveying fluid with variable fractional order model. Applied MathematicalModelling, 81, 159-176.Wilkie, J. & etinba?, M. (2005). Variable-stepsize Runge-Kutta methods forstochastic Schrdinger equations. Physics Letters A, 337(3), 166-182.Williams, G. (2017). Linear Algebra with Applications. United State of America: Jones & BarlettLearning.Willoughby, R. A. (1974). Stiff Differential Systems. International Symposium on StiffDifferential Systems. Boston, MA: Springer. 1-19.Xu, P., Yuan, Z., Jian, W. & Zhao, W. (2015). Variable step-size method based on a referenceseparation system for source separation. Journal of Sensors, 2015. 964098.Yaici, M. & Hariche, K. (2019). A particular block Vandermonde matrix. ITM Web of Conferences, 24.01008.Yang, H., Yang, Z., Wang, P. & Han, D. (2019). Mean-square stability analysis for nonlinearstochastic pantograph equations by transformation approach. Journal of Mathematical Analysis andApplications, 479(1), 977-986.Yang, X., Yang, Z. & Xiao, Y. (2020). Asymptotical mean-square stability of linear - methods forstochastic pantograph differential equations: variable stepsize and transformation approach. Unpublished manuscript. DOI: 10.22541/au.159023888.86381071Ycart, B. (2012). A Case of Mathematical Eponymy: The Vandermonde Determinant.arXiv preprint arXiv:1204.4716.Ye, K. (2017). New classes of matrix decompositions. Linear Algebra and itsApplications, 514, 47-81.Yu, W. & Jafari, R. (2019). Fuzzy Differential Equations. In Modeling and Control of UncertainNonlinear Systems with Fuzzy Equations and Z-Number, Piscataway, NJ: Wiley-IEEE Press. 21-37.Zhang, D. K. (2019). Discovering New Runge-Kutta Methods using Unstructured NumericalSearch. arXiv preprint arXiv:1911.00318.Zhang, H., Sandu, A. & Tranquilli, P. (2015). Application of approximate matrixfactorization to high order linearly implicit Runge-Kutta methods. Journal of Computational andApplied Mathematics, 286, 196210.Zhu, B., Hu, Z., Tang, Y. & Zhang, R. (2016). Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields. Internationaleling, Simulation, and Scientific Computing, 7(02), 1650008. |