Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application

This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO2) hybridbasedmaterial for dye-sensitized solar cells (DSSCs) and membrane separationapplications. The electrochemical exfoliation assisted by customized triple-tail sodium1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dio...

Full description

Saved in:
Bibliographic Details
Main Author: Muqoyyanah
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=6352
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:6352
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QD Chemistry
spellingShingle QD Chemistry
Muqoyyanah
Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
description This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO2) hybridbasedmaterial for dye-sensitized solar cells (DSSCs) and membrane separationapplications. The electrochemical exfoliation assisted by customized triple-tail sodium1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulphonate(TC14) and commercially available single-tail sodium dodecyl sulphate (SDS)surfactants were used to synthesize GO with water-based electrolyte and N, Ndimethylacetamide(DMAc) as solvents. The chemical reduction process utilizinghydrazine hydrate was then performed to produce reduced GO (rGO) which furtherhybridized with multi-walled carbon nanotubes (MWCNTs). The fabrication of DSSCscounter electrode (CE) was done by spraying deposition method on fluorine-doped tinoxide (FTO) as substrate and also coated by thin platinum (Pt). Meanwhile, differentvariety of TiO2 nanostructures as DSSCs photoanode were synthesized byhydrothermal growth and squeegee methods with different recepi and synthesis time.On the other hand, the DMAc-based GO was used to fabricate nanofiltration (NF)membrane utilizing polyvinylidene fluoride (PVDF) as the main polymer material byusing phase inversion method. The DSSCs and NF membrane samples werecharacterized using solar simulator and dye rejection test, respectively. The DSSCsfinding showed that the highest energy conversion efficiency (1.559%) was achievedby TiO2 NRs-NFs/TC14-rGO/TiO2 NPs as photoanode and TC14-rGO_MWCNTs/Ptas CE with the value of open circuit voltage, short circuit density, and fill factor were0.747 V, 3.275 mA/cm2, and 53.5, respectively. Meanwhile, the NF membrane findingshowed that PVDF/SDS-GO/TiO2 presents the highest dye flux (10.148 L/m2h) andhigh dye rejection efficiency (~92.76%). In conclusion, the synthesized GO showed apotential to be applied as electrode thin films and also membrane materials. Implicationof this study is a novel, simpler, low-cost, and less harsh chemical for the GO synthesisto fabricate CE and photoanode film for DSSCs and also NF membrane.
format thesis
qualification_name
qualification_level Doctorate
author Muqoyyanah
author_facet Muqoyyanah
author_sort Muqoyyanah
title Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
title_short Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
title_full Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
title_fullStr Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
title_full_unstemmed Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
title_sort fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=6352
_version_ 1747833258011262976
spelling oai:ir.upsi.edu.my:63522021-10-25 Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application 2019 Muqoyyanah QD Chemistry This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO2) hybridbasedmaterial for dye-sensitized solar cells (DSSCs) and membrane separationapplications. The electrochemical exfoliation assisted by customized triple-tail sodium1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulphonate(TC14) and commercially available single-tail sodium dodecyl sulphate (SDS)surfactants were used to synthesize GO with water-based electrolyte and N, Ndimethylacetamide(DMAc) as solvents. The chemical reduction process utilizinghydrazine hydrate was then performed to produce reduced GO (rGO) which furtherhybridized with multi-walled carbon nanotubes (MWCNTs). The fabrication of DSSCscounter electrode (CE) was done by spraying deposition method on fluorine-doped tinoxide (FTO) as substrate and also coated by thin platinum (Pt). Meanwhile, differentvariety of TiO2 nanostructures as DSSCs photoanode were synthesized byhydrothermal growth and squeegee methods with different recepi and synthesis time.On the other hand, the DMAc-based GO was used to fabricate nanofiltration (NF)membrane utilizing polyvinylidene fluoride (PVDF) as the main polymer material byusing phase inversion method. The DSSCs and NF membrane samples werecharacterized using solar simulator and dye rejection test, respectively. The DSSCsfinding showed that the highest energy conversion efficiency (1.559%) was achievedby TiO2 NRs-NFs/TC14-rGO/TiO2 NPs as photoanode and TC14-rGO_MWCNTs/Ptas CE with the value of open circuit voltage, short circuit density, and fill factor were0.747 V, 3.275 mA/cm2, and 53.5, respectively. Meanwhile, the NF membrane findingshowed that PVDF/SDS-GO/TiO2 presents the highest dye flux (10.148 L/m2h) andhigh dye rejection efficiency (~92.76%). In conclusion, the synthesized GO showed apotential to be applied as electrode thin films and also membrane materials. Implicationof this study is a novel, simpler, low-cost, and less harsh chemical for the GO synthesisto fabricate CE and photoanode film for DSSCs and also NF membrane. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=6352 https://ir.upsi.edu.my/detailsg.php?det=6352 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How to get betweenthe sheets: A review of recent works on the electrochemical exfoliation of graphenematerials from bulk graphite. Nanoscale, 7, 69446956.Aboutalebi, S. H., Chidembo, A. T., Salari, M., Konstantinov, K., Wexler, D., Liu, H. K., et al.(2011). Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy & Environmental Science, 4(5), 18551865.Ahmad, A. L., Ideris, N., Ooi, B. S., Low, S. C., & Ismail, A. (2014). Influence of polymerconcentration on PVDF membrane fabrication for immunoassay analysis. Journal of Applied Sciences,14(12), 12991303.Ahmad, M. K., & Kenji, M. (2013). Effect of anatase TiO2 overlayer on thephotovoltaic properties of rutile phase nanostructured dye-sensitized solar cell. Micro andNanoelectronics, 2, 262264.Ahmad, M. K., Mohan, V. M., & Murakami, K. (2015). Hydrothermal growth of bilayeredrutile-phased TiO2 nanorods/micro-size TiO2 flower in highly acidic solution fordye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 73, 655659.Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., et al.(2016). Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reactiontimes using one step hydrothermal method. Journal of Materials Science: Materials inElectronics, 27(8), 79207926.Ahmad, M. K., & Murakami, K. (2011). Application of titanium dioxide nanorods in DSC usinghydrothermal method. Advanced Materials Research, 222, 2427.Ahmad, M. K., & Murakami, K. (2012). Low temperature and normal pressure growth of rutile-phasedTiO2 nanorods/nanoflowers for DSC application prepared by hydrothermal method. Journal ofAdvanced Research in Physics, 3(2), 13.Ahmad, M. K., & Murakami, K. (2015). Rutile-phased TiO2 nanorods/nanoflowers baseddye-sensitized solar cell. Applied Mechanics and Materials, 773774, 725 728.Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., Mamat, M. H., et al. (2016).Effect of heat treatment to the rutile based dye sensitized solar cell.Optik - International Journal for Light and Electron Optics, 127(8), 40764079.Ahmed Al-SheIrey, A. Y., Md Saad, S. K., Umar, A. A., Rahman, M. Y. A., & Salleh,M. M. (2016). (001) faceted-Ga-TiO2 microtablet synthesis and its organic perovskite sensitized solar cells characterization. Journal of Alloys and Compounds, 674(001),470476.Ahn, K., Lee, H., Jeong, Y., Kim, J., Jeong, S., & Cho, C. (2011). Effects of TiO2 nanorod lengthand post-annealing on the electrical properties of TiO2 nanobarbed fiber structures. Journal ofNanoscience and Nanotechnology, 11(8), 71557158.Al-gharabli, S., Mavukkandy, M. O., Kujawa, J., Nunes, S. P., & Arafat, H. A. (2017). Activation ofPVDF membranes through facile hydroxylation of the polymeric dope. Journal of Materials Research,32(22), 42194231.Ali, I., Bamaga, O. A., Gzara, L., Bassyouni, M., Abdel-Aziz, M. H., Soliman, M. F., et al. (2018).Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition.Membranes, 8(13), 119.Ambrosi, A., & Pumera, M. (2016). Electrochemically exfoliated graphene and graphene oxidefor energy storage and electrochemistry applications. Chemistry - A European Journal, 22, 153159.Aouaj, M. A., Diaz, R., Belayachi, A., Rueda, F., & Abd-lefdil, M. (2009). Comparative study of ITOand FTO thin films grown by spray pyrolysis. Materials Research Bulletin, 44, 14581461.Aprile, C., Maretti, L., Alvaro, M., Scaiano, J. C., & Garcia, H. (2008). Nanomaterials foralternative energy sources. Dalton Transactions, 40, 54655470.Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., Rosly, J., & Rusop, M. (2012).Preparation of palm oil based carbon nanotubes at various ferrocene concentration. Nanomaterials:Synthesis and Characterization, 364, 408411.Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., & Rusop, M. (2012).Temperature effects on the production of carbon nanotubes from palm oil by thermal chemical vapor deposition method. Nanomaterials: Synthesis and Characterization, 364,359362.Bajpai, R., Roy, S., Kumar, P., Bajpai, P., Kulshrestha, N., Ra, J., et al. (2011).Graphene supported platinum nanoparticle counter-electrode for enhanced performance ofdye-sensitized solar cells. Applied Materials & Interfaces, 3(10), 38843889.Balachandran, U., & Eror, N. G. (1982). Raman spectra of titanium dioxide. Journal of Solid StateChemistry, 42, 276282.Bi, H., Zhao, W., Sun, S., Cui, H., Lin, T., Huang, F., et al. (2013). Graphene ?lmsdecorated with metal sul?de nanoparticles for use as counter electrodes of dye-sensitized solar cells. Carbon, 61, 116123.Bohara, B. B., Batra, A. K., Arun, K. J., Aggarwal, M. D., & III, C. F. (2017).Fabrication and characterization of polyvinylidene fluoridetrifluoroethylene/samarium oxide (Sm2O3) nanocomposite film. Advanced Science,Engineering and Medicine, 9, 16.Bokali?, M., & Topi?, M. (2015). Spatially resolved characterization in thin-filmphotovoltaics. Springer.Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubesand of composites. EXPRESS Polymer Letters, 6(7), 601608.Buonomenna, M. G., Choi, S.-H., Galiano, F., & Drioli, E. (2011). Membranes prepared viaphase inversion. In Basile, A. & Gallucci, F., Membrane reactors: Preparation, optimization andselection (pp. 475490). United Kingdom: John Wiley & Sons, Ltd.Buonomenna, M. G., Macchi, P., Davoli, M., & Drioli, E. (2007). Poly(vinylidenefluoride) membranes by phase inversion: The role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European PolymerJournal, 43, 15571572.Calogero, G., Bartolotta, A., Marco, G. Di, Carlo, A. Di, & Bonaccorso, F. (2015).Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 44, 3244 3294.Cao, X., Ma, J., Shi, X., & Ren, Z. (2006). Effect of TiO2 nanoparticle size on the performanceof PVDF membrane. Applied Surface Science, 253, 20032010.Cao, Y., Li, Z., Wang, Y., Zhang, T., Li, Y., Liu, X., et al. (2016). Influence of TiO2 nanorodarrays on the bilayered photoanode for dye-sensitized solar cells. Journal of Electronic Materials,45(10), 49894998.Chang, L. H., Hsieh, C. K., Hsiao, M. C., Chiang, J. C., Liu, P. I., Ho, K. K., et al. (2013). Agraphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counterelectrode of dye-sensitized solar cells. Journal of Power Sources, 222, 518525.Chen, C.-M., Hsu, Y.-C., & Cherng, S.-J. (2011). Effects of annealing conditions on the propertiesof TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells.Journal of Alloys and Compounds, 509(3), 872877.Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: Preparation, functionalization,and electrochemical applications. Chemical Reviews, 112(11), 60276053.Chen, H.-Y., Liao, J.-Y., Lei, B.-X., Kuang, D.-B., Fang, Y., & Su, C.-Y. (2012).Highly catalytic carbon nanotube/Pt nanohybrid-based transparent counter electrode forefficient dye-sensitized solar cells. Chemistry an Asian Journal, 7(8), 19.Chen, L.-C., Hsu, C.-H., Chan, P.-S., Zhang, X., & Huang, C.-J. (2014). Improving the performanceof dye-sensitized solar cells with TiO2/graphene/TiO2 sandwich structure. Nanoscale ResearchLetters, 9, 17.Chiba, Y., Islam, A., Komiya, R., Koide, N., & Han, L. (2006). Conversion efficiency of 10.8% by adye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letter,88(223505), 223505.Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of graphene and itsapplications: A review. Critical Reviews in Solid State and Materials Sciences, 35, 5271.Chou, J., Huang, C., Lin, Y., Chu, C., Liao, Y., Tai, L., et al. (2016). The influence of differentannealing temperatures on graphene modified TiO2 for dye-sensitized solar cell. IEEETransactionns on Nanotechnology, 15(2), 164170.Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistryviewpoint. Chemical Society Reviews, 43, 291312.Coros, M., Pogacean, F., Rosu, M.-C., Socaci, C., Borodi, G., Magerusan, L., et al. (2016).Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphiterods. RSC Advances, 6, 26512661.Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., & Kalenczuk, R. J. (2008).Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland, 26(2),432441.Cruz, R., Pacheco, D. A. T., & Mendes, A. (2012). Reduced graphene oxide films as transparentcounter-electrodes for dye-sensitized solar cells. Solar Energy, 86(2), 716724.Dahlan, D., Md Saad, S. K., Berli, A. U., Bajili, A., & Umar, A. A. (2017). Synthesis oftwo-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E:Low-Dimensional Systems and Nanostructures, 91, 185 189.Dawood, S., & Sen, T. K. (2014). Review on dye removal from its aqueous solution into alternativecost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering,1(104), 17.Demir, E., Savk, A., Sen, B., & Sen, F. (2017). A novel monodisperse metalnanoparticles anchored graphene oxide as counter electrode for dye-sensitizedsolar cells. Nano-Structures & Nano-Objects, 12, 4145.Demir, E., Sen, B., & Sen, F. (2017). Highly efficient Pt nanoparticles and f-MWCNT nanocompositesbased counter electrodes for dye-sensitized solar cells. Nano- Structures & Nano-Objects,11, 3945.Dobrza?ski, L. A., Prokopowicz, M. P., Dryga?a, A., Wierzbicka, A., Lukaszkowicz, K., & Szindler,M. (2017). Carbon nanomaterials application as a counter electrode for dye-sensitizedsolar cells. Archives of Metallurgy and Materials, 62(1), 2732.Dong, H., Wu, Z., Lu, F., Gao, Y., El-shafei, A., Jiao, B., et al. (2014). Opticselectricshighways: Plasmonic silver nanowires@TiO2 coreshell nanocomposites for enhanceddye-sensitized solar cells performance. Nano Energy, 10, 181191.Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010).Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Letters, 10,751758.Du, P., Song, L., Xiong, J., Li, N., Wang, L., Xi, Z., et al. (2013). Dye-sensitized solar cellsbased on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. ElectrochimicaActa, 87, 651656.Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics.Nano Letters, 9(2), 814818.Ekanayaka, T. K., Hong, S.-H., Shen, T.-Z., & Song, J.-K. (2017). Effect of solvents on photoniccrystallinity in graphene oxide dispersions. Carbon, 123, 283289.Elashmawi, I. S., & Gaabour, L. H. (2015). Raman, morphology and electrical behavior ofnanocomposites based on PEO/PVDF with Multi-walled Carbon Nanotubes. Results in Physics, 5,105110.Esch, T. R., Gadaczek, I., & Bredow, T. (2014). Surface structures and thermodynamics of low-indexof rutile, brookite and anatase A comparative DFT study. Applied Surface Science, 288, 275287.Faisal, A. Q. D. (2015). Synthesis and characteristics study of TiO2 nanowires andnanoflowers on FTO/glass and glass substrates via hydrothermal technique. Journal ofMaterials Science: Materials in Electronics, 26, 317321.Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2004). Effect of the thickness of thePt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 570, 257263.Fazli, F. I. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., et al.(2017). Dye-sensitized solar cell using pure anatase TiO2 annealed at differenttemperatures. Optik - International Journal for Light and Electron Optics, 140, 10631068.Gee, C.-M., Tseng, C.-C., Wu, F.-Y., Chang, H.-P., Li, L.-J., Hsieh, Y.-P., et al. (2013).Flexible transparent electrodes made of electrochemically exfoliated graphene sheets fromlow-cost graphite pieces. Displays, 34, 315319.Ghaffar, A., Zhang, L., Zhu, X., & Chen, B. (2018). Porous PVdF/GO nanofibrous membranes forselective separation and recycling of charged organic dyes from water. Environmental Science &Technology, 52(7), 42654274.Goh, P. S., Ismail, A. F., & Ng, B. C. (2017). Raman spectroscopy. In Hilal, N., Ismail,A. F., Matsuura, T., & Oatley-Radcliffe, D., Membrane characterization (pp. 31 44). Amsterdam,Netherland: Elsevier.Gong, H. H., Park, S. H., Lee, S.-S., & Hong, S. C. (2014). Facile and scalablefabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrodefor dye-sensitized solar cells. International Journal of Precision Engineering and Manufacturing,15(6), 11931199.Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells(DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8),58485860.Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2014). Solar cell efficiency tables (version 44). Progress in Photovoltaics: Research and Applications, 22,701710.Gu, X. Q., Zhao, Y. L., & Qiang, Y. H. (2012). Influence of annealing temperature on performanceof dye-sensitized TiO2 nanorod solar cells. Journal of Materials Science: Materials inElectronics, 23(7), 13731377.Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C. M., et al. (2012).Graphene-Pt\ITO counter electrode to significantly reduce Pt loading and enhance charge transferfor high performance dye-sensitized solar cell. Solar Energy, 86(7), 20412048.Hafez, H., Lan, Z., Li, Q., & Wu, J. (2010). High efficiency dye-sensitized solar cell based onnovel TiO2 nanorod/nanoparticle bilayer electrode. Nanotechnology, Science and Applications,3(1), 4551.Hamed, N. K. A., Khalid, N. S., Fazli, F. I. M., Napi, M. L. M., Nayan, N., & Ahmad,M. K. (2016). Influence of hydrochloric acid volume on the growth of titaniumdioxide (TiO2) nanostructures by hydrothermal method. Sains Malaysiana,45(11), 16691673.Hara, K. and Mori S. (2011). Dye-sensitized solar cells. In Luque, A. & Hegedus, S. (2?? Eds.),Handbook of photovoltaic science and engineering (pp. 642645). United Kingdom: John Wiley &Sons, Ltd.Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., & Masjuki, H. H. (2008). Effects of annealingtreatment on optical properties of anatase TiO2 thin films. International Journal of Mechanical,Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2(4), 410414.Homem, N. C., Yamaguchi, N. U., Vieira, M. F., Amorim, M. T. S. P., & Bergamasco,R. (2017). Surface modification of microfiltration membrane with GO nanosheets for dyes removalfrom aqueous solutions. Chemical Engineering Transactions, 60, 259264.Hou, D., Liu, Q., Cheng, H., Li, K., Wang, D., & Zhang, H. (2016). Chrysanthemum extract assistedgreen reduction of graphene oxide. Materials Chemistry and Physics, 183, 7682.Hsiao, P.-T., Lu, M.-D., Tung, Y.-L., & Teng, H. (2010). Influence of hydrothermal pressure duringcrystallization on the structure and electron-conveying ability of TiO2 colloids for dye-sensitizedsolar cells. Journal of Physical Chemistry C, 114, 1562515632.Hu, C., Zhou, R., Fan, C., & Zhou, X. (2016). Influence of reducing reagentcombination in graphene oxide reduction. Micro & Nano Letters, 11(4), 215220.Hu, J., Cheng, J., Tong, S., Zhao, L., Duan, J., & Yang, Y. (2016). Dye-sensitized solar cellsbased on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three- layer composite film.Journal of Materials Science: Materials in Electronics, 27(5), 53625370.Hu, M., & Mi, B. (2013). Enabling graphene oxide nanosheets as water separationmembranes. Environmental Science & Technology, 47(8), 37153723.Hummers, W. S. J., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of AmericanChemical Society, 80(6), 13391339.Hung, K.-H., Li, Y.-S., & Wang, H.-W. (2012). Dye-sensitized solar cells usinggraphene-based counter electrode. In IEEE International Conference on Nanotechnology(IEEE-NANO) (pp. 112).Hwang, S., Batmunkh, M., Nine, M. J., Chung, H., & Jeong, H. (2015). Dye-sensitized solar cellcounter electrodes based on carbon nanotubes. Chemical Physics andPhysical Chemistry, 16(1), 5365.Hwang, Y. J., Hahn, C., Liu, B., & Yang, P. (2012). Photoelectrochemical properties of TiO2nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano,6(6), 50605069.Ilyas, A. M., Gondal, M. A., Baig, U., Akhtar, S., & Yamani, Z. H. (2016). Photovoltaic performanceand photocatalytic activity of facile synthesized graphene decorated TiO2 monohybrid usingnanosecond pulsed ablation in liquid technique. Solar Energy, 137, 246255.Ito, S. (2011). Investigation of dyes for dye-sensitized solar cells: Ruthenium-complex dyes,metal-free dyes, metal-complex porphyrin dyes and natural dyes. In Solar cells-dye-sensitizeddevices. Intech.Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Gondane, V., Lekha, P., et al. (2012). Dyesensitized solar cells: A review. Transactions of the Indian Ceramic Society, 71(1), 116.Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L., & Wang, J. X. (2007). Improved dye-sensitizedsolar cells with a ZnO-nanoflower photoanode. Applied Physics Letter, 90(26), 36.Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solutionbased platform. Journal of Industrial and Engineering Chemistry, 20(5), 28832887.Jusman, Y., Ng, S. C., & Osman, N. A. A. (2014). Investigation of CPD and HMDS sample preparationtechniques for cervical cells in developing computer-aided screening system based onFE-SEM/EDX. The Scientific World Journal, 2014, 289817, 11 pages.Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., & Hanaya, M. (2015).Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl- anchor andcarboxy-anchor dyes. Chemistry Communication, 51(88), 15894 15897.Kalyanasundaram, K., Bertoz, M., Bisquert, J., Angelis, F. De, Desilvestro, H.,Fabregat-santiago, F., et al. (2010). Dye-sensitized Solar Cells. (K.Kalyanasundaram, Ed.) (First). Lausanne: CRC Press, Taylor and Francis Group, LLC.Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al. (2016). The hiddensecond oxidation step of Hummers method. Chemistry of Materials, 28(3), 756764.Karisma, D., Febrianto, G., & Mangindaan, D. (2017). Removal of dyes from textilewastewater by using nanofiltration polyetherimide membrane. In TheInternational Conference on Eco Engineering Development 2017 (pp. 814).Karthick, S. N., Hemalatha, K. V, Raj, C. J., Kim, H.-J., & Yi, M. (2012). Titanium dioxide pastepreparation for dye sensitized solar cell using hydrothermal technique. Journal of CeramicProcessing Research, 13, 136139.Kavan, L., Yum, J.-H., & Grtzel, M. (2011). Graphene nanoplatelets outperforming platinum as theelectrocatalyst in Co-bipyridine-mediated dye-sensitized solar cells. Nano Letters, 11,55015506.Kavan, L., Yum, J.-H., Nazeeruddin, M. K., & Grtzel, M. (2011). Graphene nanoplateletcathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano, 5(11), 91719178.Keshavarzi, R., Mirkhani, V., Moghadam, M., Tangestaninejad, S., &Mohammadpoor-Baltork, I. (2015). Performance enhancement of dye-sensitized solar cells based onTiO2 thick mesoporous photoanodes by morphological manipulation. Langmuir, 31(42),1165911670.Kim, C. W., Suh, S. P., Choi, M. J., Kang, Y. S., & Kang, Y. S. (2013). Fabrication of SrTiO3-TiO2heterojunction photoanode with enlarged pore diameter for dye- sensitized solar cells.Journal of Materials Chemistry A, 1, 1182011827.Kim, H.-M., Lee, M. H., Lee, H.-S., Wi, J.-S., Lim, K., & Kim, K.-B. (2009). Methodof improving the quality of nanopatterning in atomic image projection electron- beam lithography.Journal of Vacuum Science & Technology B, 27(6), 25532557.Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene oxide sheetsat interfaces. Journal of American Chemical Society, 132, 8180 8186.Kim, J. F., Jung, J. T., Wang, H., Drioli, E., & Lee, Y. (2017). Effect of solvents on membrane fabrication via thermally induced phase separation (TIPS): Thermodynamic andkinetic perspectives. In Comprehensive Membrane Science and Engineering II (Vol. 1, pp. 386417).Elsevier Ltd.Kim, S.-B., Park, J.-Y., Kim, C.-S., Okuyama, K., Lee, S.-E., Jang, H.-D., et al. (2015).Effects of graphene in dye-sensitized solar cells based on nitrogen-doped TiO2 composite. TheJournal of Physical Chemistry C, 119(29), 1655216559.Kong, H. X. (2013). Hybrids of carbon nanotubes and graphene/graphene oxide.Current Opinion in Solid State & Materials Science, 17(1), 3137.Kosyachenko, L. (2011). Solar cells-dye-sensitized devices. Croatia: InTech.Kroon, J. M., Bakker, N. J., Smit, H. J. P., Liska, P., Thampi, K. R., Wang, P., et al.(2007). Nanocrystalline dye-sensitized solar cells having maximum performance.Progress in Photovoltaics: Research and Applications, 15, 118.Kumar, A., Madaria, A. R., & Zhou, C. (2010). Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye- sensitized solar cells.Journal of Physical Chemistry C, 114, 77877792.Kumar, A., & Pandey, G. (2018). Different methods used for the synthesis of TiO2 basednanomaterials: A review. American Journal of Nano Research and Applications, 6(1),110.Kumaran, R., Alagar, M., Kumar, S. D., Subramanian, V., & Dinakaran, K. (2015). Ag inducedelectromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thin films.Applied Physics Letter, 107, 113107-15.Kymakis, E., Stratakis, E., Stylianakis, M. M., Koudoumas, E., & Fotakis, C. (2011). Spin coatedgraphene ?lms as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 520,12381241.Ladewig, B., & Al-Shaeli, M. N. Z. (2017). Fundamentals of Membrane Processes. InFundamental of Membrane Bioreactors (pp. 1338). Singapore: Springer.Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication:Structure, properties and performance relationship. Desalination, 326, 7795.Lan, T., Qiu, H., Xie, F., Yang, J., & Wei, M. (2015). Rutile TiO2 mesocrystals/reduced graphene oxide with high-rate and long-term performance for lithium-ion batteries. Materialsfor Energy and Catalysis, 5, 16.Lee, B. H., Park, S. H., Back, H., & Lee, K. (2011). Novel film-casting method for high-performanceflexible polymer electrodes. Advanced Functional Materials, 21, 487493.Lee, K. H., Lee, B., Hwang, S.-J., Lee, J.-U., Cheong, H., Kwon, O.-S., et al. (2014). Large scaleproduction of highly conductive reduced graphene oxide sheets by a solvent-free low temperaturereduction. Carbon, 69, 327335.Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., & Meunier, V. (2011).Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 49(8), 25812602.Lei, J., Li, H., Zhang, J., & Anpo, M. (2016). Mixed-phase TiO2 nanomaterials asefficient photocatalysts. In Low dimensional and nanostructured materials anddevices. Switzerland: Springer.Li, X., Zhang, H., Wang, P., Li, G., Zhao, S., Wang, J., & Chen, L. (2014). Saturable absorptionand modulation characteristics of laser with graphene oxide spin coated on ITO substrate. Journalof Nanomaterials, 2014, 921896.Li, Z.-Q., Chen, W.-C., Guo, F.-L., Mo, L.-E., Hu, L.-H., & Dai, S.-Y. (2015).Mesoporous TiO2 yolk-shell microspheres for dye-sensitized solar cells with a highefficiency exceeding 11%. Scientific Reports, 5, 18.Li, Z.-Y., Akhtar, M. S., Kuk, J. H., Kong, B.-S., & Yang, O.-B. (2012). Graphene application as acounter electrode material for dye-sensitized solar cell. Materials Letters, 86, 9699.Liao, J.-Y., He, J.-W., Xu, H., Kuang, D.-B., & Su, C.-Y. (2012). Effect of TiO2morphology on photovoltaic performance of dye-sensitized solar cells: Nanoparticles,nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry, 22,79107918.Liao, M. Y., Fang, L., Xu, C. L., Wu, F., Huang, Q. L., & Saleem, M. (2014). Effect of seed layeron the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells.Materials Science in Semiconductor Processing, 24, 1 8.Liu, B., & Aydil, E. S. (2009). Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal ofAmerican Chemical Society, 131, 39853990.Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in theproduction and modification of PVDF membranes. Journal of Membrane Science, 375, 127.Liu, J., Fu, X., Cao, D.-P., Mao, L., Wang, J., Mu, D., et al. (2015). Stacked graphene TiO2photoanode via electrospray deposition for highly efficient dye-sensitized solar cells. OrganicElectronics, 23, 158163.Liu, J., Hua, L., Li, S., & Yu, M. (2015). Graphene dip coatings: An effectiveanticorrosion barrier on aluminium. Applied Surface Science, 327, 241245.Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., et al. (2013). Improved synthesis ofgraphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy,2(3), 377386.Liu, L., Zhang, Y., Zhang, B., & Feng, Y. (2017). A detailed investigation on theperformance of dye-sensitized solar cells based on reduced graphene oxide-doped TiO2 photoanode.Journal of Materials Science, 52(13), 80708083.Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly fromgraphite. Advanced Functional Materials, 18, 15181525.Luo, Z., Poyraz, A. S., Kuo, C., Miao, R., Meng, Y., Chen, S., et al. (2015). Crystalline mixedphase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalyticactivity. Chemistry of Materials, 27(1), 617.Madaeni, S. S., & Taheri, A. H. (2011). Effect of casting solution on morphology and performance of PVDF microfiltration membranes. Chemical Engineering Technology, 34(8), 13281334.Makertihartha, I. G. B. N., Rizki, Z., Zunita, M., & Dharmawijaya, P. T. (2017). Dyes removal fromtextile based nanofiltration. International Seminar on Fundamental and Application of ChemicalEngineering, 110006, 18.Mani, V., Chen, S.-M., & Lou, B.-S. (2013). Three dimensional graphene oxide-carbon nanotubes andgraphene-carbon nanotubes hybrids. International Journal of Electrochemical Science, 8,1164111660.Mao, M., Wang, J.-B., Xiao, Z.-F., Dai, S.-Y., & Song, Q.-H. (2012). New 2,6-modified BODIPYsensitizers for dye-sensitized solar cells. Dyes and Pigments, 94(2), 224 232.Marchezi, P. E., Sonai, G. G., Hirata, M. K., Schiavon, M. A., & Nogueira, A. F. (2016).Understanding the role of reduced graphene oxide in the electrolyte of dye sensitizedsolar cells. The Journal of Physical Chemistry C, 120(41), 23368 23376. 9Mathew, S., Yella, A., Gao, P., Humphry-baker, R., Curchod, B. F. E., Ashari-astani, N., et al.(2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineeringof porphyrin sensitizers. Nature Chemistry, 6, 242247.Mayabadi, A. H., Waman, V. S., Funde, A. M., Pathan, H. M., & Jadkar, S. R. (2015). Effect ofannealing on optical and structural properties of rutile TiO2 nanoarrays. Journal of NanoResearch, 34, 2327.Mehmood, U., Malaibari, Z., Rabani, F. A., Rehman, A. U., Ahmad, S. H. A., Atieh,M. A., et al. (2016). Photovoltaic improvement and charge recombination reduction byaluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells.Electrochimica Acta, 203, 162170.Mehmood, U., Rahman, S., Harrabi, K., Hussein, I. A., & Reddy, B. V. S. (2014). Recentadvances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014, 112.Meier, R. J. (2005). Vibrational spectroscopy: A vanishing discipline? ChemicalSociety Reviews, 34, 743752.Meng, L., Li, C., & Santos, M. P. dos. (2011). Effect of annealing temperature on TiO2 nanorodfilms prepared by dc reactive magnetron sputtering for dye-sensitized solar cells. Journalof Inorganic and Organometallic Polymers and Materials, 21, 770776.Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., & Zhang, X. (2016). The effect of reductiondegree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes.Journal of Membrane Science, 501, 169178.Meng, X., Shin, D.-W., Yu, S. M., Jung, J. H., Kim, H. I., Lee, H. M., et al. (2011).Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their applicationin photocatalytic activity. Crystal Engineering Communication, 13, 30213029.Meng, X., Shin, D.-W., Yu, S. M., Park, M.-H., Yang, C., Lee, J. H., et al. (2014).Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass.Journal of Nanoscience and Nanotechnology, 14(11), 88398844.Mricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF- TiO2membranes for water treatment. Chemical Engineering Science, 123, 283 291.Mikhailov, S. (2011). Synthesis and fabrication. In S. Mikhailov (1?? Ed.), Physics andapplications of graphene-experiments (pp. 172). Rijeka, Croatia: InTech.Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., et al. (2015).Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites bysurfactants bearing phenyl groups. Journal of Colloid and Interface Science, 455, 179187.Mohamed, A., Anas, A. K., Bakar, S. A., Aziz, A. A., Sagisaka, M., Brown, P., et al. (2014).Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branchedhydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. ColloidPolymer Science, 292, 30133023.Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., et al. (2016).Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid andInterface Science, 230, 5469.Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., et al. (2010).Universal surfactant for water, oils, and CO2. Langmuir Article, 26(22), 1386113866.Mokhtar, N. M., Lau, W. J., Ng, B. C., Ismail, A. F., & Veerasamy, D. (2015).Preparation and characterization of PVDF membranes incorporated with different additives for dyeingsolution treatment using membrane distillation. Desalination and Water Treatment, 56(8), 19992012.Mokhtar, S. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Faridah, A. B., Suriani, A. B., et al.(2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods arraywith various reaction times using one step hydrothermal method. Optik - International Journal forLight and Electron Optics, 154, 510 515.Muaz, A. K. M., Hashim, U., Ibrahim, F., Thong, K. L., Mokhtar, M. S., & Liu, W.-W. (2015). Effectof annealing temperatures on the morphology, optical and electrical properties of TiO2 thin filmssynthesized by the solgel method and deposited on Al/TiO2/SiO2/p-Si. Microsystem Technology,22(4), 871881.Muruganandi, G., Saravanan, M., Vinitha, G., Raj, M. B. J., & Girisun, T. C. S. (2018). Bariumborate nanorod decorated reduced graphene oxide for optical power limiting applications.Optical Materials, 75, 612618.Nagavolu, C., Susmitha, K., Raghavender, M., Giribabu, L., Rao, K. B. S., Smith, C.T. G., et al. (2016). Pt-free spray coated reduced graphene oxide counter electrodes for dyesensitized solar cells. Solar Energy, 137, 143147.Nasib, A. M., Hatim, I., Jullok, N., & Alamery, H. R. (2017). Morphological properties ofpoly(vinylidene fluoride-co-tetrafluoroethylene membrane): Effect of solvents and polymerconcentrations. Malaysian Journal of Analytical Sciences, 21(2), 356364.Nawi, N. I. M., Bilad, M. R., & Nordin, N. A. H. M. (2018). Effect of dope solution temperature onthe membrane structure and membrane distillation performance. IOP Conference Series: Earth andEnvironmental Science, 140, 07.Ngang, H. P., Ooi, B. S., Ahmad, A. L., & Lai, S. O. (2012). Preparation of PVDF TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV- cleaning properties.Chemical Engineering Journal, 197, 359367.Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltrationmembranes with hydrophilic property for filtration of dye aqueous solution. Applied SurfaceScience, 413, 4149.Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, A. V, et al. (2004).Electric field effect in atomically thin carbon films. Science, 306, 666669.Nurhafizah, M. D. (2017a). Synthesis of graphene oxide using electrochemicalexfoliation method for electrode materials application: The effect of different typeof surfactants on physical properties of graphene oxide sample synthesized via electrochemical exfoliation method. (Doctoral Dissertation pp. 225249). Universiti Pendidikan SultanIdris, Malaysia.Nurhafizah, M. D. (2017b). Synthesis of graphene oxide using electrochemical exfoliationmethod for electrode materials application: The effect of synthesis time on physical properties ofgraphene oxide sample synthesized via electrochemical exfoliation method. (Doctoral Dissertationpp. 141159). Universiti Pendidikan Sultan Idris, Malaysia.Nurhafizah, M. D. (2017c). Synthesis of graphene oxide using electrochemical exfoliationmethod for electrode materials application: The effect of applied voltage on physical properties of graphene oxide sample synthesized via electrochemical exfoliation method. (Doctoral Dissertation pp. 176199). Universiti Pendidikan Sultan Idris, Malaysia.Nurhafizah, M. D., Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I., Kamari, A., et al. (2015).The synthesis of graphene oxide via electrochemical exfoliation method. Advanced MaterialsResearch, 1109, 5559.ORegan, B., & Grtzel, M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitizedcolloidal TiO2 films. Nature, 353(6346), 737740.Pan, Y., Hou, Z., Yang, H., & Liu, Y. (2015). Hierarchical architecture ofnanographene-coated rice-like manganese dioxide nanorods/graphene for enhancedelectrocatalytic activity toward hydrogen peroxide reduction. Materials Science in SemiconductorProcessing, 40, 176182.Paredes, J. I., Villar-Rodil, S., Martnez-Alonso, A., & Tascon, J. M. D. (2008).Graphene oxide dispersions in organic solvents. Langmuir, 24, 1056010564.Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes.Nature Nanotechnology, 4, 217224.Parvathi, C., Maruthavanan, T., Sivamani, S., & Prakash, C. (2011). Removal of dyes from textilewet processing industry: A review. Chemical Processing, 319323.Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., et al. (2013).Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes fororganic electronics. ACS Nano, 7(4), 35983606.Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., et al. (2014). Exfoliation of graphiteinto graphene in aqueous solutions of inorganic salts. Journal of the American ChemicalSociety, 136, 60836091.Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., et al.2010). Fast and simple fabrication of a large transparent chemically-convertedgraphene film by spray-coating. Carbon, 48(7), 19451951.Popoola, I. K., Gondal, M. A., Alghamdi, J. M., & Qahtan, T. F. (2018).Photofabrication of highly transparent platinum counter electrodes at ambient temperaturefor bifacial dye sensitized solar cells. Scientific Reports, 8(1), 12864.Prakash, T. (2012). Review on nanostructured semiconductors for dye sensitized solar cells.Electronic Materials Letters, 8(3), 231243.Qin, D., Bi, Y., Feng, X., Wang, W., Barber, G. D., Wang, T., et al. (2015).Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chemistry of Materials, 27, 41804183.Qiu, L., Zhang, H., Wang, W., Chen, Y., & Wang, R. (2014). Effects of hydrazine hydratetreatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitizedsolar cells. Applied Surface Science, 319, 339343.Quintana, M., Edvinsson, T., Hagfeldt, A., & Boschloo, G. (2007). Comparison of dye- sensitizedZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. Journal ofPhysical Chemistry C, 111, 10351041.Ramasamy, E., Lee, W. J., Lee, D. Y., & Song, J. S. (2008). Spray coated multi-wall carbon nanotubecounter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. ElectrochemistryCommunications, 10, 10871089.Razzaq, H., Nawaz, H., Siddiqa, A., Siddiq, M., & Qaisar, S. (2016). A brief review onnanocomposites based on PVDF with nanostructured TiO2 as filler. Journal of Nanotechnology& Nanoscience, 1(1), 2935.Ren, P.-G., Yan, D.-X., Ji, X., Chen, T., & Li, Z.-M. (2011). Temperature dependence of grapheneoxide reduced by hydrazine hydrate. Nanotechnology, 22, 18.Rezvani, F., Parvazian, E., & Hosseini, S. A. (2016). Dye-sensitized solar cells based oncomposite TiO2 nanoparticlenanorod single and bi-layer photoelectrodes. Bulletin ofMaterials Science, 39(6), 13971402.Sadhu, S., & Poddar, P. (2014). Template-free fabrication of highly-oriented single- crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemicalactivity. Journal of Physical Chemistry C, 118(33), 19363 19373.Safarpour, M., Vatanpour, V., Khataee, A., & Esmaeili, M. (2015). Development of a novel high fluxand fouling-resistant thin film composite nanofiltration membraneby embedding reduced graphene oxide/TiO2. Separation and PurificationTechnology, 154, 96107.Sarkar, S., Mondal, A., Dey, K., & Ray, R. (2016). Defect driven tailoring of colossaldielectricity of reduced graphene oxide. Materials Research Bulletin, 74, 465 471.Selman, A. M., & Hassan, Z. (2014). Effect of annealing treatment on growth of rutile TiO2nanorods prepared by chemical bath deposition method on silicon substrate. Applied Mechanics andMaterials, 624, 129133.Shao, J.-J., Lv, W., Guo, Q., Zhang, C., Xu, Q., Yang, Q.-H., & Kang, F. (2012).Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface.Chemistry Communication, 48, 37063709.Shen, Y., Yang, S., Zhou, P., Sun, Q., Wang, P., Wan, L., et al. (2013). Evolution of the band-gapand optical properties of graphene oxide with controllable reduction level. Carbon, 62, 157164.Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. (2013).Nanofiltration for water and wastewater treatmenta mini review. Drinking Water; Engineering andScience, 6, 4753.Sima, C., Grigoriu, C., & Antohe, S. (2010). Comparison of the dye-sensitized solar cellsperformances based on transparent conductive ITO and FTO. Thin Solid Films, 519(2),595597.Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., et al. (2011). Enhancement ofphotogenerated electron transport in dye-sensitized solar cells with introduction of a reducedgraphene oxide-TiO2 junction. Chemistry - A European Journal, 17(39), 1083210837.Song, M. Y., Chaudhari, K. N., Park, J., Yang, D., Kim, J. H., Kim, M., et al. (2012). Highefficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solarcell. Applied Energy, 100, 132137.Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach,E. A., et al. (2006). Graphene-based composite materials. Nature, 442, 282286.Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., et al.(2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon, 45, 15581565.Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., et al. (2014).Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopymethods. Journal of Electron Spectroscopy andRelated Phenomena, 195, 145154.Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N., & Li, L.-J. (2011). High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5(3), 23322339.Su, J., & Guo, L. (2015). High aspect ratio TiO2 nanowires tailored in concentrated HClhydrothermal condition for photoelectrochemical water splitting. RSC Advances, 5(65), 5301253018.Sun, P., Zhang, X., Wang, C., Wei, Y., Wang, L., & Liu, Y. (2013). Rutile TiO2nanowire array infiltrated with anatase nanoparticles as photoanode for dye- sensitized solar cells: Enhanced cell performance via the rutile-anatase heterojunction. Journalof Materials Chemistry A, 1, 33093314.Suriani, A. B., Muhamad, S., Mohamad Saad, P. S., Md Nor, R., Mohd Siran, Y., Rejab,S. A. M., et al. (2011). Effect of temperature on the growth of vertically aligned carbon nanotubesfrom palm oil. Defect and Diffusion Forum, 312315(3), 900 905.Suriani, A. B., Nor, R. M., & Rusop, M. (2010). Vertically aligned carbon nanotubes synthesizedfrom waste cooking palm oil. Journal of the Ceramic Society of Japan, 6566(0), 963968.Suriani, A. B., Norhafizah, J., Mohamed, A., Mamat, M. H., Malek, M. F., & Ahmad,M. K. (2016). Scaled-up prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes.Journal of Materials Science: Materials in Electronics, 27(11), 1159911605.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Mamat, M. H., Malek, M. F., Ahmad,M. K., et al. (2017). Enhanced photovoltaic performance using reduced graphene oxide assisted bytriple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitizedsolar cells. Optik - International Journal for Light and Electron Optics, 139, 291298.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Mamat, M. H., Malek,M. F., et al. (2017). Electrical enhancement of radiation-vulcanized natural rubber latex addedwith reduced graphene oxide additives for supercapacitor electrodes. Journal of Materials Science,52, 66116622.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K.(2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes byusing a hyper-branched surfactant. Materials & Design, 99, 174181.Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facileone-step method for graphene oxide/natural rubber latex nanocompositeproduction for supercapacitor applications. Materials Letters, 161, 665668.Tamilselvan, V., Yuvaraj, D., Kumar, R. R., & Rao, K. N. (2012). Growth of rutile TiO2 nanorodson TiO2 seed layer deposited by electron beam evaporation. Applied Surface Science,258(10), 42834287.Tao, B., Miao, R., Wu, W., & Miao, F. (2017). Electrochemical exfoliation of graphene flakeembedded in SiNWs as counter electrode for dye-sensitized solar cells. NANO: Brief Reportsand Reviews, 12(12), 18.Tao, J., Hong, M., Zhang, M., Chen, X., & Sun, Z. (2016). Effects of growth substrate on themorphologies of TiO2 hierarchical nanoarrays and their optical and photocatalyticproperties. Journal of Materials Science: Materials in Electronics, 27(2), 21032107.Thamaraiselvan, C., & Noel, M. (2014). Membrane processes for dye wastewater treatment;Recent progress in fouling control. Critical Reviews in Environmental Science and Technology,45(10), 10071040.Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., et al. (2013).Synthesis and characterization of graphene thin films by chemical reduction ofexfoliated and intercalated graphite oxide. Journal of Chemistry, 2013, Article ID 150536.Thrmer, M. B., Poletto, P., Marcolin, M., Duarte, J., & Zeni, M. (2012). Effect of non- solventsused in the coagulation bath on morphology of PVDF membranes. Materials Research, 15(6),884890.Thuyavan, Y. L., Anantharaman, N., Arthanareeswaran, G., & Ismail, A. F. (2016). Impact of solventsand process conditions on the formation of polyethersulfone membranes and its fouling behavior inlake water filtration. Journal of Chemical Technology & Biotechnology, 91(10), 25682581.Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2011). Electron mobilityand injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells.ACS Nano, 5(6), 51585166.Tsai, C.-H., Chen, C.-H., Hsiao, Y.-C., & Chuang, P.-Y. (2014). Investigation ofgraphene nanosheets as counter electrodes for efficient dye-sensitized solar cells. OrganicElectronics, 17, 5765.Tsai, J. K., Hsu, W. D., Wu, T. C., Meen, T. H., & Chong, W. J. (2013). Effect of compressed TiO2nanoparticle thin film thickness on the performance of dye- sensitized solar cells.Nanoscale Research Letters, 8(459), 16.Ullattil, S. G., & Periyat, P. (2017). Microwave-power induced green synthesis ofrandomly oriented mesoporous anatase TiO2 nanoparticles for efficient dyesensitized solar cells. Solar Energy, 147, 99105.Ullattil, S. G., Thelappurath, A. V., Tadka, S. N., Kavil, J., Vijayan, B. K., & Periyat,P. (2017). A Sol-solvothermal processed Black TiO2 as photoanode material indyesensitized solar cells. Solar Energy, 155, 490495.Umar, A. A., Nafisah, S., Md Saad, S. K., Tee Tan, S., Balouch, A., Mat Salleh, M., et al. (2014).Poriferous microtablet of anatase TiO2 growth on an ITO surface for high-efficiency dye-sensitizedsolar cells. Solar Energy Materials & Solar Cells, 122, 174182.Velten, J., Mozer, A. J., Li, D., Officer, D., Wallace, G., Baughman, R., et al. (2012). Carbonnanotube/graphene nanocomposite as efficient counter electrodes in dye- sensitized solar cells.Nanotechnology, 23, 16.Venkatachalam, S., Hayashi, H., Ebina, T., & Nanjo, H. (2013). Preparation andcharacterization of nanostructured TiO2 thin films by hydrothermal andanodization methods. In Optoelectronics-advanced materials and devices (pp. 116136).Croatia: InTech.Waeselmann, N. (2012). Structural transformations in complex perovskite-type relaxor andrelaxor-based ferroelectrics at high pressures and temperatures. (Doctoral Dissertation pp. 33).Universitt Hamburg, Germany.Wan, L., Wang, S., Wang, X., Dong, B., Xu, Z., Zhang, X., et al. (2011). Room-temperature fabrication of graphene ?lms on variable substrates and its use as counterelectrodes for dye-sensitized solar cells. Solid State Sciences, 13, 468 475.Wan, L., Zhang, Q., Wang, S., Wang, X., Guo, Z., Dong, B., et al. (2015). A two-step reductionmethod for synthesizing graphene nanocomposites with a low loading of well-dispersed platinumnanoparticles for use as counter electrodes in dye- sensitized solar cells. Journal ofMaterials Science, 50(12), 44124421.Wang, B., Qi, H., Wang, H., Cui, Y., Zhao, J., Guo, J., et al. (2015). Morphology,structure and optical properties in TiO2 nanostructured films annealed at various temperatures.Optical Materials Express, 5(11), 14101418.Wang, D., Zhu, X., Fang, Y., Sun, J., Zhang, C., & Zhang, X. (2017). Simultaneously composition andinterface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency.Nano-Structures & Nano-Objects, 10, 18.Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J., et al. (2011). Rutile TiO2 nano- branchedarrays on FTO for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13,70087013.Wang, H., Wang, Y., Cao, X., Feng, M., & Lan, G. (2009). Vibrational properties ofgraphene and graphene layers. Journal of Raman Spectroscopy, 40(12), 1791 1796.Wang, J.-F., Zhang, J.-J., & He, D.-N. (2018). Flower-like TiO2-B particles wrapped by graphenewith different contents as an anode material for lithium-ion batteries. Nano-Structures &Nano-Objects, 15, 216223.Wang, J., Qu, S., Zhong, Z., Wang, S., Liu, K., & Hu, A. (2014). Fabrication of TiO2nanoparticles/nanorod composite arrays via a two-step method for efficient dye- sensitized solarcells. Progress in Natural Science: Materials International, 24(6), 588592.Wang, L.-J., Li, L., Yu, J., Wu, Y., He, H., Ouyang, X., et al. (2014). Large-areagraphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition.Carbon, 79, 294301.Wang, X., Zhang, L., Sun, D., An, Q., & Chen, H. (2008). Effect of coagulation bath temperature onformation mechanism of poly (vinylidene fluoride) membrane. Journal of Applied PolymerScience, 110, 16561663.Wang, X., Zhi, L., & Mllen, K. (2008). Transparent, conductive graphene electrodes fordye-sensitized solar cells. Nano Letters, 8(1), 323327.Wang, Z.-S., Yanagida, M., Sayama, K., & Sugihara, H. (2006). Electronic-insulating coating ofCaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime andefficiency. Chemistry of Materials, 18, 29122916.Wang, Z., Wu, A., Ciacchi, L. C., & Wei, G. (2018). Recent advances in nanoporous membranes forwater purification. Nanomaterials, 8(65), 119.Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDFultrafiltration membranes. Desalination, 299, 5054.Wienke, J., Kroon, J. M., Sommeling, P. M., Kinderman, R., Spath, M., Roosmalen, et al. (1997).Effect of TiO2-electrode properties on the efficiency of nanocrystalline dye-sensitized solarcells (nc-DSC) (Vol. 33). Netherlands Energy Research Foundation ECN.Wu, C., Wang, Z., Wang, L., Williams, T., & Huang, J. (2012). Sustainable processing of wasteplastics to produce high yield hydrogen-rich synthesis gas and high quality carbonnanotubes. RSC Advances, 2, 40454047.Wu, W., Liao, J., Chen, H., Yu, X., Su, C., & Kuang, D. (2012). Dye-sensitized solar cells basedon a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. Journal of MaterialsChemistry, 22, 1805718062.Xie, Y., Zhou, X., Mi, H., Ma, J., Yang, J., & Cheng, J. (2018). High efficiency ZnO- based dye-sensitized solar cells with a 1H,1H,2H,2H-perfluorodecyltriethoxysilane chain barrier for cutting on interfacialrecombination. Applied Surface Science, 434, 11441152.Xu, K., Shen, Y., Zhang, Z., Cao, M., Gu, F., & Linjun Wang. (2016). The influence of differentmodified graphene on property of DSSCs. Applied Surface Science, 362, 477482.Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., et al. (2016). Photocatalyticantifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for watertreatment. Journal of Membrane Science, 520, 281293.Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., et al. (2014). Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidenefluoride ultrafiltration membranes. Journal of Membrane Science, 458, 113.Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect ofsurface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. PhysicalChemistry Chemical Physics, 15(26), 10978.Yang, S.-C., Yang, D.-J., Kim, J., Hong, J.-M., Kim, H.-G., Kim, I.-D., et al. (2008).Hollow TiO2 hemispheres obtained by colloidal templating for application in dye- sensitized solarcells. Advance Materials, 20, 10591064.Yaqoob, U., Uddin, A. I., & Chung, G.-S. (2016). A high-performance flexible NO2 sensor based onWO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sensors & Actuators B: Chemical,224, 738746.Yasin, A., Guo, F., & Demopoulos, G. P. (2016). Aqueous , screen-printable paste for fabrication ofmesoporous composite anatase-rutile TiO2 nanoparticle thin films for (photo)electrochemicaldevices. ACS Sustainable Chemistry & Engineering, 4(4), 21732181.Ye, M., Liu, H.-Y., Lin, C., & Lin, Z. (2013). Hierarchical rutile TiO2 flower cluster- based highefficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. NanoMicro Small, 9(2), 312321.Yeh, M.-H., Lin, L.-Y., Sun, C.-L., Leu, Y.-A., Tsai, J.-T., Yeh, C.-Y., et al. (2014).Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counterelectrode for dye-sensitized solar cells. The Journal of Physical Chemistry C, 118,1662616634.Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphiteand production of functional graphene functional graphene. Current Opinion in Colloid & InterfaceScience, 20(56), 329338.Yue, G., Wu, J., Xiao, Y., Huang, M., Lin, J., Fan, L., et al. (2013). Platinum/graphene hybridfilm as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 92, 6470.Yun, D.-J., Ra, H., Kim, J.-M., Oh, E., Lee, J., Jeong, M.-H., et al. (2018). Multi-walled carbonnanotube forests covered with atomic-layer-deposited ruthenium layers for high-performance counter electrodes of dye-sensitized solar cells. Organic Electronics, 65, 349356.Yusoff, I. I., Rohani, R., Zaman, N. K., Junaidi, M. U. M., Mohammad, A. W., &Zainal, Z. (2018). Durable pressure filtration membranes based on polyaniline polyimide P84blends. Polymer Engineering and Science, 111.Zahid, M., Rashid, A., Akram, S., Rehan, Z. A., & Razzaq, W. (2018). Acomprehensive review on polymeric nano-composite membranes for water treatment.Journal of Membrane Science & Technology, 8(1), 120.Zeng, G., Ye, Z., He, Y., Yang, X., Ma, J., Shi, H., et al. (2017). Application ofdopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal fromwastewater. Chemical Engineering Journal, 323, 572583.Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., & Minoura, H. (2006). Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye- sensitizedsolar cells. Advanced Functional Materials, 16(9), 12281234.Zhang, P., Gong, J., Zeng, G., Deng, C., Yang, H., Liu, H., et al. (2017). Cross-linking to preparecomposite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal.Chemical Engineering Journal, 322, 657 666.Zhang, Q., Liu, Y., Duan, Y., Fu, N., Liu, Q., Fang, Y., et al. (2014). Mn3O4/graphene compositeas counter electrode in dye-sensitized solar cells. RSC Advances, 4, 1509115097.Zhang, Y., Xu, J., Sun, Z., Li, C., & Pan, C. (2011). Preparation of graphene and TiO2 layer bylayer composite with highly photocatalytic efficiency. Progress in Natural Science:Materials International, 21(6), 467471.Zhao, C., Xu, X., Chen, J., & Yang, F. (2014). Optimization of preparation conditionsof poly(vinylidene fluoride)/graphene oxide microfiltration membranes by theTaguchi experimental design. Desalination, 334(1), 1722.Zhao, D., Peng, T., Lu, L., Cai, P., Jiang, P., & Bian, Z. (2008). Effect of annealing temperatureon the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2nanoparticles. Journal of Physical Chemistry C, 112, 84868494.Zhao, J., Liu, L., & Li, F. (2015). Fabrication and Reduction. In SpringerBriefs inPhysics (1?? Ed.) Graphene oxide: Physics and applications (pp. 114). New York: Springer US.Zhao, J., Wu, J., Zheng, M., Huo, J., & Tu, Y. (2015). Improving the photovoltaicperformance of dye-sensitized solar cell by graphene/titania photoanode.Electrochimica Acta, 156, 261266.Zhao, P., Cheng, P., Wang, B., Yao, S., Sun, P., Liu, F., et al. (2014). Bilayeredphotoanode from rutile TiO2 nanorods and hierarchical anatase TiO2 hollow spheres: Acandidate for enhanced efficiency dye sensitized solar cells. RSC Advances, 4(110),6473764743.Zhao, Y., Xu, Z., Shan, M., Min, C., Zhou, B., Li, Y., et al. (2013). Effect of graphite oxide andmulti-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Separationand Purification Technology, 103, 7883.Zheng, H., Neo, C. Y., & Ouyang, J. (2013). Highly efficient iodide/triiodide dye-sensitized solar cells with gel-coated reduce graphene oxide/single-walled carbon nanotubecomposites as the counter electrode exhibiting an open-circuit voltage of0.90 V. Applied Materials & Interfaces, 5(3), 66576664.Zhou, J., Song, B., Zhao, G., Dong, W., & Han, G. (2012). TiO2 nanorod arrayssensitized with CdS quantum dots for solar cell applications: effects of rod geometryon photoelectrochemical performance. Applied Physics A: Materials Science and Processing,107, 321331.Zhou, M., Tang, J., Cheng, Q., Xu, G., Cui, P., & Qin, L. C. (2013). Few-layer graphene obtainedby electrochemical exfoliation of graphite cathode. Chemical Physics Letters, 572, 6165.Zhou, W., Liu, X., Cui, J., Liu, D., Li, J., Jiang, H., et al. (2011). Control synthesis of rutileTiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid- hydrothermal method and their optical properties. Crystal Engineering Communication, 13,45574563.Zhu, M., Li, X., Liu, W., & Cui, Y. (2014). An investigation on thephotoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes. Journal of Power Sources, 262, 349355.Zhu, P., Nair, A. S., Shengjie, P., Shengyuan, Y., & Ramakrishna, S. (2012). Facile fabrication of TiO2graphene composite with enhanced photovoltaic and photocatalytic properties byelectrospinning. ACS Applied Materials & Interfaces, 4, 581585.Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., et al. (2010). Graphene andgraphene oxide: Synthesis, properties, and applications. Advance Materials, 22, 39063924.Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation andcharacteristics of graphene oxide-blending PVDF nanohybrid membranes and their applicationsfor hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429439.Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation ofa novel antifouling mixed matrix PES membrane by embeddinggraphene oxide nanoplates. Journal of Membrane Science, 453, 292301.