Benchmarking methodology for multiclass classification models based on multi criteria decision analysis

The purpose of this research was to develop a benchmarking methodology for aidingmedical organizations administrations in benchmarking and ranking availablemulticlass classification models to select the best one. Medical organizations havebeen facing difficulties in evaluating and comparing classifi...

Full description

Saved in:
Bibliographic Details
Main Author: Ali, Mohammed Assim Mohammed
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=6355
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:6355
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic RA Public aspects of medicine
spellingShingle RA Public aspects of medicine
Ali, Mohammed Assim Mohammed
Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
description The purpose of this research was to develop a benchmarking methodology for aidingmedical organizations administrations in benchmarking and ranking availablemulticlass classification models to select the best one. Medical organizations havebeen facing difficulties in evaluating and comparing classification models.Experimental and case study research methods were adopted in this study. The newbenchmarking methodology was proposed based on two stages. In first stage, aDecision Matrix (DM) was constructed based on the crossover of two groups ofmulti-evaluation criteria and 22 multiclass classification models. The matrix wasevaluated using secondary datasets consisting of 72 samples of acute leukemia,including 5327 gens. In the second stage, multi-criteria decision-making techniques,namely, Best and Worst method (BWM) and Vlse Kriterijumska OptimizacijaKompromisno Resenje (VIKOR) were used to benchmark and ranked the multiclassclassification models. The BWM was applied to calculate the weights of evaluationcriteria, whereas VIKOR was used to benchmark and rank the multi-classclassification models. VIKOR was utilized in two decision-making contexts, namelyindividual and group contexts. In group decision making, internal and external groupaggregations are applied. For validating the proposed methodology, an objectivemethod was used. The results showed that (1) the integration of BWM and VIKORwas effective for solving the benchmarking/selection problems of multi-classclassification models. (2) The ranks of multi-class classification models obtained frominternal and external VIKOR group decision making were almost the same, where,Bayes. Nave Byes Updateable, Bayes Net, Decision Stump were the first threeclassification models respectively and Trees. LMT was the last one. (3) In theobjective validation, the ranking results of internal and external VIKOR groupdecision making were valid. Clearly, as a conclusion, the proposed methodology canbe used for evaluation and benchmarking different multiclass classification models forvarious applications. The implications of this study will benefit medical organizationsby enabling them to make the right decisions regarding the use of multi-classclassification models for acute leukemia and the implications also benefit medicalclassification software developers who work in industrial companies and institutionsin developing classification models.
format thesis
qualification_name
qualification_level Doctorate
author Ali, Mohammed Assim Mohammed
author_facet Ali, Mohammed Assim Mohammed
author_sort Ali, Mohammed Assim Mohammed
title Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
title_short Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
title_full Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
title_fullStr Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
title_full_unstemmed Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
title_sort benchmarking methodology for multiclass classification models based on multi criteria decision analysis
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Seni, Komputeran dan Industri Kreatif
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=6355
_version_ 1747833258938204160
spelling oai:ir.upsi.edu.my:63552021-10-25 Benchmarking methodology for multiclass classification models based on multi criteria decision analysis 2019 Ali, Mohammed Assim Mohammed RA Public aspects of medicine The purpose of this research was to develop a benchmarking methodology for aidingmedical organizations administrations in benchmarking and ranking availablemulticlass classification models to select the best one. Medical organizations havebeen facing difficulties in evaluating and comparing classification models.Experimental and case study research methods were adopted in this study. The newbenchmarking methodology was proposed based on two stages. In first stage, aDecision Matrix (DM) was constructed based on the crossover of two groups ofmulti-evaluation criteria and 22 multiclass classification models. The matrix wasevaluated using secondary datasets consisting of 72 samples of acute leukemia,including 5327 gens. In the second stage, multi-criteria decision-making techniques,namely, Best and Worst method (BWM) and Vlse Kriterijumska OptimizacijaKompromisno Resenje (VIKOR) were used to benchmark and ranked the multiclassclassification models. The BWM was applied to calculate the weights of evaluationcriteria, whereas VIKOR was used to benchmark and rank the multi-classclassification models. VIKOR was utilized in two decision-making contexts, namelyindividual and group contexts. In group decision making, internal and external groupaggregations are applied. For validating the proposed methodology, an objectivemethod was used. The results showed that (1) the integration of BWM and VIKORwas effective for solving the benchmarking/selection problems of multi-classclassification models. (2) The ranks of multi-class classification models obtained frominternal and external VIKOR group decision making were almost the same, where,Bayes. Nave Byes Updateable, Bayes Net, Decision Stump were the first threeclassification models respectively and Trees. LMT was the last one. (3) In theobjective validation, the ranking results of internal and external VIKOR groupdecision making were valid. Clearly, as a conclusion, the proposed methodology canbe used for evaluation and benchmarking different multiclass classification models forvarious applications. The implications of this study will benefit medical organizationsby enabling them to make the right decisions regarding the use of multi-classclassification models for acute leukemia and the implications also benefit medicalclassification software developers who work in industrial companies and institutionsin developing classification models. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=6355 https://ir.upsi.edu.my/detailsg.php?det=6355 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A., & Zaidan, B. (2016a). Anevaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 248.Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A. A., & Zaidan, B. B.(2016b). An evaluation and selection problems of OSS-LMS packages. SpringerPlus,5(1), 248. doi:10.1186/s40064-016-1828-yAboutorab, H., Saberi, M., Asadabadi, M. R., Hussain, O., & Chang, E. (2018). ZBWM:The Z-number extension of Best Worst Method and its application for supplier development.Expert Systems with Applications, 107, 115-125.Adunlin, G., Diaby, V., & Xiao, H. (2015). Application of multicriteria decisionanalysis in health care: a systematic review and bibliometric analysis. Health Expectations, 18(6),1894-1905.Agaian, S., Madhukar, M., & Chronopoulos, A. T. (2014). Automated Screening System forAcute Myelogenous Leukemia Detection in Blood Microscopic Images. IEEE Systems Journal, 8(3), 995-1004.doi:10.1109/JSYST.2014.2308452Al-Sahaf, H., Song, A., & Zhang, M. (2013, 20-23 June 2013). Hybridisation of Genetic Programming and Nearest Neighbour for classification. Paper presented at the 2013 IEEECongress on Evolutionary Computation.Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A Survey on Multi CriteriaDecision Making Methods and Its Applications. American Journal of Information Systems, 1(1), 31-43.Ashour, O. M., & Okudan, G. E. (2010). Fuzzy AHP and utility theory based patient sorting inemergency departments. International Journal of Collaborative Enterprise, 1(3-4), 332-358.Awang, M. K., Makhtar, M., & Rahman, M. N. A. (2017). Improving Accuracy and Performance of Customer Churn Prediction Using Feature Reduction Algorithms. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-3), 127-130.Azadeh, A., Asadzadeh, S. M., & Tanhaeean, M. (2017). A consensus-based AHP for improved assessmentof resilience engineering in maintenance organizations. Journal of Loss Prevention in the Process Industries, 47, 151-160.doi:https://doi.org/10.1016/j.jlp.2017.02.028Azeez, D., Ali, M. A. M., Gan, K. B., & Saiboon, I. (2013). Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in theemergency department. SpringerPlus, 2(1), 416.Bagasjvara, R. G., Candradewi, I., Hartati, S., & Harjoko, A. (2016, 27-28 Oct. 2016). Automateddetection and classification techniques of Acute leukemia using image processing: Areview. Paper presented at the 2016 2nd International Conference on Science andTechnology-Computer (ICST).Baltussen, R., & Niessen, L. (2006). Priority setting of health interventions: the need formulti-criteria decision analysis. Cost effectiveness and resource allocation,4(1), 1.Begum, S., Chakraborty, D., & Sarkar, R. (2015, 12-14 Dec. 2015). DataClassification Using Feature Selection and kNN Machine Learning Approach.Paper presented at the 2015 International Conference on ComputationalIntelligence and Communication Networks (CICN).Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012).A state-of the-art survey of TOPSIS applications. Expert Systems withApplications, 39(17), 13051-13069.doi:https://doi.org/10.1016/j.eswa.2012.05.056Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integratedapproachKluwer Academic Publishers: Boston.Bhattacharjee, R., & Saini, L. M. (2015a, 24-26 Sept. 2015). Detection of AcuteLymphoblastic Leukemia using watershed transformation technique. Paperpresented at the 2015 International Conference on Signal Processing,Computing and Control (ISPCC).Bhattacharjee, R., & Saini, L. M. (2015b, 15-17 Oct. 2015). Robust technique for thedetection of Acute Lymphoblastic Leukemia. Paper presented at the 2015 IEEEPower, Communication and Information Technology Conference (PCITC).bin Othman, M. F., & Yau, T. M. S. (2007). Comparison of different classificationtechniques using WEKA for breast cancer. Paper presented at the 3rd KualaLumpur International Conference on Biomedical Engineering 2006.Bor. S., Wang, Y. F., Li, J. L., Li, C. C., Weng, P. F., Hsu, S. C., ... & Liu, J. H.(2018). Clinically validated machine learning algorithm for detecting residualdiseases with multicolor flow cytometry analysis in acute myeloid leukemiaand myelodysplastic syndrome. EBioMedicine, 37, 91-100.Cadenas, J. M., Garrido, M. C., & Martnez, R. (2012, 10-15 June 2012). A tool tomanage low quality datasets. Paper presented at the 2012 IEEE InternationalConference on Fuzzy Systems.Cai, Y.-D., Feng, K.-Y., Lu, W.-C., & Chou, K.-C. (2006). Using LogitBoostclassifier to predict protein structural classes. Journal of Theoretical Biology,238(1), 172-176. doi:https://doi.org/10.1016/j.jtbi.2005.05.034Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteriadecision making. Decision Support Systems, 52(1), 52-60.doi:https://doi.org/10.1016/j.dss.2011.05.003Campos, L. M. d., Cano, A., Castellano, J. G., & Moral, S. (2011, 22-24 Nov. 2011).Bayesian networks classifiers for gene-expression data. Paper presented at the2011 11th International Conference on Intelligent Systems Design andApplications.Cao, J., Zhang, L., Wang, B., Li, F., & Yang, J. (2015). A fast gene selection methodfor multi-cancer classification using multiple support vector data description.Journal of Biomedical Informatics, 53, 381-389.doi:http://dx.doi.org/10.1016/j.jbi.2014.12.009Cavallini, C., Giorgetti, A., Citti, P., & Nicolaie, F. (2013). Integral aided method formaterial selection based on quality function deployment and comprehensiveVIKOR algorithm. Materials & Design, 47, 27-34.doi:https://doi.org/10.1016/j.matdes.2012.12.009Chakraborty, S. (2009). Simultaneous cancer classification and gene selection withBayesian nearest neighbor method: An integrated approach. ComputationalStatistics & Data Analysis, 53(4), 1462-1474.Chandra, B., & Gupta, M. (2011). Robust approach for estimating probabilities inNaveBayes Classifier for gene expression data. Expert Systems withApplications, 38(3), 1293-1298.doi:http://dx.doi.org/10.1016/j.eswa.2010.06.076Chen, T. C., Hsieh, Y. C., You, P. S., & Lee, Y. C. (2010, 9-11 July 2010). Featureselection and classification by using grid computing based evolutionaryapproach for the microarray data. Paper presented at the 2010 3rdInternational Conference on Computer Science and Information Technology.Chen, X., & Jian, C. (2014, 19-21 Aug. 2014). A tumor classification model usingleast square regression. Paper presented at the 2014 10th InternationalConference on Natural Computation (ICNC).Chetty, G., White, M., & Akther, F. (2015). Smart phone based data mining forhuman activity recognition. Procedia Computer Science, 46, 1181-1187.Chiang*, J. H., & Ho, S. H. (2008). A Combination of Rough-Based FeatureSelection and RBF Neural Network for Classification Using Gene ExpressionData. IEEE Transactions on NanoBioscience, 7(1), 91-99.doi:10.1109/TNB.2008.2000142Chiu, W.-Y., Tzeng, G.-H., & Li, H.-L. (2013). A new hybrid MCDM modelcombining DANP with VIKOR to improve e-store business. Knowledge-Based Systems, 37, 48-61. doi:https://doi.org/10.1016/j.knosys.2012.06.017Chokkalingam, S. P., & Komathy, K. (2013, 23-24 Aug. 2013). Comparison ofdifferent classifier in WEKA for rheumatoid arthritis. Paper presented at the2013 International Conference on Human Computer Interactions (ICHCI).Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weightingsystem under group decision-making for facility location selection withobjective/subjective attributes. European Journal of Operational Research,189(1), 132-145. doi:https://doi.org/10.1016/j.ejor.2007.05.006Chunbao, Z., Liming, W., & Yanchun, L. (2010, 20-22 Aug. 2010). A hybridalgorithm of minimum spanning tree and nearest neighbor for classifyinghuman cancers. Paper presented at the 2010 3rd International Conference onAdvanced Computer Theory and Engineering(ICACTE).Cornet, E., Perol, J. P., & Troussard, X. (2008). Performance evaluation and relevanceof the CellaVision (TM) DM96 system in routine analysis and in patients withmalignant hematological diseases. International Journal of LaboratoryHematology, 30(6), 536-542. doi:10.1111/j.1751-553X.2007.00996.xCui, Y., Zheng, C.-H., Yang, J., & Sha, W. (2013). Sparse maximum margindiscriminant analysis for feature extraction and gene selection on geneexpression data. Computers in Biology and Medicine, 43(7), 933-941.doi:http://dx.doi.org/10.1016/j.compbiomed.2013.04.018Daqqa, K. A. S. A., Maghari, A. Y. A., & Sarraj, W. F. M. A. (2017, 17-18 May2017). Prediction and diagnosis of leukemia using classification algorithms.Paper presented at the 2017 8th International Conference on InformationTechnology (ICIT).Dash, S. (2013, 4-6 Dec. 2013). Hill-climber based fuzzy-rough feature extractionwith an application to cancer classification. Paper presented at the 13thInternational Conference on Hybrid Intelligent Systems (HIS 2013).De Paz, J. F., Bajo, J., Lpez, V. F., & Corchado, J. M. (2013). BiomedicOrganizations: An intelligent dynamic architecture for KDD. InformationSciences, 224, 49-61. doi:http://dx.doi.org/10.1016/j.ins.2012.10.031Deegalla, S., & Bostrm, H. (2009, 13-15 Dec. 2009). Improving Fusion ofDimensionality Reduction Methods for Nearest Neighbor Classification. Paperpresented at the 2009 International Conference on Machine Learning andApplications.Dehghan Khalilabad, N., & Hassanpour, H. (2017). Employing image processingtechniques for cancer detection using microarray images. Computers inBiology and Medicine, 81, 139-147.doi:https://doi.org/10.1016/j.compbiomed.2016.12.012Desai, A., & Rai, S. (2013). Analysis of Machine Learning Algorithms using Weka.Dwivedi, S., Kasliwal, P., & Soni, S. (2016, 18-19 March 2016). Comprehensivestudy of data analytics tools (RapidMiner, Weka, R tool, Knime). Paperpresented at the 2016 Symposium on Colossal Data Analysis and Networking(CDAN).El-Nasser, A. A., Shaheen, M., & El-Deeb, H. (2014, 27-29 Aug. 2014). Enhancedleukemia cancer classifier algorithm. Paper presented at the 2014 Science andInformation Conference.Enaizan, O., Zaidan, A., Alwi, N. M., Zaidan, B., Alsalem, M., Albahri, O., &Albahri, A. (2018). Electronic medical record systems: Decision supportexamination framework for individual, security and privacy concerns usingmulti-perspective analysis. Health and Technology, 1-28.Escalante, H. J., Montes-y-Gmez, M., Gonzlez, J. A., Gmez-Gil, P., Altamirano,L., Reyes, C. A., . . . Rosales, A. (2012). Acute leukemia classification byensemble particle swarm model selection. Artificial Intelligence in Medicine,55(3), 163-175. doi:http://dx.doi.org/10.1016/j.artmed.2012.03.005Fan, Y., Hua-Zhen, W., & Hong, M. (2008, 12-15 July 2008). A novel classificationmethod of microarray with reliability and confidence. Paper presented at the2008 International Conference on Machine Learning and Cybernetics.Ganesh Kumar, P., Aruldoss Albert Victoire, T., Renukadevi, P., & Devaraj, D.(2012). Design of fuzzy expert system for microarray data classification usinga novel Genetic Swarm Algorithm. Expert Systems with Applications, 39(2),1811-1821. doi:http://dx.doi.org/10.1016/j.eswa.2011.08.069Garro, B. A., Rodrguez, K., & Vazquez, R. A. (2017, 5-8 June 2017). Designingartificial neural networks using differential evolution for classifying DNAmicroarrays. Paper presented at the 2017 IEEE Congress on EvolutionaryComputation (CEC).Gates, C., McNutt, J. J., Kadane, J. B., & Kellner, M. I. (2006, 26-29 June 2006).Scan Detection on Very Large Networks Using Logistic Regression Modeling.Paper presented at the 11th IEEE Symposium on Computers andCommunications (ISCC'06).Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., .. . Caligiuri, M. A. (1999). Molecular classification of cancer: class discoveryand class prediction by gene expression monitoring. science, 286(5439), 531-537.Goutam, D., & Sailaja, S. (2015, 20-20 March 2015). Classification of acutemyelogenous leukemia in blood microscopic images using supervisedclassifier. Paper presented at the 2015 IEEE International Conference onEngineering and Technology (ICETECH).Gul, M., Celik, E., Aydin, N., Taskin Gumus, A., & Guneri, A. F. (2016). A state ofthe art literature review of VIKOR and its fuzzy extensions on applications.Applied Soft Computing, 46, 60-89.doi:https://doi.org/10.1016/j.asoc.2016.04.040Guo, S., & Zhao, H. (2017a). Fuzzy best-worst multi-criteria decision-making methodand its applications. Knowledge-Based Systems, 121(Supplement C), 23-31.doi:https://doi.org/10.1016/j.knosys.2017.01.010Guo, S., & Zhao, H. (2017b). Fuzzy best-worst multi-criteria decision-making methodand its applications. Knowledge-Based Systems, 121, 23-31.doi:https://doi.org/10.1016/j.knosys.2017.01.010Gupta, H. (2018). Evaluating service quality of airline industry using hybrid bestworst method and VIKOR. Journal of Air Transport Management, 68, 35-47.doi:https://doi.org/10.1016/j.jairtraman.2017.06.001Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis oftheir green innovation ability using BWM and fuzzy TOPSIS. Journal ofCleaner Production, 152, 242-258.doi:https://doi.org/10.1016/j.jclepro.2017.03.125Hasan, A., & Md. Akhtaruzzaman, A. (2012, 27-28 Feb. 2012). High dimensionalmicroarray data classification using correlation based feature selection. Paperpresented at the 2012 International Conference on Biomedical Engineering(ICoBE).He, Y., & Hui, S. C. (2009). Exploring ant-based algorithms for gene expression dataanalysis. Artificial Intelligence in Medicine, 47(2), 105-119.doi:http://dx.doi.org/10.1016/j.artmed.2009.03.004Horng, J.-T., Wu, L.-C., Liu, B.-J., Kuo, J.-L., Kuo, W.-H., & Zhang, J.-J. (2009). Anexpert system to classify microarray gene expression data using gene selectionby decision tree. Expert Systems with Applications, 36(5), 9072-9081.doi:https://doi.org/10.1016/j.eswa.2008.12.037Hossin, M., & Sulaiman, M. (2015). A review on evaluation metrics for dataclassification evaluations. International Journal of Data Mining & KnowledgeManagement Process, 5(2), 1.Huang, H. L., Chen, Y. H., Koeberl, D. D., & Ho, S. Y. (2007, 1-5 April 2007).Boosting Evolutionary Support Vector Machine for Designing TumorClassifiers from Microarray Data. Paper presented at the 2007 IEEESymposium on Computational Intelligence and Bioinformatics andComputational Biology.Huang, P. H., & Moh, T.-t. (2017). A non-linear non-weight method for multi-criteriadecision making. Annals of Operations Research, 248(1), 239-251.doi:10.1007/s10479-016-2208-2Hussain, M., Al-Haiqi, A., Zaidan, A. A., Zaidan, B. B., Kiah, M. L. M., Anuar, N.B., & Abdulnabi, M. (2015). The landscape of research on smartphonemedical apps: Coherent taxonomy, motivations, open challenges andrecommendations. Computer Methods and Programs in Biomedicine, 122(3),393-408. doi:https://doi.org/10.1016/j.cmpb.2015.08.015Hwang, C., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods andApplications: a State-of-the-art Survey.Lecture Notes in Economics andMathematical Systems: Springer.Jablonsky, J. (2014). MS Excel based Software Support Tools for Decision Problemswith Multiple Criteria. Procedia Economics and Finance, 12(Supplement C),251-258. doi:https://doi.org/10.1016/S2212-5671(14)00342-6Jadhav, A., & Sonar, R. (2009). Analytic hierarchy process (AHP), weighted scoringmethod (WSM), and hybrid knowledge based system (HKBS) for softwareselection: a comparative study. Paper presented at the 2009 SecondInternational Conference on Emerging Trends in Engineering & Technology.Jahan, A., Mustapha, F., Ismail, M. Y., Sapuan, S. M., & Bahraminasab, M. (2011). Acomprehensive VIKOR method for material selection. Materials & Design,32(3), 1215-1221. doi:https://doi.org/10.1016/j.matdes.2010.10.015Jones, D. E., Ghandehari, H., & Facelli, J. C. (2016). A review of the applications ofdata mining and machine learning for the prediction of biomedical propertiesof nanoparticles. Computer Methods and Programs in Biomedicine, 132, 93-103.Jumaah, F., Zadain, A., Zaidan, B., Hamzah, A., & Bahbibi, R. (2018). Decision-Making Solution based Multi-Measurement Design Parameter forOptimization of GPS Receiver Tracking Channels in Static and DynamicReal-Time Positioning Multipath Environment. Measurement.Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., Albahri, O., & Albahri,A. (2018a). Based on Real Time Remote Health Monitoring Systems: A NewApproach for Prioritization Large Scales Data Patients with Chronic HeartDiseases Using Body Sensors and Communication Technology. Journal ofMedical Systems, 42(4), 69.Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., &Albahri, A. S. (2018b). Based on Real Time Remote Health MonitoringSystems: A New Approach for Prioritization Large Scales Data Patientswith Chronic Heart Diseases Using Body Sensors and CommunicationTechnology. Journal of Medical Systems, 42(4), 69. doi:10.1007/s10916-018-0916-7Kang, K., & Michalak, J. (2018). Enhanced version of AdaBoostM1 with J48 Treelearning method.Karahalios, H. (2017). The application of the AHP-TOPSIS for evaluating ballastwater treatment systems by ship operators. Transportation Research Part D:Transport and Environment, 52(Part A), 172-184.doi:https://doi.org/10.1016/j.trd.2017.03.001Kaur, S., Sehra, S. K., & Sehra, S. S. (2016, 20-21 May 2016). A framework forsoftware quality model selection using TOPSIS. Paper presented at the 2016IEEE International Conference on Recent Trends in Electronics, Information& Communication Technology (RTEICT).Kawade, D. R., & Oza, K. S. (2015). SMS spam classification using WEKA.International Journal of Electronics Communication and ComputerTechnology, 5, 43-47.Kaya, ?., olak, M., & Terzi, F. (2018). Use of MCDM techniques for energy policyand decision?making problems: A review. International Journal of EnergyResearch, 42(7), 2344-2372.Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferencesand value trade-offs: Cambridge university press.Kim, S. (2009, 24-26 April 2009). Spectral Methods for Cancer Classification UsingMicroarray Data. Paper presented at the 2009 International Joint Conferenceon Computational Sciences and Optimization.Koklu, M., Kahramanli, H., & Allahverdi, N. (1991). Applications of rule basedclassification techniques for thoracic surgery. Paper presented at the theMakeLearn and TIIM Joint International Conference on Managing IntellectualCapital and Innovation for Sustainable and Inclusive Society: ManagingIntellectual Capital and Innovation, ToKnowPress, Bari, Italy.Kornyshova, E., & Salinesi, C. (2007, 1-5 April 2007). MCDM Techniques SelectionApproaches: State of the Art. Paper presented at the 2007 IEEE Symposiumon Computational Intelligence in Multi-Criteria Decision-Making.Kotsiantis, S. B. (2005). Logitboost of simple bayesian classifier. Informatica, 29(1).Krappe, S., Benz, M., Wittenberg, T., Haferlach, T., & Munzenmayer, C. (2015).Automated classification of bone marrow cells in microscopic images fordiagnosis of leukemia: A comparison of two classification schemes withrespect to the segmentation quality. In L. M. Hadjiiski & G. D. Tourassi(Eds.), Medical Imaging 2015: Computer-Aided Diagnosis (Vol. 9414).Krappe, S., Wittenberg, T., Haferlach, T., & Munzenmayer, C. (2015). Automatedmorphological analysis of bone marrow cells in microscopic images fordiagnosis of leukemia: nucleus-plasma separation and cell classification usinga hierarchical tree model of hematopoesis. In G. D. Tourassi & S. G. Armato(Eds.), Medical Imaging 2016: Computer-Aided Diagnosis (Vol. 9785).Kumar, M., & Kumar Rath, S. (2015). Classification of microarray using MapReducebased proximal support vector machine classifier. Knowledge-Based Systems,89, 584-602. doi:https://doi.org/10.1016/j.knosys.2015.09.005Labati, R. D., Piuri, V., Scotti, F., & Ieee. (2011). ALL-IDB: THE ACUTELYMPHOBLASTIC LEUKEMIA IMAGE DATABASE FOR IMAGEPROCESSING 2011 18th Ieee International Conference on ImageProcessing.Laosai, J., & Chamnongthai, K. (2014, 19-21 March 2014). Acute leukemiaclassification by using SVM and K-Means clustering. Paper presented at the2014 International Electrical Engineering Congress (iEECON).Lei, X., & Chen, Y. (2012, 27-30 May 2012). Multiclass Classification of MicroarrayData Samples with Flexible Neural Tree. Paper presented at the 2012 SpringCongress on Engineering and Technology.Li, J.-T., & Jia, Y.-M. (2010). An Improved Elastic Net for Cancer Classification andGene Selection. Acta Automatica Sinica, 36(7), 976-981.doi:http://dx.doi.org/10.1016/S1874-1029(09)60042-2Liou, J. J. H., Tsai, C.-Y., Lin, R.-H., & Tzeng, G.-H. (2011). A modified VIKORmultiple-criteria decision method for improving domestic airlines servicequality. Journal of Air Transport Management, 17(2), 57-61.doi:https://doi.org/10.1016/j.jairtraman.2010.03.004Lira, M. M., de Aquino, R. R., Ferreira, A. A., Carvalho, M. A., Neto, O. N., &Santos, G. S. (2007). Combining multiple artificial neural networks usingrandom committee to decide upon electrical disturbance classification. Paperpresented at the Neural Networks, 2007. IJCNN 2007. International JointConference on.Lo, H.-W., Liou, J. J. H., Wang, H.-S., & Tsai, Y.-S. (2018). An integrated model forsolving problems in green supplier selection and order allocation. Journal ofCleaner Production, 190, 339-352.doi:https://doi.org/10.1016/j.jclepro.2018.04.105Lu, H., Yang, L., Yan, K., Xue, Y., & Gao, Z. (2017). A cost-sensitive rotation forestalgorithm for gene expression data classification. Neurocomputing, 228, 270-276. doi:https://doi.org/10.1016/j.neucom.2016.09.077Lu, X., Peng, X., Liu, P., Deng, Y., Feng, B., & Liao, B. (2012, 18-20 Aug. 2012). Anovel feature selection method based on CFS in cancer recognition. Paperpresented at the 2012 IEEE 6th International Conference on Systems Biology(ISB).Ludwig, S. A., Jakobovic, D., & Picek, S. (2015, 2-5 Aug. 2015). Analyzing geneexpression data: Fuzzy decision tree algorithm applied to the classification ofcancer data. Paper presented at the 2015 IEEE International Conference onFuzzy Systems (FUZZ-IEEE).Lutz, R. W. (2006). Logitboost with trees applied to the wcci 2006 performanceprediction challenge datasets. Paper presented at the The 2006 IEEEInternational Joint Conference on Neural Network Proceedings.Madhloom, H. T., Kareem, S. A., & Ariffin, H. (2012, 26-28 Nov. 2012). A RobustFeature Extraction and Selection Method for the Recognition of Lymphocytesversus Acute Lymphoblastic Leukemia. Paper presented at the 2012International Conference on Advanced Computer Science Applications andTechnologies (ACSAT).Mahjouri, M., Ishak, M. B., Torabian, A., Abd Manaf, L., Halimoon, N., & Ghoddusi,J. (2017). Optimal selection of Iron and Steel wastewater treatment technologyusing integrated multi-criteria decision-making techniques and fuzzy logic.Process Safety and Environmental Protection, 107(Supplement C), 54-68.doi:https://doi.org/10.1016/j.psep.2017.01.016Malczewski, J. (1999). GIS and multicriteria decision analysis: John Wiley & Sons.Maulik, U., Mukhopadhyay, A., & Chakraborty, D. (2013). Gene-Expression-BasedCancer Subtypes Prediction Through Feature Selection and TransductiveSVM. IEEE Transactions on Biomedical Engineering, 60(4), 1111-1117.doi:10.1109/TBME.2012.2225622Medineckien?, M., & Bjork, F. (2011). Owner preferences regarding renovationmeasures - The demonstration of using multi-criteria decision making (Vol.17).MeeraGandhi, G. (2010). Machine learning approach for attack prediction andclassification using supervised learning algorithms. Int. J. Comput. Sci.Commun, 1(2).Mills, A. F. (2016). A simple yet effective decision support policy for mass-casualtytriage. European Journal of Operational Research, 253(3), 734-745.Mir, N. M., Khan, S., Butt, M. A., & Zaman, M. (2016). An experimental evaluationof bayesian classifiers applied to intrusion detection. Indian Journal of Scienceand Technology, 9(12).Mishra, S., Majhi, B., Sa, P. K., & Sharma, L. (2017). Gray level co-occurrencematrix and random forest based acute lymphoblastic leukemia detection.Biomedical Signal Processing and Control, 33, 272-280.doi:https://doi.org/10.1016/j.bspc.2016.11.021Mohapatra, P., & Chakravarty, S. (2015, 15-17 Oct. 2015). Modified PSO basedfeature selection for Microarray data classification. Paper presented at the2015 IEEE Power, Communication and Information Technology Conference(PCITC).Mohapatra, P., Chakravarty, S., & Dash, P. K. (2016). Microarray medical dataclassification using kernel ridge regression and modified cat swarmoptimization based gene selection system. Swarm and EvolutionaryComputation, 28, 144-160. doi:http://dx.doi.org/10.1016/j.swevo.2016.02.002Mohapatra, S., Patra, D., & Satpathi, S. (2010, 27-29 Dec. 2010). Image analysis ofblood microscopic images for acute leukemia detection. Paper presented at the2010 International Conference on Industrial Electronics, Control and Robotics.Mohapatra, S., Samanta, S. S., Patra, D., & Satpathi, S. (2011, 24-25 Feb. 2011).Fuzzy Based Blood Image Segmentation for Automated Leukemia Detection.Paper presented at the 2011 International Conference on Devices andCommunications (ICDeCom).Nafari, J., Arab, A., & Ghaffari, S. (2017). Through the Looking Glass: Analysis ofFactors Influencing Iranian Students Study Abroad Motivations andDestination Choice. SAGE Open, 7(2), 2158244017716711.doi:10.1177/2158244017716711Nasir, A. S. A., Mashor, M. Y., & Hassan, R. (2012, 17-19 Dec. 2012). Leukemiascreening based on fuzzy ARTMAP and simplified fuzzy ARTMAP neuralnetworks. Paper presented at the 2012 IEEE-EMBS Conference on BiomedicalEngineering and Sciences.Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M. H., Kalender, O., & Ege, Y. (2014).Automatic segmentation, counting, size determination and classification ofwhite blood cells. Measurement, 55, 58-65.doi:https://doi.org/10.1016/j.measurement.2014.04.008Nguyen, T., & Nahavandi, S. (2016). Modified AHP for Gene Selection and CancerClassification Using Type-2 Fuzzy Logic. IEEE Transactions on FuzzySystems, 24(2), 273-287. doi:10.1109/TFUZZ.2015.2453153Nilsson, H., Nordstrm, E.-M., & hman, K. (2016). Decision support forparticipatory forest planning using AHP and TOPSIS. Forests, 7(5), 100.Oliveira, M., Fontes, D. B., & Pereira, T. (2014). Multicriteria decision making: acase study in the automobile industry. Annals of Management Science, 3(1),109.nt, S., & Soner, S. (2008). Transshipment site selection using the AHP andTOPSIS approaches under fuzzy environment. Waste Management, 28(9),1552-1559. doi:https://doi.org/10.1016/j.wasman.2007.05.019Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: Acomparative analysis of VIKOR and TOPSIS. European Journal ofOperational Research, 156(2), 445-455.Opricovic, S., & Tzeng, G.-H. (2007). Extended VIKOR method in comparison withoutranking methods. European Journal of Operational Research, 178(2), 514-529. doi:https://doi.org/10.1016/j.ejor.2006.01.020Ou Yang, Y.-P., Shieh, H.-M., & Tzeng, G.-H. (2013). A VIKOR technique based onDEMATEL and ANP for information security risk control assessment.Information Sciences, 232, 482-500.doi:https://doi.org/10.1016/j.ins.2011.09.012P, P. K., Vadakkepat, P., & Poh, L. A. (2011). Fuzzy-rough discriminative featureselection and classification algorithm, with application to microarray andimage datasets. Applied Soft Computing, 11(4), 3429-3440.doi:http://dx.doi.org/10.1016/j.asoc.2011.01.013Pamu?ar, D., Petrovi?, I., & ?irovi?, G. (2018). Modification of the BestWorst andMABAC methods: A novel approach based on interval-valued fuzzy-roughnumbers. Expert Systems with Applications, 91, 89-106.doi:https://doi.org/10.1016/j.eswa.2017.08.042Panda, M., Abraham, A., & Patra, M. R. (2010). Discriminative multinomial naivebayes for network intrusion detection. Paper presented at the InformationAssurance and Security (IAS), 2010 Sixth International Conference on.Pandey, A. K., Rajpoot, D. S., & Rajpoot, D. S. (2016, 26-28 Dec. 2016). Acomparative study of classification techniques by utilizing WEKA. Paperpresented at the 2016 International Conference on Signal Processing andCommunication (ICSC).Patil, B. M., Toshniwal, D., & Joshi, R. C. (2009, 6-7 March 2009). Predicting BurnPatient Survivability Using Decision Tree In WEKA Environment. Paperpresented at the 2009 IEEE International Advance Computing Conference.Rajpurohit, S., Patil, S., Choudhary, N., Gavasane, S., & Kosamkar, P. (2018,September). Identification of Acute Lymphoblastic Leukemia in MicroscopicBlood Image Using Image Processing and Machine Learning Algorithms.In 2018 International Conference on Advances in Computing,Communications and Informatics (ICACCI) (pp. 2359-2363). IEEE.Paul, S., & Maji, P. (2010, 13-14 Dec. 2010). Rough set based gene selectionalgorithm for microarray sample classification. Paper presented at the 2010International Conference on Methods and Models in Computer Science(ICM2CS-2010).Petrovic-Lazarevic, S., & Abraham, A. (2004). Hybrid fuzzy-linear programmingapproach for multi criteria decision making problems. arXiv preprintcs/0405019.Putzu, L., Caocci, G., & Di Ruberto, C. (2014). Leucocyte classification for leukemiadetection using image processing techniques. Artificial Intelligence inMedicine, 62(3), 179-191. doi:10.1016/j.artmed.2014.09.002Qader, M. A., Zaidan, B. B., Zaidan, A. A., Ali, S. K., Kamaluddin, M. A., & Radzi,W. B. (2017). A methodology for football players selection problem based onmulti-measurements criteria analysis. Measurement, 111, 38-50.doi:https://doi.org/10.1016/j.measurement.2017.07.024Qasem, M., & Nour, M. (2015, 26-29 April 2015). Improving Accuracy forClassifying Selected Medical Datasets with Weighted Nearest Neighbors andFuzzy Nearest Neighbors Algorithms. Paper presented at the 2015International Conference on Cloud Computing (ICCC).Qizhong, Z. (2007, 23-27 May 2007). Gene Selection and Classification Using NonlinearKernel Support Vector Machines Based on Gene Expression Data.Paper presented at the 2007 IEEE/ICME International Conference onComplex Medical Engineering.Rajwa, B., Wallace, P. K., Griffiths, E. A., & Dundar, M. (2017). AutomatedAssessment of Disease Progression in Acute Myeloid Leukemia byProbabilistic Analysis of Flow Cytometry Data. IEEE Transactions onBiomedical Engineering, 64(5), 1089-1098. doi:10.1109/TBME.2016.2590950Rangra., K., & Bansal, D. K. L. (2014). Comparative Study of Data Mining Tools,International Journal of Advanced Research in Computer Science andSoftware Engineering. International Journal of Advanced Research inComputer Science and Software Engineering, 4(6).Rashid, S., & Maruf, G. M. (2011, 12-15 Nov. 2011). An adaptive feature reductionalgorithm for cancer classification using wavelet decomposition of serumproteomic and DNA microarray data. Paper presented at the 2011 IEEEInternational Conference on Bioinformatics and Biomedicine Workshops(BIBMW).Raviv, G., Shapira, A., & Fishbain, B. (2017). AHP-based analysis of the riskpotential of safety incidents: Case study of cranes in the construction industry.Safety Science, 91(Supplement C), 298-309.doi:https://doi.org/10.1016/j.ssci.2016.08.027Rawat, J., Bhadauria, H. S., Singh, A., & Virmani, J. (2015, 11-13 March 2015).Review of leukocyte classification techniques for microscopic blood images.Paper presented at the 2015 2nd International Conference on Computing forSustainable Global Development (Indiacom).Rawat, J., Singh, A., Bhadauria, H. S., & Virmani, J. (2015). Computer AidedDiagnostic System for Detection of Leukemia Using Microscopic Images.Procedia Computer Science, 70, 748-756.doi:https://doi.org/10.1016/j.procs.2015.10.113Ren, C.-X., Dai, D.-Q., & Yan, H. (2012). Robust classification using L 2,1 normbased regression model. Pattern Recogn., 45(7), 2708-2718.doi:10.1016/j.patcog.2012.01.003Ren, J. (2018). Selection of sustainable prime mover for combined cooling, heat, andpower technologies under uncertainties: An interval multicriteria decisionmakingapproach. International Journal of Energy Research.Rezaei, J. (2015a). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. doi:https://doi.org/10.1016/j.omega.2014.11.009Rezaei, J. (2015b). Best-worst multi-criteria decision-making method. Omega,53(Supplement C), 49-57. doi:https://doi.org/10.1016/j.omega.2014.11.009Rezaei, J. (2016a). Best-worst multi-criteria decision-making method: Someproperties and a linear model. Omega, 64(Supplement C), 126-130.doi:https://doi.org/10.1016/j.omega.2015.12.001Rezaei, J. (2016b). Best-worst multi-criteria decision-making method: Someproperties and a linear model. Omega, 64, 126-130.doi:https://doi.org/10.1016/j.omega.2015.12.001Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relativeimportance of the logistics performance index indicators using Best WorstMethod. Transport Policy, 68, 158-169.Rosa, J. L. D., Magpantay, A. E. A., Gonzaga, A. C., & Solano, G. A. (2014, 7-9 July2014). Cluster center genes as candidate biomarkers for the classification ofLeukemia. Paper presented at the IISA 2014, The 5th International Conferenceon Information, Intelligence, Systems and Applications.Rota, P., Groeneveld-Krentz, S., & Reiter, M. (2015, 9-12 Nov. 2015). On automatedFlow Cytometric analysis for MRD estimation of Acute LymphoblasticLeukemia: A comparison among different approaches. Paper presented at the2015 IEEE International Conference on Bioinformatics and Biomedicine(BIBM).Roy, A. (2015). A Classification Algorithm for High-dimensional Data. ProcediaComputer Science, 53, 345-355.doi:http://dx.doi.org/10.1016/j.procs.2015.07.311Roy, A., Mackin, P. D., & Mukhopadhyay, S. (2013). Methods for pattern selection,class-specific feature selection and classification for automated learning.Neural Networks, 41, 113-129.doi:https://doi.org/10.1016/j.neunet.2012.12.007Remya, R. S., Vijayan, V., Sabeena, K., & Hariharan, S. (2018, July). ComputerAided Method for the Detection of Structural Abnormalities in AcuteLymphocytic Leukemia from the G-Banded Karyotypes. In 2018 InternationalCET Conference on Control, Communication, and Computing (IC4)(pp. 346-351). IEEE.Saengsiri, P., Meesad, P., Wichian, S. N., & Herwig, U. (2011, 17-19 May 2011).Classification models based-on incremental learning algorithm and featureselection on gene expression data. Paper presented at the The 8th ElectricalEngineering/ Electronics, Computer, Telecommunications and InformationTechnology (ECTI) Association of Thailand - Conference 2011.Salem, H., Attiya, G., & El-Fishawy, N. (2015, 29-30 Dec. 2015). Gene expressionprofiles based Human cancer diseases classification. Paper presented at the2015 11th International Computer Engineering Conference (ICENCO).Salimi, N., & Rezaei, J. (2018). Evaluating firms R&D performance using best worstmethod. Evaluation and program planning, 66, 147-155.Salman, O., Zaidan, A., Zaidan, B., Naserkalid, & Hashim, M. (2017). Novelmethodology for triage and prioritizing using big data patients with chronicheart diseases through telemedicine environmental. International Journal ofInformation Technology & Decision Making, 16(05), 1211-1245.Saritha, M., Prakash, B. B., Sukesh, K., & Shrinivas, B. (2016, 3-5 March 2016).Detection of blood cancer in microscopic images of human blood samples: Areview. Paper presented at the 2016 International Conference on Electrical,Electronics, and Optimization Techniques (ICEEOT).Serrai, W., Abdelli, A., Mokdad, L., & Hammal, Y. (2016, 27-30 June 2016). Anefficient approach for Web service selection. Paper presented at the 2016 IEEESymposium on Computers and Communication (ISCC).Serrai, W., Abdelli, A., Mokdad, L., & Hammal, Y. (2017). Towards an efficient anda more accurate web service selection using MCDM methods. Journal ofComputational Science, 22, 253-267.doi:https://doi.org/10.1016/j.jocs.2017.05.024Sexton, J., & Laake, P. (2008). LogitBoost with errors-in-variables. ComputationalStatistics & Data Analysis, 52(5), 2549-2559.Shafique, S., & Tehsin, S. (2018). Computer-Aided Diagnosis of AcuteLymphoblastic Leukemia. Computational and Mathematical Methods inMedicine. doi:10.1155/2018/6125289Soni, F., Sahu, L., Getnet, M. E., & Reta, B. Y. (2018, May). Supervised Method forAcute Lymphoblastic Leukemia Segmentation and Classification Using ImageProcessing. In 2018 2nd International Conference on Trends in Electronicsand Informatics (ICOEI) (pp. 1075-1079). IEEE.Shankar, V., Deshpande, M. M., Chaitra, N., & Aditi, S. (2016, 24-24 Oct. 2016).Automatic detection of acute lymphoblasitc leukemia using image processing.Paper presented at the 2016 IEEE International Conference on Advances inComputer Applications (ICACA).Sharma, R., Singh, S. N., & Khatri, S. (2016, 12-13 Feb. 2016). Medical Data MiningUsing Different Classification and Clustering Techniques: A Critical Survey.Paper presented at the 2016 Second International Conference onComputational Intelligence & Communication Technology (CICT).Sheela, Y. J., & Krishnaveni, S. H. (2017, 20-21 April 2017). A comparative analysisof various classification trees. Paper presented at the 2017 InternationalConference on Circuit ,Power and Computing Technologies (ICCPCT).Shi, T. W., Moorthy, K., Mohamad, M. S., Deris, S., Omatu, S., & Yoshioka, M.(2014, 7-8 Nov. 2014). Random Forest and Gene Ontology for functionalanalysis of microarray data. Paper presented at the 2014 IEEE 7thInternational Workshop on Computational Intelligence and Applications(IWCIA).Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for groupdecision making. Mathematical and Computer Modelling, 45(7), 801-813.doi:https://doi.org/10.1016/j.mcm.2006.03.023Shojaei, P., Haeri, S. A. S., & Mohammadi, S. (2018). Airports evaluation andranking model using Taguchi loss function, best-worst method and VIKORtechnique. Journal of Air Transport Management, 68, 4-13.Shojaei, P., Seyed Haeri, S. A., & Mohammadi, S. (2018). Airports evaluation andranking model using Taguchi loss function, best-worst method and VIKORtechnique. Journal of Air Transport Management, 68, 4-13.doi:https://doi.org/10.1016/j.jairtraman.2017.05.006Shrivastava, P., & Shukla, M. (2015, 8-10 Oct. 2015). Comparative analysis ofbagging, stacking and random subspace algorithms. Paper presented at the2015 International Conference on Green Computing and Internet of Things(ICGCIoT).Singh, A. (2014). Major MCDM Techniques and their application-A Review (Vol. 4).Singh, G., Bathla, G., & Kaur, S. (2016, 29-30 April 2016). A review to detectleukemia cancer in medical images. Paper presented at the 2016 InternationalConference on Computing, Communication and Automation (ICCCA).Singhal, V., & Singh, P. (2014, Feb. 28 2014-March 2 2014). Local Binary Patternfor automatic detection of Acute Lymphoblastic Leukemia. Paper presented atthe 2014 Twentieth National Conference on Communications (NCC).Snousy, M. B. A., El-Deeb, H. M., Badran, K., & Khlil, I. A. A. (2011). Suite ofdecision tree-based classification algorithms on cancer gene expression data.Egyptian Informatics Journal, 12(2), 73-82.doi:http://dx.doi.org/10.1016/j.eij.2011.04.003Soares, C., Montgomery, L., Rouse, K., & Gilbert, J. E. (2008, 11-13 Dec. 2008).Automating Microarray Classification Using General Regression NeuralNetworks. Paper presented at the 2008 Seventh International Conference onMachine Learning and Applications.Sofuoglu, M. A., & Orak, S. (2017). A Novel Hybrid Multi Criteria Decision MakingModel: Application to Turning Operations. International Journal of IntelligentSystems and Applications in Engineering, 5(3), 124-131.Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measuresfor classification tasks. Information Processing & Management, 45(4), 427-437. doi:https://doi.org/10.1016/j.ipm.2009.03.002Srisukkham, W., Zhang, L., Neoh, S. C., Todryk, S., & Lim, C. P. (2017). Intelligentleukemia diagnosis with bare-bones PSO based feature optimization. AppliedSoft Computing, 56, 405-419. doi:https://doi.org/10.1016/j.asoc.2017.03.024Subramanian, S., Srinivasan, V. B., & Ramasa, C. (2012). Study on classificationalgorithms for network intrusion systems. Journal of Communication andComputer, 9(11), 1242-1246.Sultana, M., Haider, A., & Uddin, M. S. (2016, 22-24 Sept. 2016). Analysis of datamining techniques for heart disease prediction. Paper presented at the 20163rd International Conference on Electrical Engineering and InformationCommunication Technology (ICEEICT).Supardi, N. Z., Mashor, M. Y., Harun, N. H., Bakri, F. A., & Hassan, R. (2012, 23-25March 2012). Classification of blasts in acute leukemia blood samples using knearestneighbour. Paper presented at the 2012 IEEE 8th InternationalColloquium on Signal Processing and its Applications.Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using theAnalytic Hierarchy Process to identify parameter weights for developing awater quality index. Ecological Indicators, 75(Supplement C), 220-233.doi:https://doi.org/10.1016/j.ecolind.2016.12.043Tai, W. L., Hu, R. M., Hsiao, H. C. W., Chen, R. M., & Tsai, J. J. P. (2011, 5-7 Dec.2011). Blood Cell Image Classification Based on Hierarchical SVM. Paperpresented at the 2011 IEEE International Symposium on Multimedia.Tavana, M., & Hatami-Marbini, A. (2011). A group AHP-TOPSIS framework forhuman spaceflight mission planning at NASA. Expert Systems withApplications, 38(11), 13588-13603.doi:https://doi.org/10.1016/j.eswa.2011.04.108Tenrio, J. M., Hummel, A. D., Cohrs, F. M., Sdepanian, V. L., Pisa, I. T., & deFtima Marin, H. (2011). Artificial intelligence techniques applied to thedevelopment of a decisionsupport system for diagnosing celiac disease.International Journal of Medical Informatics, 80(11), 793-802.doi:https://doi.org/10.1016/j.ijmedinf.2011.08.001Thokala, P., Devlin, N., Marsh, K., Baltussen, R., Boysen, M., Kalo, Z., . . . Watkins,J. (2016). Multiple Criteria Decision Analysis for Health Care DecisionMakingAn Introduction: Report 1 of the ISPOR MCDA Emerging GoodPractices Task Force. Value in health, 19(1), 1-13.Tian, Z.-p., Wang, J.-q., & Zhang, H.-y. (2018). An integrated approach for failuremode and effects analysis based on fuzzy best-worst, relative entropy, andVIKOR methods. Applied Soft Computing.doi:https://doi.org/10.1016/j.asoc.2018.03.037Torkaman, A., Charkari, N. M., Aghaeipour, M., & Hajati, E. (2009, 24-26 June2009). A recommender system for detection of leukemia based on cooperativegame. Paper presented at the 2009 17th Mediterranean Conference on Controland Automation.Tran, V. N., Ismail, W., Hassan, R., & Yoshitaka, A. (2016, July 31 2016-Aug. 42016). An automated method for the nuclei and cytoplasm of Acute MyeloidLeukemia detection in blood smear images. Paper presented at the 2016 WorldAutomation Congress (WAC).Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., . . . Barbosa, J.(2013). Benchmarking flexible job-shop scheduling and control systems.Control Engineering Practice, 21(9), 1204-1225.doi:https://doi.org/10.1016/j.conengprac.2013.05.004Verma, A., & Mehta, S. (2017, 12-13 Jan. 2017). A comparative study of ensemblelearning methods for classification in bioinformatics. Paper presented at the2017 7th International Conference on Cloud Computing, Data Science &Engineering - Confluence.Wahbeh, A. H., Al-Radaideh., Q. A., Al-Kabi., M. N., & Al-Shawakfa., a. E. M.(2011). A comparison study between data mining tools over someclassification methods. International Journal of Advanced Computer Scienceand Applications,, Special Issue on Artificial Intelligence, 18-26.Wahhab, H. T. A. (2015). Classification of acute leukemia using image processingand machine learning techniques. University of Malaya.Wan Ahmad, W. N. K., Rezaei, J., Sadaghiani, S., & Tavasszy, L. A. (2017).Evaluation of the external forces affecting the sustainability of oil and gassupply chain using Best Worst Method. Journal of Cleaner Production, 153,242-252. doi:https://doi.org/10.1016/j.jclepro.2017.03.166Wang, H.-Q., Wong, H.-S., Huang, D.-S., & Shu, J. (2007). Extracting generegulation information for cancer classification. Pattern Recognition, 40(12),3379-3392. doi:http://dx.doi.org/10.1016/j.patcog.2007.04.007Wang, H.-Q., Wong, H.-S., Zhu, H., & Yip, T. T. C. (2009). A neural network-basedbiomarker association information extraction approach for cancerclassification. Journal of Biomedical Informatics, 42(4), 654-666.doi:http://dx.doi.org/10.1016/j.jbi.2008.12.010Wang, S.-L., Li, X., Zhang, S., Gui, J., & Huang, D.-S. (2010). Tumor classificationby combining PNN classifier ensemble with neighborhood rough set basedgene reduction. Computers in Biology and Medicine, 40(2), 179-189.doi:http://dx.doi.org/10.1016/j.compbiomed.2009.11.014Wang, X., & Wang, S. (2016). Enhanced algorithm for high-dimensional dataclassification. Applied Soft Computing, 40, 1-9.doi:http://dx.doi.org/10.1016/j.asoc.2015.10.051Wang, Z., & Palade, V. (2007, 14-17 Oct. 2007). A Comprehensive Fuzzy-BasedFramework for Cancer Microarray Data Gene Expression Analysis. Paperpresented at the 2007 IEEE 7th International Symposium on BioInformaticsand BioEngineering.Whaiduzzaman, M., Gani, A., Anuar, N. B., Shiraz, M., Haque, M. N., & Haque, I. T.(2014). Cloud service selection using multicriteria decision analysis. TheScientific World Journal, 2014.Yang, Q., Zhang, Z., You, X., & Chen, T. (2016). Evaluation and Classification ofOverseas Talents in China Based on the BWM for Intuitionistic Relations.Symmetry, 8(11), 137.Yas, Q. M., Zaidan, A., Zaidan, B., Rahmatullah, B., & Karim, H. A. (2017).Comprehensive Insights into Evaluation and Benchmarking of Real-time SkinDetectors: Review, Open Issues & Challenges, and Recommended Solutions.Measurement.Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Rahmatullah, B., & Abdul Karim, H.(2018). Comprehensive insights into evaluation and benchmarking of realtimeskin detectors: Review, open issues & challenges, and recommendedsolutions. Measurement, 114, 243-260.doi:https://doi.org/10.1016/j.measurement.2017.09.027Yongqiang, D., Bin, H., Yun, S., Chengsheng, M., Jing, C., Xiaowei, Z., . . . Hanshu,C. (2015, 9-12 Nov. 2015). Feature selection of high-dimensional biomedicaldata using improved SFLA for disease diagnosis. Paper presented at the 2015IEEE International Conference on Bioinformatics and Biomedicine (BIBM).Yusen, Z., & Liangyun, R. (2010, 23-26 Sept. 2010). Two feature selections foranalysis of microarray data. Paper presented at the 2010 IEEE FifthInternational Conference on Bio-Inspired Computing: Theories andApplications (BIC-TA).Zaidan, A., Zaidan, B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M.(2015). Evaluation and selection of open-source EMR software packagesbased on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53,390-404.Zaidan, A., Zaidan, B., Albahri, O., Alsalem, M., Albahri, A., Yas, Q. M., & Hashim,M. (2018). A review on smartphone skin cancer diagnosis apps in evaluationand benchmarking: coherent taxonomy, open issues and recommendationpathway solution. Health and Technology, 1-16.Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q.M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis appsin evaluation and benchmarking: coherent taxonomy, open issues andrecommendation pathway solution. Health and Technology.doi:10.1007/s12553-018-0223-9Zaidan, A. A., Zaidan, B. B., Hussain, M., Haiqi, A., Mat Kiah, M. L., & Abdulnabi,M. (2015). Multi-criteria analysis for OS-EMR software selection problem: Acomparative study. Decision Support Systems, 78(Supplement C), 15-27.doi:https://doi.org/10.1016/j.dss.2015.07.002Zaidan, B., & Zaidan, A. (2017). Software and hardware FPGA-based digitalwatermarking and steganography approaches: Toward new methodology forevaluation and benchmarking using multi-criteria decision-making techniques.Journal of Circuits, Systems and Computers, 26(07), 1750116.Zaidan, B., Zaidan, A., Abdul Karim, H., & Ahmad, N. (2017). A new approachbased on multi-dimensional evaluation and benchmarking for data hidingtechniques. International Journal of Information Technology & DecisionMaking, 1-42.Zaidan, B. B., & Zaidan, A. A. (2017). Software and Hardware FPGA-Based DigitalWatermarking and Steganography Approaches: Toward New Methodology forEvaluation and Benchmarking Using Multi-Criteria Decision-MakingTechniques. Journal of Circuits, Systems and Computers, 26(07), 1750116.doi:10.1142/s021812661750116xZaidan, B. B., Zaidan, A. A., Karim, H. A., & Ahmad, N. N. (2017). A new digitalwatermarking evaluation and benchmarking methodology using an externalgroup of evaluators and multi-criteria analysis based on large-scale data.Software: Practice and Experience, 47(10), 1365-1392. doi:10.1002/spe.2465Zavadskas, E. K., Kaklauskas, A., Turskis, Z., Tamo, J., #353, aitien, & #279. (2009).Multi-Attribute Decision-Making Model by Applying Grey Numbers.Informatica, 20(2), 305-320.Zhang, C., Gao, W., Song, J., & Jiang, J. (2016, 14-16 Feb. 2016). An imbalanceddata classification algorithm of improved autoencoder neural network. Paperpresented at the 2016 Eighth International Conference on AdvancedComputational Intelligence (ICACI).Zhang, L., Qian, L., Ding, C., Zhou, W., & Li, F. (2015). Similarity-balanceddiscriminant neighbor embedding and its application to cancer classificationbased on gene expression data. Computers in Biology and Medicine, 64, 236-245. doi:http://dx.doi.org/10.1016/j.compbiomed.2015.07.008Zhang, L., & Xiaojuan, H. (2015, 12-17 July 2015). Multiple SVM-RFE for multiclassgene selection on DNA Microarray data. Paper presented at the 2015International Joint Conference on Neural Networks (IJCNN).Zhao, H., Guo, S., & Zhao, H. (2017). Comprehensive benefit evaluation of ecoindustrialparks by employing the best-worst method based on circulareconomy and sustainability. Environment, Development and Sustainability, 1-25.Zhiyong, Y., Jingcheng, L., & Zhang, T. (2016, 15-18 Dec. 2016). Extreme LargeMargin Distribution Machine and its applications for biomedical datasets.Paper presented at the 2016 IEEE International Conference on Bioinformaticsand Biomedicine (BIBM).Zhou, C., Wan, L., & Liang, Y. (2010). A hybrid algorithm of minimum spanning treeand nearest neighbor for classifying human cancers. Paper presented at theAdvanced Computer Theory and Engineering (ICACTE), 2010 3rdInternational Conference on.Zionts, S. (1979). MCDM-If not a Roman Numeral, then what? Interfaces, 9(4), 94-101.Zupan, B., & Demsar, J. (2008). Open-source tools for data mining. Clinics inLaboratory Medicine, 28(1), 37-54.