Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals
Lately, the research on human emotion has attracted the interest of several disciplines,including computer science, cognitive science, and psychology. As such, the aim of studywas to examine the effects of binaural beats music on depression disorders. This study wasconducted based on an experimental...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2019
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=6385 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:6385 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
RC Internal medicine |
spellingShingle |
RC Internal medicine Mohammed Hamada Jasim Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals |
description |
Lately, the research on human emotion has attracted the interest of several disciplines,including computer science, cognitive science, and psychology. As such, the aim of studywas to examine the effects of binaural beats music on depression disorders. This study wasconducted based on an experimental design in which electroencephalography (EEG) wasutilized to capture brain signals. The EEGlab toolbox of Matlab was used to extract therelevant features of the brain signals. For feature filtering, brain signals were filtered byusing Butterworth 5th order. EEG signals were then converted from the time to thefrequency domain by utilizing Fast Fourier Transform (FFT). A sample of 90 depressiveparticipants was exposed to binaural beats music. One-way ANOVA was used to comparethe differences in the effects based on three different time intervals, which were labelled asbefore listening, during listening, and after listening phases. Descriptive and statisticalanalysis were utilized to analyse the effects of binaural beat music on the subjectsdepression level and to examine whether there were significant differences among theintervals. The findings showed that 63.2% of the subjects exhibited positive responsesbased on either an increasing relaxation level or a decreasing depression level or both, withthe remaining subjects exhibiting negative responses. In addition, the most conductiveelectrodes were found to be the F3, F7 electrodes, which effectively captured alpha andbeta bands from the frontal lobe area of the brain. Furthermore, the one-way ANOVAresults indicated that there were no significant differences in the effects among the intervals[F (2, 87) =1, 86, p = 0.161]. Overall, this study highlights the benefits of the use of binauralbeats music in the level of depression and to improve the relaxation state of those sufferingfrom depression disorders. For future research, examining the effects of binaural beat musicon other aspects of human emotions is recommended. |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Mohammed Hamada Jasim |
author_facet |
Mohammed Hamada Jasim |
author_sort |
Mohammed Hamada Jasim |
title |
Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals |
title_short |
Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals |
title_full |
Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals |
title_fullStr |
Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals |
title_full_unstemmed |
Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals |
title_sort |
exploring the impacts of listening to binaural beats music on non-medical depression disorders by using eeg signals |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Seni, Komputeran dan Industri Kreatif |
publishDate |
2019 |
url |
https://ir.upsi.edu.my/detailsg.php?det=6385 |
_version_ |
1747833261542866944 |
spelling |
oai:ir.upsi.edu.my:63852021-10-28 Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals 2019 Mohammed Hamada Jasim RC Internal medicine Lately, the research on human emotion has attracted the interest of several disciplines,including computer science, cognitive science, and psychology. As such, the aim of studywas to examine the effects of binaural beats music on depression disorders. This study wasconducted based on an experimental design in which electroencephalography (EEG) wasutilized to capture brain signals. The EEGlab toolbox of Matlab was used to extract therelevant features of the brain signals. For feature filtering, brain signals were filtered byusing Butterworth 5th order. EEG signals were then converted from the time to thefrequency domain by utilizing Fast Fourier Transform (FFT). A sample of 90 depressiveparticipants was exposed to binaural beats music. One-way ANOVA was used to comparethe differences in the effects based on three different time intervals, which were labelled asbefore listening, during listening, and after listening phases. Descriptive and statisticalanalysis were utilized to analyse the effects of binaural beat music on the subjectsdepression level and to examine whether there were significant differences among theintervals. The findings showed that 63.2% of the subjects exhibited positive responsesbased on either an increasing relaxation level or a decreasing depression level or both, withthe remaining subjects exhibiting negative responses. In addition, the most conductiveelectrodes were found to be the F3, F7 electrodes, which effectively captured alpha andbeta bands from the frontal lobe area of the brain. Furthermore, the one-way ANOVAresults indicated that there were no significant differences in the effects among the intervals[F (2, 87) =1, 86, p = 0.161]. Overall, this study highlights the benefits of the use of binauralbeats music in the level of depression and to improve the relaxation state of those sufferingfrom depression disorders. For future research, examining the effects of binaural beat musicon other aspects of human emotions is recommended. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=6385 https://ir.upsi.edu.my/detailsg.php?det=6385 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif Adamos, D. A., Dimitriadis, S. I., & Laskaris, N. A. (2016). Towards the bio-personalization of music recommendation systems: A single-sensor EEG biomarker of subjective music preference. Information Sciences, 343344, 94108.https://doi.org/10.1016/j.ins.2016.01.005Akdemir Akar, S., Kara, S., Agambayev, S., & Bilgi??, V. (2015). Nonlinear analysis of EEGs ofpatients with major depression during different emotional states. Computers in Biology and Medicine, 67, 4960.https://doi.org/10.1016/j.compbiomed.2015.09.019Al-Galal, S. A. Y., Alshaikhli, I. F. T., Rahman, A. W. B. A., & Dzulkifli, M. A. (2016). EEG-basedEmotion Recognition while Listening to Quran Recitation Compared with Relaxing Music UsingValence-Arousal Model. Proceedings - 2015 4th International Conference on Advanced Computer ScienceApplications and Technologies, ACSAT 2015, 245250. https://doi.org/10.1109/ACSAT.2015.10Bajaj, V., & Pachori, R. B. (2014). Human Emotion Classification from EEG Signals UsingMultiwavelet Transform. 2014 International Conference on Medical Biometrics, (Md), 125130.https://doi.org/10.1109/ICMB.2014.29Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., Ghose, P.(2016). Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals. Physica A:Statistical Mechanics and Its Applications, 444, 110120.https://doi.org/10.1016/j.physa.2015.10.030Baumgartner, T., Esslen, M., & Jncke, L. (2006). From emotion perception to emotion experience:Emotions evoked by pictures and classical music. International Journal of Psychophysiology, 60(1),3443. https://doi.org/10.1016/j.ijpsycho.2005.04.007Bhardwaj, A., Gupta, A., Jain, P., Rani, A., & Yadav, J. (2015). Classification of human emotionsfrom EEG signals using SVM and LDA Classifiers. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 180185.https://doi.org/10.1109/SPIN.2015.7095376Bhatti, A. M., Majid, M., Anwar, S. M., & Khan, B. (2016). Human emotion recognition and analysisin response to audio music using brain signals. Computers in Human Behavior, 65, 267275.https://doi.org/10.1016/j.chb.2016.08.029Chanel, G., Kierkels, J. J. M., Soleymani, M., & Pun, T. (2009). Short-term emotionassessment in a recall paradigm. International Journal of Human Computer Studies, 67(8), 607627.https://doi.org/10.1016/j.ijhcs.2009.03.005Chang, Y.-H., Lee, Y.-Y., Liang, K.-C., Chen, I.-P., Tsai, C.-G., & Hsieh, S. (2015).Experiencing affective music in eyes-closed and eyes-open states: anelectroencephalography study. Frontiers in Psychology, 6(August), 11601168.https://doi.org/10.3389/fpsyg.2015.01160Chavan, D. R., Kumbhar, M. S., & Chavan, R. R. (2016). The human stress recognition of brain, usingmusic therapy. 2016 International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2016, 200203.https://doi.org/10.1109/ICCPEIC.2016.7557197Chen, L. L., Wang, B., & Zoul, J. Z. (n.d.). Effect Evaluation of Relaxation Training Based onNonlinear Parameters of, 25.Daimi, S. N., & Saha, G. (2014). Classification of emotions induced by music videos and correlationwith participants rating. Expert Systems with Applications, 41(13), 6057 6065.https://doi.org/10.1016/j.eswa.2014.03.050Daly, I., Malik, A., Hwang, F., Roesch, E., Weaver, J., Kirke, A., Nasuto, S. J. (2014). Neuralcorrelates of emotional responses to music: An EEG study. Neuroscience Letters, 573,5257. https://doi.org/10.1016/j.neulet.2014.05.003Daly, I., Malik, A., Weaver, J., Hwang, F., Nasuto, S. J., Williams, D., Miranda, E. (2015).Identifying music-induced emotions from EEG for use in brain-computer music interfacing.2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015, 22, 923929.https://doi.org/10.1109/ACII.2015.7344685Daly, I., Williams, D., Hallowell, J., Hwang, F., Kirke, A., Malik, A., Nasuto, S. J. (2015).Music-induced emotions can be predicted from a combination of brain activity and acoustic features. Brain and Cognition, 101, 111.https://doi.org/10.1016/j.bandc.2015.08.003Daly, I., Williams, D., Kirke, A., Weaver, J., Malik, A., Hwang, F., Nasuto, S. J. (2016).Affective braincomputer music interfacing. Journal of Neural Engineering, 13(4), 46022.https://doi.org/10.1088/1741-2560/13/4/046022Erkkil, J., Gold, C., Fachner, J., Ala-Ruona, E., Punkanen, M., & Vanhala, M. (2008). The effectof improvisational music therapy on the treatment of depression: protocol for a randomisedcontrolled trial. BMC Psychiatry, 8(1), 50. https://doi.org/10.1186/1471- 244X-8-50Farzaneh, P., Afsaneh, M., Reza, R., & Masood, N. (2010). Source localization of theeffects of Persian classical music forms on the brain waves by QEEG. Procedia - Social and Behavioral Sciences, 5(2), 770773.https://doi.org/10.1016/j.sbspro.2010.07.182Fikejz, F. (2011). Influence of Music on Human Electroenc ephalogram. AppliedElectronics, 14.Fikejz, F. (2012). Influence of Compressed Music Bit Rate on Humanoencephalogram, 14.Flores-Gutirrez, E. O., Daz, J. L., Barrios, F. A., Favila-Humara, R., Guevara, M. ., delRo-Portilla, Y., & Corsi-Cabrera, M. (2007). Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. International Journal of Psychophysiology, 65(1), 6984.https://doi.org/10.1016/j.ijpsycho.2007.03.004Gawali, B. W., Rao, S., Abhang, P., Rokade, P., & Mehrotra, S. C. (2012). Classification of Eeg Signals for Different Emotional. Communication and Computing (ARTCom2012), Fourth International Conference on Advances in Recent Technologies in, 177181.https://doi.org/10.1049/cp.2012.2521Gupta, R., ur Rehman Laghari, K., & Falk, T. H. (2016). Relevance vector classifierdecision fusion and EEG graph-theoretic features for automatic affective statecharacterization. Neurocomputing, 174, 875884. https://doi.org/10.1016/j.neucom.2015.09.085Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2012). Toward an EEG-based recognition of musicliking using time-frequency analysis. IEEE Transactions on Biomedical Engineering, 59(12),34983510. https://doi.org/10.1109/TBME.2012.2217495Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2013). EEG-Based classification of music appraisalresponses using time-frequency analysis and familiarity ratings. IEEE Transactions onAffective Computing, 4(2), 161172. https://doi.org/10.1109/T- AFFC.2013.6Hasminda-Hassan, Murat, Z. H., Ross, V., Mohd-Zain, Z., & Buniyamin, N. (2011).Enhancing learning using music to achieve a balanced brain. 2011 3rd International Congress onEngineering Education: Rethinking Engineering Education, The Way Forward, ICEED 2011, 6670.https://doi.org/10.1109/ICEED.2011.6235362Hassan, H., Murat, Z. H., Ross, V., & Buniyamin, N. (2012). A Preliminary Study on the Effects ofMusic on Human Brainwaves. 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), 176180.https://doi.org/10.1109/ICCAIS.2012.6466581Hatamikia, S., & Nasrabadi, A. M. (2011). Recognition of emotional states induced by music videosbased on nonlinear feature extraction and SOM classification. 2014 21st Iranian Conference onBiomedical Engineering, ICBME 2014, (Icbme), 333337.https://doi.org/10.1109/ICBME.2014.7043946Hoseingholizade, S., Golpaygani, M. R. H., & Monfared, A. S. (2012). Studying emotion throughnonlinear processing of EEG. Procedia - Social and Behavioral Sciences, 32(2010), 163169.https://doi.org/10.1016/j.sbspro.2012.01.026Hsu, J.-L., Zhen, Y.-L., Lin, T.-C., & Chiu, Y.-S. (2014). Personalized Music Emotion Recognition Using Electroencephalography (EEG). 2014 IEEE InternationalSymposium on Multimedia, 277278. https://doi.org/10.1109/ISM.2014.19Islam, M., Ahmad, M., & Yusuf, M. S. U. (2016). An approach to estimate cognitive statewith the impact of listening music on brain activity. 2nd International Conference on ElectricalInformation and Communication Technologies, EICT 2015, (Eict), 152 157.https://doi.org/10.1109/EICT.2015.7391938Ito, S. I., Mitsukura, Y., Fukumi, M., & Cao, J. (2007). Method for detecting music to match theusers mood in prefrontal cortex electroencephalogram activity based on individual characteristics.Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 26402644.https://doi.org/10.1109/ICSMC.2007.4413830Ito, S. I., Mitsukura, Y., Sato, K., Fujisawa, S., & Fukumi, M. (2009). A study onrelationship between personal feature of EEG and humans characteristic for BCI based onmental state. IECON Proceedings (Industrial Electronics Conference), 42294232.https://doi.org/10.1109/IECON.2009.5415062Jncke, L., & Alahmadi, N. (2016). Detection of independent functional networks during musiclistening using electroencephalogram and {sLORETA-ICA.}. Neuroreport, 27(6), 455461.https://doi.org/10.1097/WNR.0000000000000563Jang, D., Park, Y. J., Shin, S., Lee, J., Jang, S. J., & Lim, T. B. (2015). Research about relationof music preference and brain-wave. International Conference on Information Networking, 2015Janua,466467. https://doi.org/10.1109/ICOIN.2015.7057948Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2013). Real-time EEG-based happiness detection system. The Scientific World Journal, 2013.https://doi.org/10.1155/2013/618649Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2015). Subject-Dependent and Subject- IndependentEmotion Classification Using Unimodal and Multimodal Physiological Signals. Journal of MedicalImaging and Health Informatics, 5(5), 10201027. https://doi.org/10.1166/jmihi.2015.1490Jauovec, N., Jauovec, K., & Gerli?, I. (2006). The influence of Mozarts music on brain activityin the process of learning. Clinical Neurophysiology, 117(12), 27032714.https://doi.org/10.1016/j.clinph.2006.08.010Jia-wei, S., & Wen, C. S. (n.d.). A Study on Non-Invasive Brainwave Optimization.https://doi.org/10.1049/cp.2014.1530Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to 40-Hz binaural beat and e ff ectson emotion and memory. International Journal of Psychophysiology, 120(June), 96107.https://doi.org/10.1016/j.ijpsycho.2017.07.010Kadir M. H.;Murat, Z. H.;Taib, M. N.;Rahman, H. A.;Aris, S. A. M., R. S. S. A. ;Ghazal. (2010). ThePreliminary Study On The Effect OfNasyid Music And Rock Music On Brainwave Signal Using EEG.Engineering Education (ICEED), 2010 2ndInternational Congress on, 5863. https://doi.org/10.1109/iceed.2010.5940764Kemalasari, & Purnomo, M. H. (2009). Analysis the dominant location of brain activity infrontal lobe using K-means method. International Conference on Instrumentation,Communication, Information Technology, and Biomedical Engineering 2009, ICICI- BME 2009, 810.https://doi.org/10.1109/ICICI-BME.2009.5417266Khosrowabadi, R., Wahab, A., & Ang, K. K. (2009). From Musical and Vocal Stimuli.Heart, 15901594.Kroupi, E., Vesin, J. M., & Ebrahimi, T. (2013). Phase-amplitude coupling between EEG and EDAwhile experiencing multimedia content. Proceedings - 2013 Humaine Association Conferenceon Affective Computing and Intelligent Interaction, ACII 2013, 865870.https://doi.org/10.1109/ACII.2013.162Kumar, N., Khaund, K., & Hazarika, S. M. (2016). Bispectral Analysis of EEG for EmotionRecognition. Procedia Computer Science, 84, 3135. https://doi.org/10.1016/j.procs.2016.04.062Kwon, M., Gang, M., & Oh, K. (2013). Effect of the group music therapy on brain wave, behavior, andcognitive function among patients with chronic schizophrenia. Asian Nursing Research, 7(4),168174. https://doi.org/10.1016/j.anr.2013.09.005Lee, Y. Y., See, A. R., Chen, S. C., & Liang, C. K. (2013). Effect of Music Listening on Frontal EEG Asymmetry. Applied Mechanics and Materials, 311, 502506.https://doi.org/10.4028/www.scientific.net/AMM.311.502Lense, M. D., Gordon, R. L., Key, A. P. F., & Dykens, E. M. (2014). Neural correlates ofcross-modal affective priming by music in williams syndrome. Social Cognitive and AffectiveNeuroscience, 9(4), 529537. https://doi.org/10.1093/scan/nst017Li, Q., Yang, Z., Liu, S., Dai, Z., & Liu, Y. (2015). The Study of Emotion Recognition fromPhysiological Signals. Seventh International Conference on Advanced Computer Intelligence (ICACI),378382. https://doi.org/10.1109/ICACI.2015.7184734Lin, L. C., Chiang, C. T., Lee, M. W., Mok, H. K., Yang, Y. H., Wu, H. C., Yang, R. C.(2013). Parasympathetic activation is involved in reducing epileptiform discharges whenlistening to Mozart music. Clinical Neurophysiology, 124(8), 15281535.https://doi.org/10.1016/j.clinph.2013.02.021Lin, L. C., Lee, W. Te, Wu, H. C., Tsai, C. L., Wei, R. C., Mok, H. K., Yang, R. C.(2011). The long-term effect of listening to Mozart K.448 decreases epileptiformdischarges in children with epilepsy. Epilepsy and Behavior, 21(4), 420424.https://doi.org/10.1016/j.yebeh.2011.05.015Lin, Y., Duann, J., Feng, W., Chen, J., & Jung, T. (2014). Revealing spatio-spectralelectroencephalographic dynamics of musical mode and tempo perception byindependent component analysis. Journal of NeuroEngineering and Rehabilitation,11, 111. https://doi.org/10.1186/1743-0003-11-18Lin, Y., & Jung, T.-P. (2014). Exploring Day-to-Day Variability in EEG-based EmotionClassification. IEEE International Conference on Systems, Man, and Cybernetics, 22262229.https://doi.org/10.1109/SMC.2014.6974255Lin, Y. P., Duann, J. R., Chen, J. H., & Jung, T. P. (2010). Electroencephalographicdynamics of musical emotion perception revealed by independent spectral components. Neuroreport, 21(6), 410415.https://doi.org/10.1097/WNR.0b013e32833774deLin, Y. P., Jung, T. P., & Chen, J. H. (2009). EEG dynamics during music appreciation. Proceedingsof the 31st Annual International Conference of the IEEE Engineering in Medicine and BiologySociety: Engineering the Future of Biomedicine, EMBC 2009, 53165319.https://doi.org/10.1109/IEMBS.2009.5333524Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T. L., Jeng, S. K., Duann, J. R., & Chen, J. H.(2010). EEG-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7), 17981806.https://doi.org/10.1109/TBME.2010.2048568Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2007). Multilayer perceptron forEEG signal classification during listening to emotional music. IEEE Region 10 Annual International Conference, Proceedings/TENCON.https://doi.org/10.1109/TENCON.2007.4428831Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2008). Support vector machine for EEG signal classification during listening to emotional music. Proceedings of the2008 IEEE 10th Workshop on Multimedia Signal Processing, MMSP 2008, 127130.https://doi.org/10.1109/MMSP.2008.4665061Lin, Y. P., Yang, Y. H., & Jung, T. P. (2014). Fusion of electroencephalographic dynamics andmusical contents for estimating emotional responses in music listening. Frontiers in Neuroscience,8(8 MAY), 114. https://doi.org/10.3389/fnins.2014.00094Ma, X., & Yang, F. (2015). An Empirical Study on Interest Point Ranking and Valence- Arousal Tagsof EEG Data. 2015 8th International Symposium on Computational Intelligence and Design(ISCID), 499502. https://doi.org/10.1109/ISCID.2015.57Maity, A. K., Pratihar, R., Agrawal, V., Mitra, A., & Dey, S. (2015). Multifractal DetrendedFluctuation Analysis of the Music Induced EEG Signals, 252257.Marsella, P., Scorpecci, A., Vecchiato, G., Maglione, A. G., Colosimo, A., & Babiloni, F. (2014).Neuroelectrical imaging investigation of cortical activity during listening to music inprelingually deaf children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 78(5), 737743.https://doi.org/10.1016/j.ijporl.2014.01.030Mikutta, C., Altorfer, A., Strik, W., & Koenig, T. (2012). Emotions, arousal, and frontalalpha rhythm asymmetry during beethovens 5th symphony. Brain Topography,25(4), 423430. https://doi.org/10.1007/s10548-012-0227-0Mohd Aris, S. A., Sulaiman, N., Abdul Hamid, N. H., & Taib, M. N. (2010). Initialinvestigation on alpha asymmetry during listening to therapy music. Proceedings - CSPA 2010: 20106th International Colloquium on Signal Processing and Its Applications, 255258.https://doi.org/10.1109/CSPA.2010.5545285Morita, Y., Huang, H. H., & Kawagoe, K. (2013). Towards Music Information Retrieval driven by EEGsignals: Architecture and preliminary experiments. 2013 IEEE/ACIS 12th International Conference onComputer and Information Science, ICIS 2013 - Proceedings, 213217.https://doi.org/10.1109/ICIS.2013.6607843Murugappan, M. (2011). Human emotion classification using wavelet transform and KNN,1(June), 148153. https://doi.org/10.1109/ICPAIR.2011.5976886Murugappan, M., & Murugappan, S. (2013). Human emotion recognition through short timeElectroencephalogram (EEG) signals using Fast Fourier Transform (FFT). Signal Processing and ItsApplications (CSPA), 2013 IEEE 9th International Colloquium on, 289294.https://doi.org/10.1109/CSPA.2013.6530058Naji, M., Firoozabadi, M., & Azadfallah, P. (2015). Emotion classification during music listeningfrom forehead biosignals. Signal, Image and Video Processing, 9(6), 1365 1375.https://doi.org/10.1007/s11760-013-0591-6Nakamura, S., Sadato, N., Oohashi, T., Nishina, E., Fuwamoto, Y., & Yonekura, Y. (1999). Analysisof music-brain interaction with simultaneous measurement of regional cerebral blood flowand electroencephalogram beta rhythm in human subjects. Neuroscience Letters, 275(3), 222226. https://doi.org/10.1016/S0304-3940(99)00766-1Naraballobh, J., & Thanapatay, D. (2015). EEG-Based Analysis of Auditory Stimulus in aBrain-Computer Interface. 2015 6th International Conference of Information andCommunication Technology for Embedded Systems (IC-ICTES) EEG-Based, 69.https://doi.org/10.1109/ICTEmSys.2015.7110835Naraballobh, J., Thanapatay, D., Chinrungrueng, J., & Nishihara, A. (2015). Effect ofauditory stimulus in EEG signal using a Brain-Computer Interface. ECTI-CON 2015- 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.https://doi.org/10.1109/ECTICon.2015.7206944Navea, R. F., & Dadios, E. (2016). Classification of tone stimulated EEG signals using independentcomponents and power spectrum vectors. 8th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2015, (December). https://doi.org/10.1109/HNICEM.2015.7393163Nawasalkar, R. K. (2015). EEG based Stress Recognition System based on Indian ClassicalMusic.OKelly, J., James, L., Palaniappan, R., Taborin, J., Fachner, J., & Magee, W. L. L. (2013).Neurophysiological and behavioral responses to music therapy in vegetative and minimallyconscious States. Frontiers in Human Neuroscience, 7(December), 884.https://doi.org/10.3389/fnhum.2013.00884Ogawa, T., Ito, S., Mitsukura, Y., Fukumi, M., & Akamatsua, N. (2004). Feature extraction from eeg patterns in music listening. Ieee Ispacs 2004., 1721.https://doi.org/10.1109/ISPACS.2004.1439007Ogawa, T., Karungarul, S., Mitsukura, Y., Fukumil, M., & Akamatsul, N. (2006). Feature Extractionin Listen TM ng to Mus ; C Using Statistical Analystis of the EEG, (D), 51205123.Poikonen, H., Alluri, V., Brattico, E., Lartillot, O., Tervaniemi, M., & Huotilainen,M. (2016). Event-related brain responses while listening to entire pieces of music.Neuroscience, 312, 5873. https://doi.org/10.1016/j.neuroscience.2015.10.061Poikonen, H., Toiviainen, P., & Tervaniemi, M. (2016). Early auditory processing inmusicians and dancers during a contemporary dance piece. Nature Publishing Group, 35(September),111. https://doi.org/10.1038/srep33056Rahnuma, K. S., Wahab, A., Kamaruddin, N., & Majid, H. (2011). EEG analysis forunderstanding stress based on affective model basis function. Proceedings of theInternational Symposium on Consumer Electronics, ISCE, 592597.https://doi.org/10.1109/ISCE.2011.5973899Ramirez, R., Palencia-Lefler, M., Giraldo, S., & Vamvakousis, Z. (2015). Musicalneurofeedback for treating depression in elderly people. Frontiers in Neuroscience, 9(OCT), 110.https://doi.org/10.3389/fnins.2015.00354Rigoulot, S., Pell, M. D., & Armony, J. L. (2015). Time course of the influence of musicalexpertise on the processing of vocal and musical sounds. Neuroscience, 290, 175184.https://doi.org/10.1016/j.neuroscience.2015.01.033Rogenmoser, L., Zollinger, N., Elmer, S., & J??ncke, L. (2016). Independent component processesunderlying emotions during natural music listening. Social Cognitive and Affective Neuroscience,11(9), 14281439. https://doi.org/10.1093/scan/nsw048Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion:Electrophysiological correlates of the processing of pleasant and unpleasant music.Psychophysiology, 44(2), 293304. https://doi.org/10.1111/j.1469-8986.2007.00497.xSandler, H., Tamm, S., Fendel, U., Rose, M., Klapp, B. F., & B??sel, R. (2016). Positive EmotionalExperience: Induced by Vibroacoustic Stimulation Using a BodyMonochord in Patients with Psychosomatic Disorders: Is Associated with an Increasein EEG-Theta and a Decrease in EEG-Alpha Power. Brain Topography, 29(4), 524538. https://doi.org/10.1007/s10548-016-0480-8Sanyal, S., Banerjee, A., Pratihar, R., Maity, A. K., Dey, S., Agrawal, V., Ghosh, D. (2016).Detrended Fluctuation and Power Spectral Analysis of alpha and delta EEG brain rhythms to studymusic elicited emotion. Proceedings of 2015 International Conference on Signal Processing,Computing and Control, ISPCC 2015, 205210. https://doi.org/10.1109/ISPCC.2015.7375026Shahabi, H., & Moghimi, S. (2016). Toward automatic detection of brain responses toemotional music through analysis of EEG effective connectivity. Computers in HumanBehavior, 58, 231239. https://doi.org/10.1016/j.chb.2016.01.005Sourina, O., Liu, Y., & Nguyen, M. K. (2012). Real-time EEG-based emotion recognition for music therapy. Journal on Multimodal User Interfaces, 5(12), 2735.https://doi.org/10.1007/s12193-011-0080-6Sreedevi, M., Ajesh, a., Ajithnath, R., & Binu, L. S. (2009). A Study of Effect of Music PitchVariation in EEG Using Factor Analysis and Neural Networks. 2009 2nd International Conference on Biomedical Engineering and Informatics, 911.https://doi.org/10.1109/BMEI.2009.5305592Tan, L. F., Dienes, Z., Jansari, A., & Goh, S. Y. (2014). Effect of mindfulness meditation onbrain-computer interface performance. Consciousness and Cognition, 23(1), 12 21.https://doi.org/10.1016/j.concog.2013.10.010Thammasan, N. (2016). Application of Deep Belief Networks in EEG-based DynamicMusic-emotion Recognition, 881888.Tseng, K. C., Lin, B. S., Han, C. M., & Wang, P. S. (2013). Emotion recognition of EEG underlyingfavourite music by support vector machine. ICOT 2013 - 1st International Conference on Orange Technologies, 155158.https://doi.org/10.1109/ICOT.2013.6521181Uma, M., & Sridhar, S. S. (2013). A feasibility study for developing an emotional control systemthrough brain computer interface. 2013 International Conference on Human Computer Interactions (ICHCI), 16. https://doi.org/10.1109/ICHCI- IEEE.2013.6887801Unehara, M., Yamada, K., & Shimada, T. (2014). Subjective evaluation of music with brain waveanalysis for interactive music composition by IEC. 2014 Joint 7th International Conference on SoftComputing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), 6670.https://doi.org/10.1109/SCIS-ISIS.2014.7044758Uzun, S. S., Yildirim, S., & Yildirim, E. (2012). Emotion primitives estimation from EEG signalsusing Hilbert Huang Transform. Proceedings - IEEE-EMBS InternationalConference on Biomedical and Health Informatics: Global Grand Challenge ofHealth Informatics, BHI 2012, 1(Bhi), 224227.https://doi.org/10.1109/BHI.2012.6211551Vijayalakshmi, K., Sridhar, S., & Khanwani, P. (2010). Estimation of effects of alpha music on EEGcomponents by time and frequency domain analysis. Paper presented at the Computer and CommunicationEngineering (ICCCE), 2010 International ConferenceVerrusio, W., Ettorre, E., Vicenzini, E., Vanacore, N., Cacciafesta, M., & Mecarelli, O. (2015).The Mozart Effect: A quantitative EEG study. Consciousness and Cognition, 35, 150155.https://doi.org/10.1016/j.concog.2015.05.005Wang, S., Zhu, Y., Yue, L., & Ji, Q. (2015). Emotion recognition with the help of privilegedinformation. IEEE Transactions on Autonomous Mental Development, 7(3), 189200.https://doi.org/10.1109/TAMD.2015.2463113Wu, J., Zhang, J., Ding, X., Li, R., & Zhou, C. (2013). The effects of music onbrain functional networks: A network analysis. Neuroscience, 250, 4959. https://doi.org/10.1016/j.neuroscience.2013.06.021Yu, G., & Chan, K. C. C. (2015). What Strikes the Strings of Your Heart?Multi-Label DimensionalityReduction for Music Emotion Analysis via Brain Imaging. IEEE Transactions on Autonomous Mental Development, 7(3), 176188.https://doi.org/10.1109/TAMD.2015.2429580Zhang, F., Meng, H., & Li, M. (2016). Emotion extraction and recognition from music. 2016 12thInternational Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016, 17281733.https://doi.org/10.1109/FSKD.2016.7603438Zhang, Y., Ji, X., & Zhang, S. (2016). An approach to EEG-based emotion recognition using combinedfeature extraction method. Neuroscience Letters, 633, 152157.https://doi.org/10.1016/j.neulet.2016.09.037 |