Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application

This study is aimed to synthesize carbon nanotubes (CNTs) for the large scaleproduction (in term of high volume production around 500 mg per day) by utilizing the novel wastecooking palm oil (WCPO) as carbon feedstock. The method used were modified thermal chemical vapordeposition (TCVD) that equipp...

Full description

Saved in:
Bibliographic Details
Main Author: Norhafizah Jusoh
Format: thesis
Language:eng
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=6790
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:6790
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QC Physics
spellingShingle QC Physics
Norhafizah Jusoh
Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
description This study is aimed to synthesize carbon nanotubes (CNTs) for the large scaleproduction (in term of high volume production around 500 mg per day) by utilizing the novel wastecooking palm oil (WCPO) as carbon feedstock. The method used were modified thermal chemical vapordeposition (TCVD) that equipped with a peristaltic sprayer in order to continuously supplythe precursor and catalyst into the system. Various synthesis parameters, such as effect ofvaporization and synthesis temperature, synthesis time interval, precursor flow rate, postannealing treatment, nozzle diameter, and catalyst concentration were conducted in order to findout the optimum parameter to produce high quantity and good quality of CNTs. The totalamount of 1000 ml WCPO precursor was sprayed continuously during the experiment with ferroceneas catalyst via modified TCVD system. The samples were characterized using field emissionscanning electron microscopy, energy dispersive X-ray, high resolution transmissionelectron microscopy, micro-Raman spectroscopy and thermogravimetric analysis. The optimumsamples were then used as nanofiller for supercapacitor application and as an adsorbentmaterial for adsorption heavy metal ions application. The findings showed that the total of~433 g CNTs were produced with high carbon conversion rate of 56 %. Growth of dense CNTswith a high purity of ~90 % and good crystallinity (ID/IG ratio ~0.43) occurredat combination temperature of 500 and 800 C of vaporization and synthesis temperature,respectively, time interval between spraying process of 15 min, precursor flow rate of 30 mLmin?,annealing treatment at 500 C for 4 h, nozzle diameter of 0.25 mm and catalystconcentration of 5.33 wt% using modified TCVD system. The CNTs/natural rubber-latex (NRL) nanocomposite exhibited a good capacitance performance with a specific capacitance of81.82 F/g. Meanwhile, CNTs from WCPO shows an excellent ability in order to remove heavy metal ionfrom aqueous solutions which match well with the Langmuir isotherm model with higher correlationcoefficient and maximum adsorption capacity metal ions of 0.9894 and 31.25 mg/g,respectively. In conclusion, this study determined that a high production of WCPO based-CNTs usingmodified TCVD method provided benefits for its utilization as composite and adsorbent materialsespecially for supercapacitor and adsorption of heavy metal ions application. The implicationof this study is used a simple method, economical and green approach in order to produceshigher productionand good quality of CNTs.
format thesis
qualification_name
qualification_level Doctorate
author Norhafizah Jusoh
author_facet Norhafizah Jusoh
author_sort Norhafizah Jusoh
title Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
title_short Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
title_full Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
title_fullStr Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
title_full_unstemmed Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
title_sort mass production of carbon nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=6790
_version_ 1747833309659922432
spelling oai:ir.upsi.edu.my:67902022-02-21 Mass production of Carbon Nanotubes from waste cooking palm oil via modified thermal chemical vapor deposition and its application 2021 Norhafizah Jusoh QC Physics This study is aimed to synthesize carbon nanotubes (CNTs) for the large scaleproduction (in term of high volume production around 500 mg per day) by utilizing the novel wastecooking palm oil (WCPO) as carbon feedstock. The method used were modified thermal chemical vapordeposition (TCVD) that equipped with a peristaltic sprayer in order to continuously supplythe precursor and catalyst into the system. Various synthesis parameters, such as effect ofvaporization and synthesis temperature, synthesis time interval, precursor flow rate, postannealing treatment, nozzle diameter, and catalyst concentration were conducted in order to findout the optimum parameter to produce high quantity and good quality of CNTs. The totalamount of 1000 ml WCPO precursor was sprayed continuously during the experiment with ferroceneas catalyst via modified TCVD system. The samples were characterized using field emissionscanning electron microscopy, energy dispersive X-ray, high resolution transmissionelectron microscopy, micro-Raman spectroscopy and thermogravimetric analysis. The optimumsamples were then used as nanofiller for supercapacitor application and as an adsorbentmaterial for adsorption heavy metal ions application. The findings showed that the total of~433 g CNTs were produced with high carbon conversion rate of 56 %. Growth of dense CNTswith a high purity of ~90 % and good crystallinity (ID/IG ratio ~0.43) occurredat combination temperature of 500 and 800 C of vaporization and synthesis temperature,respectively, time interval between spraying process of 15 min, precursor flow rate of 30 mLmin?,annealing treatment at 500 C for 4 h, nozzle diameter of 0.25 mm and catalystconcentration of 5.33 wt% using modified TCVD system. The CNTs/natural rubber-latex (NRL) nanocomposite exhibited a good capacitance performance with a specific capacitance of81.82 F/g. Meanwhile, CNTs from WCPO shows an excellent ability in order to remove heavy metal ionfrom aqueous solutions which match well with the Langmuir isotherm model with higher correlationcoefficient and maximum adsorption capacity metal ions of 0.9894 and 31.25 mg/g,respectively. In conclusion, this study determined that a high production of WCPO based-CNTs usingmodified TCVD method provided benefits for its utilization as composite and adsorbent materialsespecially for supercapacitor and adsorption of heavy metal ions application. The implicationof this study is used a simple method, economical and green approach in order to produceshigher productionand good quality of CNTs. 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=6790 https://ir.upsi.edu.my/detailsg.php?det=6790 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik A. A. Azira, D. Habibah, A. B. Suriani, M. Rusop, Effect of multi-wall carbonnanotubes on the properties of natural rubber nanocomposites, Adv. Mater. Res. 832 (2014)338-343.A. A. Azira, H. Dayang, A. B. Suriani, M. Rusop, Effect of multi-walled carbon nanotubes onthe properties of natural rubber nanocomposites, Adv. Mater. Res. 832 (2014) 338-343.A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, Y.Y. Chii, B.N. Siddique, Desalination (2009)636-646.A. Ahmadpour, N. Efekhari, A. Ayati, J. Nanostruct. Chem. (2014) 171-178.A. B. Suriani, A. A. Azira, A. F. Nik, R. M. Nor, M. Rusop, Synthesis of vertically aligned carbonnanotubes using natural palm oil as precursor, Mater. Lett. 63 (2009) 2704-2706.A. B. Suriani, A. A. Azira, S. F. Nik, Roslan Md Nor and M. Rusop, Synthesis of vertically alignedcarbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009)2704-2706.A. B. Suriani, A. R. Dalila, A. Mohamed, M. H. Mamat, M. Salina, M. S. Rosmi, J. Rosly, M. N.Roslan, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste chicken fat, Mater.Lett. 101 (2013) 61-64.A. B. Suriani, M. N. Roslan, M. Rusop, Vertically aligned carbon nanotubes synthesizedfrom waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.A. B. Suriani, R. M. Nor, M. Rusop, Vertically aligned carbon nanotubessynthesized from waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.A. Gadhave, J. Waghmare, Inter. J. Chem. Sci. Appl. 2 (2014) 56-67.A. Kamari et al., J. Environ. Chem. Eng. 2 (2014) 1912-1919.A. Kamari, W.S. Wan Ngah, Sep. Sci. Technol. 45 (2010) 486-496.A. Korkin, P. S. Krstic, J. C. Wells, Nanotechnology for Electronics, Photonics andRenewable Energy, Springer, London, 2010.A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, Diamond Relat. Mater. 15 (2006) 385-388.A. Mohamed, A.K. Anas, A.B. Suriani, T. Ardyani, W.M.W. Zin, et al., J. Colloid Inter. Sci. 455,178 (2015)A. Mohamed, K.A. Argo, A.B. Suriani, A.A. Aziz, M. Sagisaka, et al., Colloid. Polym.Sci. 292, 3013 (2014)A. N. Falina, A. B. Suriani, M. S. Azmina, M.S. Salina, A. R. Dalila, M. N. Roslan,M. Rusop, Structural characteristics and field electron emission properties of carbonnanotubes synthesized from waste cooking palm oil, J. Sci. Technol. 59 (2012) 93-97.A. Peigney, C. Laurent, E. Flahaut, R.R. Basca, A. Rousset, Carbon 39 (2001) 507- 514.A. R. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, Growth of verticallyaligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a naturalprecursor: Turpentine oil, Chem. Phys. Lett. 414 (2005) 6-10.A. Roy, J. Bhattacharya, Chem. Eng. J. 211-212 (2012) 493-500.A. Siddiqa, A. Shahid, R. Gill, J. Environ. Chem. Eng. (2015) 1-6 Article in Press.A.B. Suriani, A.A. Azira, S.F. Nik, R. Md Nor, M. Rusop, Mater. Lett. 63, 2704 (2009)A.B. Suriani, A.A. Azira, S.F. Nik, R.Md Nor, M. Rusop, Mater. Lett. 63 (2009) 2704-2706.A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina, et al., Mater. Lett 101,61 (2013)A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina, M.S. Rosmi J. Rosly, R. Md Nor,M. Rusop, Mater. Lett. 101 (2013) 61-64.A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M.F. Malek, et al., Mater.Design 90, 185 (2016)A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M.F. Malek, T. soga, M.Tanemura, Mater. Design (2015), In Press, Accepted Manuscript.A.B. Suriani, A.R. Dalila, A. Mohamed, T. Soga, M. Tanemura, Mater. Chem. Phys. 165, 1(2015)A.B. Suriani, A.R. Dalila, A. Mohamed, T. Soga, M. Tanemura, Mater. Chem. Phys. 165(2015) 1-7.A.B. Suriani, J. Norhafizah, A. Mohammed, M.H. Mamat, M.F. Malek, M.K. Ahmad, J. Mater.Sci. Mater. Electron. (2016) 1-8.A.B. Suriani, R. Md Nor, M. Rusop, J. Ceram. Soc. Jpn. 118 (2010) 963-968.A.B. Suriani, R. Md Nor, M. Rusop, J. Ceram. Soc. Jpn. 118, 963 (2010)A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, I.M. Isa, A. Kamari, N. Hashim,M.K. Ahmad, M.F. MAlek, M. Rusop, Mater. Lett. 149 (2015) 66-69.A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, I.M. Isa, et al., Mater. Lett. 149, 66(2015)A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, M.F. Malek, et al., J. Alloy Cmpd. 656, 368(2016)A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, M.F. Malek, M.H. Mamat,M.K. Ahmad, J. Alloys Compd. (2015), In Press, Accepted Manuscript.A.B. Suriani, S. Alfarisa, A. Mohamed, I.M. Isa, A. Kamari, et al., Mater. Lett. 139, 220 (2015)A.B. Suriani, S. Alfarisa, A. Mohamed, I.M. Isa, A. Kamari. N. Hashim, M.H. Mamat, A.R.Mohamed, M. Rusop, Mater. Lett. 139 (2015) 220-223.A.C. Wright, M.K. Faulkner, R.C. Harris, A. Goddard, A.P. Abbot, J. Magn. Magn. Mater. 324 (2012)4170-4174.A.K. Meena, G.K. Mishra, P. K. Rai, C. Rajagopal, P.N. Nagar, J. Hazard Mater. 122 (2005) 161-170.C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, Growth mechanism for single- wall carbonnanotubes in a laser ablation process, Appl. Phys., A 72 (2001) 573- 580.C. Lei, L. Constantina, Activated carbon-carbon nanotube nanocomposite coatingsfor supercapacitor application, Surf. Coat. Technol. 232 (2013) 326-330.C. Lu, H. Chiu, Chem. Eng. Sci. 61 (2006) 1138-1145.C. Lu, Y-L.Chung, K-F. Chang, J. Hazard. Mater. B 138 (2006) 304-310.C. Zheng, W. Qian, C. Cui, G. Xu, M. Zhao, G. Tian, F. Wei, Carbon nanotubes for supercapacitors:consideration of cost and chemical vapor deposition techniques, J. Nat. Gas Chem. 21 (2012)233-240.C.Liu, H-M. Cheng, J. Phys. D 38 (2005) 231-252.D. Bitko, T. F. Rosenbaum, Quantum critical behaviour for a model magnet, Phys. Rev. Lett. 77(1996) 940-943.D. Bo?i?, V. Stankovi?, M. Gorgievski, G. Bogdanovi?, R. Kova?evi?, J. Hazard. Mater. 171 (200)684-692.D. Fu, Q. Ma, X. Zeng, J. Chen, W. Zhang, D. Li, Physica E 54 (2013) 185-190.D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load transfer and deformationmechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76 (2000)2868-2870.D. Zhang, D. Wei, Q. Li, X. Ge, X. Guo, Z. Xie, W. Ding, High performance catalyticdistillation using CNTs-based holistic catalyst for production of high quality biodiesel,Sci. Rep. (2014) 1-5.E. Bernard, A. Jimoh, Inter. J. Eng. Appl. Sci. 4 (2013) 95-103.E. So?o, J. Kalembkiewicz, Croat. Chem. Acta 88 (2015) 267-279.E.R. Edwards, E.F. Antunes, E.C. Botelho, M.R. Baldan, E.J. Corat, App. Surf. Sci.258 (2011) 641-648.F. Fernndez-Luqueo et al., African J. Environ. Sci. Technol. 7 (2013) 567-584.F.M. Machado, S.B. Fagan, I.Z. da Silva, M.J. de Andrade, Springer Inter.Publishing Switzerland (2015) Chapter in book pp. 11-32.G.D. Vukovi?, A.D. Marinkovi?, M. ?oli?, M.D. Risti?, R. Aleksi?, A.P-Gruji?,P.S. Ukokovi?, Chem. Eng. J. 157 (2010) 238-248.G.P Rao, C. Lu, F. Su, Sep. Purif. Technol. 58 (2007) 224-231.H. Hu, D. Zhang, Y. Liu, W. Yu, T. Guo, Vacuum 115, 70 (2015)H. Karami, Chem. Eng. J. 219 (2013) 209-216.H. Li, D. Xiao, H. He, R. Lin, P. Zuo, Trans. Nonferrous Met. Soc. China 23 (2013)2657-2665.H. Wang, N. Yan, Y. Li, X. Zhou, J. Chen, B. Yu, M. Gong, Q. Chen, J. Mater. Chem. 22 (2012)9230-9236.H. Yong-Mei, C. Man, H. Zhong-Bo, J. Hazard. Mater. 184 (2010) 392-399.H. Zhidong, F. Alberto, Thermal conductivity of carbon nanotubes and their polymernanocomposites: A Review, Prog. Polym. Sci. 36 (2010) 914-944.I. Mobasherpour, E. Salahi, M. Ebrahimi, J. Saudi Chem. Soc. 18 (2014) 792-801.J. Chen, C. Jia, Z. Wan, Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material forsupercapacitor, Synth. Met. 189 (2014) 69-76.J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Howthorne, Sci. 319, 1235 (2008)J. Kong, A. C. Alan, H. Dai, Chemical vapor deposition of methane for single walledcarbon nanotubes, Chem. Phys. Lett. 292 (1998) 567-574.J. Lu, L.T. Drzal, R.M. Worden, I. Lee, Chem. Mater. 19 (2007) 6240-6246.J. Lu, L.T. Drzal, R.M. Worden, I. Lee, Chem. Mater. 19, 6240 (2007)J. M. Boyea, R. E. Camacho. S. P. Turano, W. J.Ready, Carbon nanotube-basedSupercapacitor: Technologies and Markets, Nanotechnol. Law Bus. 4 (2007) 585- 593.J. Ma, Y. Zhang, F. Yu, New J. Chem. 39 (2015) 9299-9305.J. Wang, Z. Li, S. Li, W. Qi, P. Liu, F. Liu, Y. Ye, L. Wu, L. Wang, W. Wu, PlosOne 8 (2013) 1-11.K. Aswati, R. Kumar, R. S. Tiwari, O. N. Srivastava, Large scale synthesis of bundlesof aligned carbon nanotubes using natural precursor: turpentine oil, J. Exp. Nanosci. 5 (2010)498-508.K. Kudelska, A. Malolepszy, M. Mazurkiewicz, L. Stobinski, W. Dobrowolski, Acta Phys.Pol., A 119 (2011) 597-599.K. Mukul, Ando, Chemical vapor deposition of carbon nanotubes: a review on growthmechanism and mass production, J. Nanosci. Nanotechnol. 10 (2010) 3739- 3758.K. Pyrzy?ska, M. Bystrzejewski, Colloid Surf. A 362 (2010) 102-109.K. S. Dhilip, P. K. Ayer, P. K. Giri, Diameter dependence of interwall separation and strain inmultiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies, DiamondRelat. Mater. 19 (2010) 1281-1288.L. C. Stephanie, Nanostructured carbon for energy storage and conversion, Nano Energy 1(2012) 195-200.L. M. Manocha, V. Jignesh, S. Manocha, Role of metal catalyst and substrate site for the growth ofcarbon nanomaterials, Carbon 6 (2005) 79-85.L. Ning, l. Xiaojie, W. Xiaohong, Y. Honghao, Z. Chengjiao, W. Haitao, Carbon 48 (2010) 3858-3863.L. Wei, M. L. Charles, Nanoelectronics from the bottom up, Nat. Mater. 6 (2007) 841-850.L. Yu, Y. Lv, Y. Zhao, Z. Chen, Scalable preparation of carbon nanotubes by thermaldecomposition of phenol with high carbon utilizing rate, Mater. Lett. 64 (2010)2145-2147.M. Adeli, Y. Yamini, M. Faraji, Arabic J. Chem. (2012) 1-8.M. Arshadi, M.J. Amiri, S. Mousavi, Water Res. Industry 6 (2014) 1-17.M. Balintova, M. Holub, E. Singovszka, Chem. Eng. Trans. 28 (2012) 175-180.M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, W. J. Blau, Morphological andmechanical properties of carbon-nanotube-reinforced semicrystalline and amorphouspolymer composites, Appl. Phys. Lett. 81 (2002) 5123-5125.M. Franus, L. Bandura, Fresenius Environ. Bull. 23 (2014) 825-839.M. Kumar, Y. Ando, Carbon nanotubes from camphor: an environment-friendly nanotechnology,J. Phys. 61 (2007) 643-646.M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010)M. Kumar, Y. Ando, Single-wall and multi-wall carbon nanotubes from camphor-abotanical hydrocarbon, Diamond Relat. Mater. 12 (2003) 1845-1850.M. Neeraj et al, Pyrolysis of waste polypropylene for the synthesis of carbonnanotubes, J. Anal. Appl. Pyrolysis 94 (2012) 91-98.M. Rafatullah, O. Sulaiman, R. hashim, A. Ahmad, J. Hazard. Mater. 170 (2009) 969-977.M. S. Azmina, A. B. Suriani, A. N. Falina, M. Salina, J. Rosly, M. Rusop, Preparationof palm oil based carbon nanotubes at various ferrocene concentration, Adv. Mater. Res. 364 (2012)408-411.M. S. Azmina, A. B. Suriani, A. N. Falina, M. Salina, M. Rusop, Temperature effects onthe production of carbon nanotubes from palm oil by thermal chemical vapour deposition method, Adv.Mater. Res. 364 (2012) 359-362.M. S. Azmina, A. B. Suriani, M. Salina, A. A. Azira, A. R. Dalila, N. A. Asli, J. Rosly, M. N.Roslan, M. Rusop, Variety of bio-hydrocarbon precursors for the synthesis of carbonnanotubes, Nano Hyb. 2 (2012) 43-63.M. S. Azmina, A. B. Suriani, M. Salina, A. A. Azira, A. R. Dalila, N. A. asli et al., Variety ofbio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hyb. 2 (2012) 43-63.M. S. Senthil Saravanan, Techno-economics of carbon nanotubes produced by open air arc dischargemethod, Int. J. Eng. Sci. Technol. 2 (2010) 100-108.M.A. Tofighy, T. Mohammadi, J. Hazard. Mater. 185 (2011) 140-147.M.M. Rao, D.K. Ramana, K. Seshaiah, M.C. Wang, S.W.C. Chien, J. Hazard.Mater. 166 (2009) 1006-1013.M.S. Azmina, A.B. Suriani, A.N. Falina, M. Salina, M. Rusop, Adv. Mater. Res.364, 359 (2012)M.S. Azmina, A.B. Suriani, M. Salina, A.A. Azira, A.R. Dalila, et al., Nano Hybrids 2,43 (2012)M.S. Rahman, M.R. Islam, Chem. Eng. J. 149 (2009) 273-280.M.S. Shamsudin, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, J.Spectroscopy 2013, 167357 (2013)M.S. Shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani, et al., J.Nanomater. 2012, 972126 (2012)M.S. Shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani, S. Abdullah,S.Y.S. Yahya, M. Rusop, J. Nanomater. 2012 (2012) Art. ID. 972126.N. A. Asli, M. S. Shamsudin, A. N. Falina, M. S. Azmina, A. B. Suriani, M. Rusop,S. Abdullah, Field electron emission properties of vertically aligned carbonnanotubes deposited on a nanostructured porous silicon template: the hidden role of thehydrocarbon/catalyst ratio, Microelectron. Eng. 108 (2013) 86-92.N. Das, A. Dalai, J.S.S. Mohammadzadeh, J. Adjaye, Carbon 44, 2236 (2006)N.A. Asli, M.S. Shamsudin, A.B. Suriani, M. Rusop, A. Saifollah, Inter. J. IndustrialChem. 4, 1 (2013)N.D. Tumin, A.L. Chuah, Z. Zawani, S.A. Rashid, J. Eng. Sci. Technol. 2 (2008) 180-189.N.K.E.M. Yahaya, M.F.P.M. Latif, I. Abustan, O.S. Bello, M.A. Ahmad, Inter. J. Eng. Technol. 11(2011) 207-211.N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, J. Taiwan Ins. Chem. Eng. 53(2015) 140-152.N.M.M. Fourier, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, J. Environ. Sci. (2016)article in press.O. Rashidi, H.N. Azlen, R. Razanah, M.H. Farah Ayuni et al., Inter. J. Sustain.Energy Environ. Res.3 (2014) 185-192.O. Renata, O. Andrej, Recent applications of carbon nanotubes in hydrogenproduction and storage, Fuel 90 (2011) 3123-3140.O.F. Gonzalez, M.R.M. Virgen, V.H. Montoya, R.T. Gomez, J.L.A. Flores et al., Ind. Eng. Chem. Res.55 (34) 9323-9331.P. Bollen, N. Quievy, C. Detrembleur, J.M. Thomassin, L. Monnereau, C. Baily, I. Huynen, T.Pardoen, Mater. Design 89 (2016) 323-334.P. Eklund, P. Ajayan, R. Blackmon, A.J. Hart, J. Kong, et al., World Technology Evaluation CenterInc., USA (2007)P. M. Ajayan, O. Z. Zhou, Application of carbon nanotubes topics, Appl. Phys. 80 (2001) 391-425.P. Mahalingam, T. Malyalagan, E. Manikandan, P.S. Syed Shabudeen, S. Karthikeyan,J. Environ. Nanotechnol. 2 (2013) 43-62.Q. Zhang, M.Q. Zhao, J.Q. Huang, J.Q. Nie, W. Fei, Carbon 48, 1196 (2010)R. Ansari, S. Malakpour, M. Faghihnasiri, S. Ajori, Structural and elastic properties of carbonnanotubes containing fe atoms using first principles, Superlattices Microstruct. 6 (2013)220-226.R. B. Prabhakar, Electrical properties and applications of carbon nanotubesstructure, Journal of Nanoscience and Nanotechnology, 7 (2007) 1-29.R. B. Prabhakar, Electrical properties and applications of carbon nanotubestructure, J. Nanosci. Nanotechnol. 7 (2007) 1-29.R. Das, S.B. Abd. Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Desalination 354(2014) 160-179.R. Khandanlou, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri, K. Kalantari,PLOS ONE (2015) 1-19.R. Kumar, R.S. Tiwari, O. Srivastava, Nanoscale Res. Let. 6 (2011) 92-97.R. Kumar, R.S. Tiwari, O. Srivastava, Nanoscale Res. Lett. 6, 92 (2011)R. Markovi?, J. Stevanovi?, Z. J. Stevanovi?, M. Bugarin, D. Nedeljkovi?, A.Gruji?, J. S-Trosi?, Mater. Trans. 52 (2011) 1849-1852.S. B. Martin et al., Carbon nanotubes by plasma-enhance chemical vapordeposition, Pure Appl. Chem. 78 (2006) 1117-1125.S. Iijima, Helical microtubulus of graphitic carbon, Nature 354 (1991) 56-58.S. Ilani, P. L. McEuen, Electron transport in carbon nanotubes, Annu. Rev. Condens.Matter Phys. 1 (2010) 1-25.S. Kumari, A. Kumar, P. R. Sengupta, P. K. Dutta, R. B. Mathur, Improving the mechanical andthermal properties of semi-coke base carbon/copper composites reinforced using carbonnanotubes, Submitted to Adv. Mater. Lett.S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, D. Shu, Chem. Eng. J. 260 (2015) 231-239.S. Liu, Q. Shen, Y. Cao, L. Gan, Z. Wang, M.L. Steigerwald, X. Guo, Coord. Chem. Rev.254 (2010) 1101-1116.S. Niraj, M. Jiazhi, T. W. Yeow, Carbon nanotube-based sensors, J. Nanosci. Nanotechnol.6 (2006) 573-590.S. P. Chai, K. Y. Lee, S. Ichikawa, A. R. Mohamed, Synthesis of carbon nanotubes by methanedecomposition over Co-Mo/Al2O3: process study and optimization using response surfacemethodology, Appl. Catal., A 396 (2011) 52-58.S. Paul, S.K. Samdarshi, New Carbon Mater. 26, 85 (2011)S. Qu, F. Huang, S. Yu, G. Chen, j. Kong, J. Hazard. Mater. 160 (2008) 643-647.S. Srivasta, Adv. Mat. Lett. 4 (2013) 2-8.S. Swati et al., Synthesis of carbon nanotubes using olive oil and its application in dyesensitized solar cell, Int. J. Renew. Energy Res. 2 (2012) 274-279.S. Trasatti, P. Kurzweil, Electrochemical supercapacitor as versatile energy stores, Platinum Met.Rev. 38 (1994) 46-56.S. Yellampalli, Carbon Nanotubes-Polymer Nanocomposites, Intech, Croatia, 2011.S.A. Kosa, G. Al-Zhrani, M.A. Salam, Chem. Eng. J. 181 (2012) 159-168.S.A.M. Zobir, A.B. Suriani, S. Abdullah, Z. Zainal, S.H. Sarijo, M. Rusop, J.Nanomater. 2012, 11 (2012)S.N.M Yusoff, A. Kamari, W.P. Putra, C.F. Ishak, A. Mohamed, N. Hashim, I.M.Isa, J. Environ. Protect. 5 (2014) 289-300.S.S. Bayazit, ?. Kerkez, Chem. Eng. Res. Design 92 (2014) 2725-2733.S.S. Madani, K. Zare, M. Ghoranneviss, A.S. Elahi, J. Alloys Compd. 648, 1104 (2015)Transportation Cost and Benefit Analysis II-Water Pollution, Victoria transport Policyinstitute (www.vtpi.org.).U. Kouakou, A.S. Ello, J.A. Yapo, A. Trokourey, J. Environ. Chem. Ecotox. 5 (2013)168-171.V.K. Gupta, A. Mittal, V. Gajbe, J. Colloid Inter. Sci. 284 (2005) 89-98.V.S. Munagapati, V. Yarramuthi, S.K. Nadavala, S.R. Alla, K. Abburi, Chem. Eng. J. 157 (2010)357-365.W. M. Yeoh, K. Y. Lee, S. P. Chai, K. T. Lee, A. R. Mohamed, Effective synthesis of carbon nanotubes via catalytic decomposition of methane: influence of calcinationtemperature on metal-support interaction of Co-Mo/Mgo catalyst, J. Phys. Chem. Solids 74(2013) 1553-1559.W. M. Yeoh, K. Y. Lee, S. P. Chai, K. T. Lee, A. R. Mohamed, Synthesis of high purity multi-walled carbon nanotubes over Co-Mo/Mgo catalyst by catalytic chemical vapor deposition ofmethane, New Carbon Mater. 24 (2009) 119-123.W. W. Liu, A. Azizan, S. P. Chai, A. Rahman, C. T. Tye, The effect of carbonprecursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesizedby chemical vapor deposition, Physica E 43 (2011) 1535-1542.W.N.N. Wan Ali, S. Sufian, M.Z. Abdullah, Procedia Eng. 148 (2016) 795-805.W-L. Sun, J. Xia, Y-C. Shan, Chem. Eng. J. 250 (2014) 119-127.W-W. Tang, G-M. Zeng, J-L. Gong, Y. Liu, X-Y. Wang, Y-Y. Liu, Z-F. Liu, L. Chen, X-R. Zhang,D-Z. Tu, Chem. Eng. J. 211-212 (2012) 470-478.X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan, J. Hazard. Mater. 209-210 (2012)467-477.X. Peng, Z. Luan, Z. Di, Z. Zhang, C. Zhu, Lett. to the Editor, Carbon 43 (2005)855-894.X. Ren, C. Chen, M. Nagatsu, X. Wang, Chem. Eng. J. 170 (2011) 395410.X. Zhang, Q. Li, Y. Tu, Y. Li, J. Y. Coulter, L. Zheng et al., Strong carbon-nanotube fibers spun from long carbon nanotube arrays, Wiley, Weinheim, 2007, pp. 244-248.Y. Jiang, A. Kazinda, T. Chang, L. Lin, Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes, Sens. Actuators, A 195 (2013) 224-230.Y. Song, G. Ye, J. Chen, LV. Dachao, J. Wang, Appl. Surf. Sci. 357 (2015) 1578- 1586.Y-H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Carbon 41 (2003) 2787-2792.Y-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Carbon 41 (2003) 1057-1062.Z. Huang, X. Wang, D. Yang, Water Sci. Eng. 8 (2015) 226-232.Z. Visnjic-Jeftic et al., Microchem. J. 95 (2010) 341-344.Z. Yang, X. Chen, H. Nie, K. Zhang, W. Li, et al., Nanotechnol. 19, 1 (2008)