The development of cascode low noise amplifier with double feedback technique architecture for wireless application

<p>This study aims to develop cascode low noise amplifier that operate at 5.8 GHz by</p><p>maximizing gain and minimize the noise figure for the topic of Development of</p><p>Cascode Low Noise Amplifier by using Double Feedback Te...

Full description

Saved in:
Bibliographic Details
Main Author: Nurul Husna Abdul Kahar
Format: thesis
Language:eng
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7189
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7189
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic Q Science
spellingShingle Q Science
Nurul Husna Abdul Kahar
The development of cascode low noise amplifier with double feedback technique architecture for wireless application
description <p>This study aims to develop cascode low noise amplifier that operate at 5.8 GHz by</p><p>maximizing gain and minimize the noise figure for the topic of Development of</p><p>Cascode Low Noise Amplifier by using Double Feedback Technique Architecture for</p><p>Wireless Application. To verify the idea, FHX76LP Super Low Noise HEMT which</p><p>compliant with wireless application especially long-term evolution (LTE) standard</p><p>manage to outlines the possibility to improves the design of low noise amplifier within</p><p>parameters of gain, noise figure, bandwidth, sensitivity, stability, power consumption</p><p>and complexity. The cascode low noise amplifier used T-matching network for inputoutput</p><p>impedance matching and implementation an innovative double feedback</p><p>technique to compliant with circuit design. The study using the Advance Design System</p><p>(ADS) software in aid for collecting the data in smith chart and s-parameter that</p><p>practical tool used in designing and simulating the circuit and data. Based on</p><p>simulation, the approach compliant with gain (S21) of 20.887 dB with noise figure of</p><p>0.341 dB. The input return loss (S11) and output return loss (S22) are - 14.354 dB and</p><p>- 11.879 dB respectively. In conclusion, the outcome for this topic is good based on</p><p>comparison simulation with other circuit method. Implications, the use of this study</p><p>will contribute in providing a better wireless signal receiver especially for the LTE</p><p>standard and it potentially in addressing wireless communication issues in rural areas.</p>
format thesis
qualification_name
qualification_level Master's degree
author Nurul Husna Abdul Kahar
author_facet Nurul Husna Abdul Kahar
author_sort Nurul Husna Abdul Kahar
title The development of cascode low noise amplifier with double feedback technique architecture for wireless application
title_short The development of cascode low noise amplifier with double feedback technique architecture for wireless application
title_full The development of cascode low noise amplifier with double feedback technique architecture for wireless application
title_fullStr The development of cascode low noise amplifier with double feedback technique architecture for wireless application
title_full_unstemmed The development of cascode low noise amplifier with double feedback technique architecture for wireless application
title_sort development of cascode low noise amplifier with double feedback technique architecture for wireless application
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Teknikal dan Vokasional
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=7189
_version_ 1747833365003763712
spelling oai:ir.upsi.edu.my:71892022-06-20 The development of cascode low noise amplifier with double feedback technique architecture for wireless application 2021 Nurul Husna Abdul Kahar Q Science <p>This study aims to develop cascode low noise amplifier that operate at 5.8 GHz by</p><p>maximizing gain and minimize the noise figure for the topic of Development of</p><p>Cascode Low Noise Amplifier by using Double Feedback Technique Architecture for</p><p>Wireless Application. To verify the idea, FHX76LP Super Low Noise HEMT which</p><p>compliant with wireless application especially long-term evolution (LTE) standard</p><p>manage to outlines the possibility to improves the design of low noise amplifier within</p><p>parameters of gain, noise figure, bandwidth, sensitivity, stability, power consumption</p><p>and complexity. The cascode low noise amplifier used T-matching network for inputoutput</p><p>impedance matching and implementation an innovative double feedback</p><p>technique to compliant with circuit design. The study using the Advance Design System</p><p>(ADS) software in aid for collecting the data in smith chart and s-parameter that</p><p>practical tool used in designing and simulating the circuit and data. Based on</p><p>simulation, the approach compliant with gain (S21) of 20.887 dB with noise figure of</p><p>0.341 dB. The input return loss (S11) and output return loss (S22) are - 14.354 dB and</p><p>- 11.879 dB respectively. In conclusion, the outcome for this topic is good based on</p><p>comparison simulation with other circuit method. Implications, the use of this study</p><p>will contribute in providing a better wireless signal receiver especially for the LTE</p><p>standard and it potentially in addressing wireless communication issues in rural areas.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7189 https://ir.upsi.edu.my/detailsg.php?det=7189 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Teknikal dan Vokasional <p>A. B. Ibrahim, & A. Z. M. Ali. (2016). Simulation of Single Stage LNA Based on Ladder</p><p>Matching Networks for WiMAX Application. International Journal of Information</p><p>and Electronics Engineering, 6(3), 161165.</p><p></p><p>A. B. Ibrahim, H. F. Hanafi, F. H. Yahya & N. H. A. Kahar. (2019). Low Noise Amplifier</p><p>for LTE Application Using High-Performance Low Noise Pseudomorphic High</p><p>Electron Mobility Transistor (PHEMT). International Journal of Advanced Science</p><p>and Technology, 28(8), 806 811.</p><p></p><p>A.B. Ibrahim, M. N. Husain, A. R. Othman, & M. S. Johal. (2011). Design of LNA at 5.8GHz</p><p>with Cascode and Cascaded Techniques Using T-Matching Network for Wireless</p><p>Applications. International Journal on Advanced Science, Engineering and</p><p>Information Technology, 1(1), 18.</p><p></p><p>A.B. Ibrahim, A.R. Othman, M. N. Husain, & M. S. Johal. (2012). The Cascode and</p><p>Cascaded Techniques LNA at 5.8GHz Using T-Matching Network for WiMAX</p><p>Applications. International Journal of Computer Theory and Engineering, 4(1), 93</p><p>97.</p><p></p><p>A. Grebenniov, N. Kumar, and B. S.Yarman. (2017). Broadband RF and microwave</p><p>amplifiers. BocaRaton: CRC Press, Taylor & Francis.</p><p></p><p>A. H. Jarndal & A. M. Bassal. (2018). A Broadband Hybrid GaN Cascode Low Noise</p><p>Amplifier for WiMAX Applications. International Journal of RF and Microwave</p><p>Computer-Aided Engineering, e21456, 19.</p><p></p><p>A. R. Dehqan & S. Toofan. (2019). Resonance Gate Bias Cascode Class-E Power Amplifier</p><p>in GaAs pHEMT Technology. Analog Integrated Circuits and Signal Processing,</p><p>98(3), 545553.</p><p></p><p>A. R. Dehqan, K. Mafinezhad, E. Kargaran, & H. Nabovati. (2011). Design of Low Voltage</p><p>Low Power Dual-Band LNA with Forward Body Biasing Technique. 18th IEEE</p><p>International Conference on Electronics, Circuits, and Systems (ICECS), 591594.</p><p></p><p>A. R. Hevner, S. T. March, J. Park, & S. Ram. (2004). Design Science Research in</p><p>Information Systems. Management Information Systems Quarterly, 28(1), 75-105.</p><p></p><p>A. R. Othman, A. H. Hamidon, C. Abdul Wasil, M. F. Mustaffa, J.T.H. Ting & A.B.Ibrahim.</p><p>(2010). Low Noise, High Gain RF Front End Receiver at 5.8GHz for WiMAX</p><p>Application. Jtec, Vol. 2(No. 2), 4353.</p><p></p><p>A.R. Othman, I. M. Ibrahim, M. S. A. S. Samingan, A. A. A. Aziz, M. F. M. Selamat & H.</p><p>C. Halim. (2007). Single Stage RF Amplifier at 5.8GHZ ISM Band with IEEE</p><p>802.11a Standard. 2007 Asia-Pacific Conference on Applied Electromagnetics</p><p>Proceedings, APACE2007, 811.</p><p></p><p>A.Sherstneva. (2020). Design and Implementation RF Amplifier with Advanced</p><p>Capabilities. International Multi-Conference on Industrial Engineering and Modern</p><p>Technologies (FarEastCon), Vladivostok, Russia, 1-6.</p><p></p><p>Abdelhamid, A. A., Ozgun, M. T., & Dogan, H. (2019). A fully integrated 2.4 dB NF</p><p>capacitive cross coupling CG-LNA for LTE band. Analog Integrated Circuits and</p><p>Signal Processing, 99(1), 159166.</p><p></p><p>Abu Bakar Ibrahim & Ashardi Abas. (2017). A Microwave Low Noise Amplifier for Long</p><p>Term Evolution (LTE) Application. Journal of Engineering and Science Research,</p><p>1(2), 203208.</p><p></p><p>Agilent Technologies. (2010). Fundamentals of RF and Microwave Noise Figure</p><p>Measurements. In Application Note (pp. 132). Retrieved from</p><p>www.keysight.com/find/nf</p><p></p><p>Ahmad Sidik, Maulana Yusuf Fathany & Basuki Rahmatul Alam. (2015). Design of</p><p>Broadband Low Noise Amplifier (LNA) 4G LTE TDD 2.3 GHz for Modem</p><p>Application. International Symposium on Intelligent Signal Processing and</p><p>Communication System (ISPACS), 26.</p><p></p><p>Alan Bensky. (2019). Receiver and Digital Radio Architecture in Radio System Design (3th</p><p>Edition). In Short-Range Wireless Communication (pp.149162). United States,</p><p>Cambrige:Elsevier Inc.</p><p></p><p>Andres G., & Victor C. (2015). A New Sizing Approach for Lifetime Improvement of</p><p>Nanoscale Digital Circuits due to BTI Aging. 2015 IFIP/IEEE International</p><p>Conference on Very Large-Scale Integration (VLSI-SoC), 297302.</p><p></p><p>Anishaziela Azizan, S. A. Z. Murad, R. C. Ismail, & M. N. M. Yasin. (2014). A Review of</p><p>LNA Topologies for Wireless Applications. 2nd International Conference on</p><p>Electronic Design, 375379.</p><p></p><p>Anuj Madan, Michael J. M., Christophe M., William V. & John D. C. (2012). A 5 GHz</p><p>0.98 dB NF Highly Linear Cascode Floating-Body LNA in 180nm SIO CMOS Technology.</p><p>IEEE Microwave and Wireless Components Letters, 22(4), 200 202.</p><p></p><p>Ashwini Rajole. (2015). Low Noise Amplifier Design and Analysis for Wireless Voice</p><p>Transmission. International Journal of Science and Research (IJSR), 4(7), 1308</p><p>1311.</p><p></p><p>Athira K. B., & Prameela B. (2018). Ultra-Wideband Low Noise Amplifier with Resistive</p><p>Feedback and Shunt Inductive Peaking. Proceedings of 2017 International</p><p>Conference on Innovations in Information, Embedded and Communication Systems</p><p>(ICIIECS), 2018(January), 16.</p><p></p><p>Azman Ahmad, Abdul Hamid Hamidon, Abdul Rani Othman & Kamil Pongot. (2015).</p><p>Australian Journal of Basic and Applied Sciences A High Gain and Low Noise Figure</p><p>for Dual Band LNA with Notch Filter. Australian Journal of Basic and Applied</p><p>Sciences Journal, 9(March), 5562.</p><p></p><p>B.Wang, & Z. Cao. (2019). A Review of Impedance Matching Techniques in Power Line</p><p>Communications. Electronics, 8(9), 125.</p><p></p><p>Bhushan R. V., & M. M. Khanapurkar. (2015). Design of Ultra-Wideband Low Noise</p><p>Amplifier with the Negative Feedback using Micro Strip Line Technique. IOSR</p><p>Journal of VLSI and Signal Processing, 5(2), 3135.</p><p></p><p>C.A. Balanis. (2016). Antenna Theory: Analysis and Design (4th Edition). Hoboken, New</p><p>Jersey: John Wiley & Sons Inc.</p><p></p><p>Cen M., & Song S. (2013). Design of a 0.97dB, 5.8GHz Fully Integrated CMOS Low Noise</p><p>Amplifier. Advance Science and Technology Letters, 28(EEC 2013), 3442.</p><p></p><p>Cen M., & Song S. (2015). A Differential Cascode Low Noise Amplifier Based on a Positive</p><p>Feedback Gain Enhancement Technique. Journal of Machine-to-Machine</p><p>Communications, 1(3), 244229.</p><p></p><p>Chakkor Saad, Baghouri Mostafa, El Ahmadi Cheih & Hajraoiu Abderrahmane. (2014).</p><p>Comparative Performance Analysis of Wireless Communication Protocols for</p><p>Intelligent Sensors and Their Applications. International Journal of Advanced</p><p>Computer Science and Applications, 5(4), 7685.</p><p></p><p>Chen SJ. & Hsieh YH. (2006) Transceiver Architecture Design. In: IQ Calibration</p><p>Techniques for CMOS Radio Transceivers. Analog Circuits and Signal Processing.</p><p>Dordrecht: Springer.</p><p></p><p>David M. Pozar. (2011). Microwave Engineering. In John Wiley & Sons Inc.</p><p></p><p>Deepa Pundir & Narinder Sharma (2019). Comparative Study of Microstrip Patch Antenna</p><p>for Wireless Applications. International Journal of Electrical Engineering, 12(1), 61</p><p>72.</p><p></p><p>Desai Abhi R. & Nita T. Dave. (2017). Performance Analysis of Direct Conversion Based</p><p>Multi Standard Receiver. International Journal for Scientific & Development</p><p>(IJSRD), 5(1), 23210631.</p><p></p><p>Dwijendra Parashar & Nisha Chugh. (2013). Design of Low Noise Amplifier at 8.72 GHz.</p><p>MIT International Journal of Electronics and Communication Engineering, 3(2), 69</p><p>75.</p><p></p><p>F. Gne, M.A. Belen, P. Mahouti, & S. Demirel. (2016). Signal and Noise Modeling Of</p><p>Microwave Transistors using Characteristic Support Vector-Based Sparse</p><p>Regression. Radio Engineering, 25(3), 490499.</p><p></p><p>F.Meng, H. Liu, M. Wang et al, (2016). RF Low Power Subsampling Architecture for</p><p>Wireless Communication Application. Eurasip Journal on Wireless Communications</p><p>and Networking, 2016(121),115.</p><p></p><p>Fan X., Zhang H., & E. Snchez-Sinencio. (2008). A Noise Reduction and Linearity</p><p>Improvement Technique for a Differential Cascode LNA. IEEE Journal of Solid-</p><p>State Circuits, 43(3), 588599.</p><p></p><p>G.O. Barraza, F.H. Gregorio, & J.E. Cousseau. (2017). High-gain differential-output CMOS</p><p>LNA for the 700 MHz LTE band. 2017 XVII Workshop on Information Processing</p><p>and Control (RPIC), 16.</p><p></p><p>Ge Tan. (2011). Impact of Scaling on Noise Behavior of Sub-100nm MOSFETs. (Masters</p><p>thesis, McMaster University, Hamilton, Ontario). Retrieved from</p><p>https://macsphere.mcmaster.ca/bitstream/11375/10975/1/fulltext.pdf</p><p></p><p>F.Aminzadeh, & M. A. Dashti. (2019). Dual Loop Cascode-Miller Compensation with</p><p>Damping Factor Control Unit for Three-Stage Amplifiers Driving Ultralarge Load</p><p>Capacitors. International Journal of Circuit Theory and Applications, 47(1), 1 18.</p><p></p><p>H. Khosravi, S. Zandian, A. Bijari, & N. Kandalaft. (2019). A Low Power, High Gain 2.4/5.2</p><p>GHz Concurrent Dual-Band Low Noise Amplifier. 2019 IEEE 9th Annual</p><p>Computing and Communication Workshop and Conference (CCWC), Las Vegas,</p><p>788792.</p><p></p><p>Hamid Khatibi, Somayeh Khiyabani, & Ehsan Afshari. (2018). A 183 GHz Desensitized</p><p>Unbalanced Cascode Amplifier With 9. 5-dB Power Gain and 10-GHz Band Width</p><p>and 2 dBm Saturation Power. IEEE Solid-State Circuits Letters, 1(3), 58 61.</p><p></p><p>Hao Zheng. (2019). Designing 4 to 12 GHz Direct Conversion Receiver with LMX8410L</p><p>IQ Demodulator. Retrieved from http://www.ti.com/lit/an/snaa329/snaa329.pdf</p><p></p><p>Hector J. De Los Santos. (2002). RF MEMS Circuit Design for Wireless Communications.</p><p>In Artech House Microelectromechanical Systems Series. Boston, London: Artech</p><p>House.</p><p></p><p>Hiroya Sato, Masao Yanagisawa, & Tashihiko Yoshimasu. (2017). A 28-GHz Band Highly</p><p>Linear Power Amplifier with Novel Adaptive Bias Circuit for Cascode MOSFET in</p><p>56nm SOI CMOS. 13th IEEE International Conference on Electron Devices and</p><p>Solid-State Circuits (EDSSC), 12.</p><p></p><p>International Telecommunication Union (2019). Measuring Digital Development Facts and</p><p>Figures 2019. Geneva: ITU. Retrieved January 17, 2020 from</p><p>https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf</p><p></p><p>Ismat Aldmour. (2013). LTE and WiMAX: Comparison and Future</p><p>Perspective.Communications and Network, 05(04), 360368.</p><p></p><p>Ivan Bastos, F. Querido, D. Amoedo, Luis B. Oliveira, J.P. Oliveira, Joao Goes , & Manuel</p><p>M. Silva. (2013). A 1.2 V Low Noise Amplifier with Double Feedback for High Gain</p><p>and Low Noise Figure. IFIP Advance in Information and Communication</p><p>Technology, 394, 573581.</p><p></p><p>J. F. Nunamaker, M. Chen, & T. D. M. Purdin. (1991). Systems Development in Information</p><p>Systems Research. Journal of Management Information Systems, 7(3), 89-106.</p><p></p><p>Jingjing Z., Mao W., Min H., Tingting X., Wenjie Y., & Xiaohu Y. (2018). LTE on License-</p><p>Exempt Spectrum. IEEE Communications Surveys and Tutorials, 20(1), 647673.</p><p></p><p>Jun T., Zhaowen Y., Zhaoming N., Yaoxiang Z., & Yongcheng Z. (2018). A Design of 9kHz-</p><p>0. 5 GHz Low Noise Amplifier with High Gain and Smooth Flatness. 2018 12th</p><p>International Symposium on Antennas, Propagation and EM Theory (ISAPE), (2),</p><p>14.</p><p></p><p>K. Pongot, A. R. Othman, Z. Zakaria, M. K. Suaidi, & A. H. Hamidon. (2014). Low Noise</p><p>Figure, High Gain Single LNA Cascaded with Cascoded LNA Amplifiers using</p><p>Optimized Inductive Drain Feedback for Direct Conversion RF Front-end Receiver</p><p>at Wireless Application. Research Journal of Applied Sciences, Engineering and</p><p>Technology, 7(16), 32363247.</p><p></p><p>K. Raju, R. Sireesha, & K. Vijay Kumar. (2016). Double Feedback Technique for Reduction</p><p>of Noise LNA with Gain Enhancement. International Journal of Computational</p><p>Engineering Research (IJCER), 6(3), 4350.</p><p></p><p>Kamil Pongot, Abdul Rani Othman, Zahriladha Zakaria, Mohamad Kadim Suaidi, Abdul</p><p>Hamid Hamidon, Azman Ahmad, & Mohamad Tarmizy Ahmad. (2015). Design of</p><p>Triple-Stage Cascoded LNA Amplifiers using Inductive Drain Feedback (IDF)</p><p>Technique for WiMAX application. International Journal on Electrical Engineering</p><p>and Informatics, 7(2), 175192.</p><p></p><p>Kamil Pongot, Abdul Rani Othman, Zahriladha Zakaria, Mohamad Kadim Suaidi, & Abdul</p><p>Hamid Hamidon. (2015). Double - Stage High Gain and Low Noise Cascoded LNA</p><p>Amplifiers with Optimized Inductive Drain Feedback for Direct Conversion</p><p>WiMAX RF Front-end Receiver. Australian Journal of Basic and Applied Sciences</p><p>Journal, 7(7), 452460.</p><p></p><p>L. D. Manh, N. Huy Hoang, B. G Duong, & T. Chi Hieu. (2018). Design of An</p><p>Independently Biased Cascode GaN HEMT Microwave Power Amplifier.</p><p>International Conference on Advanced Technologies for Communications, 129 132.</p><p></p><p>L. D. Manh, N. Huy Hoang, B. G. Duong, & T. Chi Hieu. (2019). An Independently Biased</p><p>3-stack GaN HEMT Configuration for 5G Mobile Networks. 2019 26th International</p><p>Conference on Telecommunications (ICT), 15.</p><p></p><p>Lee, I. G. (2018). Secure Inter-Frame Space Communications for Wireless LANs. Future</p><p>Internet, 10(47), 110.</p><p></p><p>Li. C.Y., Chien K. H., Yen H. L., & Chiou H. K. (2017). A 5 11 GHz Wideband Low Noise</p><p>Amplifier Using Transformer. 2017 Progress in Electromagnetics Research</p><p>Symposium Spring (PIERS), St. Petersburg, Russia, 10391042.</p><p></p><p>M. Bansal & Jyoti. (2017). A Review of Various Applications of Low Noise Amplifier. 2017</p><p>International Conference on Innovations in Control, Communication and Information</p><p>System (ICICCI), Greater Noida, India, pp 14.</p><p></p><p>M. Bansal Aditi. (2017). Design, Analysis, and Comparison of LNA Topologies. Conference</p><p>on Information and Communication Technology (CICT), 17.</p><p></p><p>M. Charchian, B. Zakeri, & H. Miar-Naimi. (2016). Wideband Noise Figure Low Noise</p><p>Amplifier Design for 3.5-4.5 GHz. Conference Proceedings of 2015 2nd</p><p>International Conference on Knowledge-Based Engineering and Innovation, KBEI</p><p>2015, 589594.</p><p></p><p>M. D. Gall, W. R. Borg, & J. P. Gall. (2003). Educational Research: An Introduction (7th</p><p>Edition). Boston, New York: Pearson Education Inc.</p><p></p><p>M. Ehmer Khan & Farmeena Khan. (2012). An Empirical Study of Different Modes of</p><p>Wireless Network Communication and Ways to Optimize its Performance and</p><p>Speed. International Journal of Computer Applications, 46(12), 4450.</p><p></p><p>M. S. Kusuma, S. Shanthala, & P. Cyril Prasanna Raj. (2018). Design of Common Source</p><p>Low Noise Amplifier with Inductive Source Degeneration in Deep Submicron</p><p>CMOS Processes. International Journal of Applied Engineering Research, 13(6),</p><p>41184123.</p><p></p><p>Maganti Akhil Chandra, & Rahul Enishetty Hochschule. (2013). Design of a Low Noise</p><p>Amplifier using AWR Microwave Office. Conference Paper, 2013(July), 1-5.</p><p></p><p>Mahesh Mudavath & K. Harikishore. (2016). Design of CMOS Front-End of Low Noise</p><p>Amplifier for LTE System Application. Asian Journal of Information Technology,</p><p>15(20), 4040 4047.</p><p></p><p>Manuel Reta-Hernndez. (2018). 14 Transmission Line Parameters. In Leonard L. Grigsby</p><p>(3th Edition), Electric Power Generation, Transmission, and Distribution (pp. 14-1</p><p>14.36). Boca Raton, FL: CRC Press Taylor and Francis Group.</p><p></p><p>Mohit Dayal & Abhishek Kumar. (2015). S-Parameter Comparison of Common Source and</p><p>Common Gate Low Noise Amplifier. International Journal of Computer</p><p>Applications, 120(19), 1518.</p><p></p><p>Muhammad Arsalan & Falin Wu. (2019). LNA Design for Future S Band Satellite</p><p>Navigation and 4G LTE Application. Computer Modeling in Engineering and</p><p>Sciences (CMES), 119(2), 249261.</p><p></p><p>Muhammad Waqas Qadir, Muhammad Hunain Memon, Adeel Feroz Mirza, Syed Wajahat</p><p>Ali, & Fujiang L. (2018). Multigrain Cascode Technique for Low Power BLE ISM</p><p>Band 2.4 GHz Differential Inductive Source Degeneration based LNA. IEEE MTTS</p><p>International Wireless Symposium (IWS), 14.</p><p></p><p>N.A. Majid, S. Mazer, M.E. Bekkali, C. Algani & M. Mehdi (2017). A Comparison Between</p><p>Common-Source and Cascode Topologies For V-Band Millimeter-Wave MMIC</p><p>Low Noise Amplifier Design. Mediterranean Telecommunication Journal. 6(1). 33-</p><p>39.</p><p></p><p>N. Milosevic, B. Dimitrijevic, D. Drajic, Z. Nikolic, & M. Tosic. (2017). LTE and WiFi coexistence</p><p>in 5 GHz unlicensed band. Facta Universitatis - Series: Electronics and</p><p>Energetics, 30(3), 363373.</p><p></p><p>Saifullah, Z. Zakaria, A. Salleh, M. F. Muhamad Fadzil, S. R. Ab Rashid, & A. Bruster.</p><p>(2016). Low Noise Amplifier Application using Negative Feedback for Ultra-</p><p>Wideband Applications. ARPN Journal of Engineering and Applied Sciences, 11(5),</p><p>32953299.</p><p></p><p>Nigel Gilbert & Klaus G. Troitzsch. (2005). Simulation as a Method. In Simulation for the</p><p>Social Scientist (2nd Edition). New York: McGraw-Hill Education.</p><p></p><p>O. Memioglu & A. Gundel. (2018). A High Linearity Wide Bandwidth GSM/WCDMA/LTE</p><p>Base Station LNA MMIC with Ultra Low Noise Figure. 2018 18th Mediterranean</p><p>Microwave Symposium (MMS), 198201.</p><p></p><p>P.Boyland. (2019). The State of Mobile Network: Benchmarking Mobile On The Eve Of</p><p>The 5G Evolution. Opensignal, 1-9.</p><p></p><p>Paolini M., & Fili S. (2015). LTE unlicensed and Wi-Fi: Moving Beyond Coexistance. In</p><p>Senza Fili and RCR Wireless News.</p><p></p><p>Paschal A. Ochang & Philip J. Irving. (2016). Evolutionary Analysis of GSM , UMTS and</p><p>LTE Mobile Network Architectures. World Scientific News, 54, 2739.</p><p></p><p>Prameela B. & Daniel A.E. (2016). Design of Low Noise Amplifier for IEEE Standard</p><p>802.11b using Cascode and Modified Cascode Techniques. Procedia Technology,</p><p>25(2016), 443449.</p><p></p><p>Quang D.H., Tweed, D., & Le-Ngoc, T. (2017). Long Term Evolution in Unlicensed Bands.</p><p>In Springer International Publishing.</p><p></p><p>R. C. Richey, J. D. Klein, & W. A. Nelson. (2004). Developmental research: Studies of</p><p>instructional design and development. In D. H. Jonassen (Ed.), Handbook of</p><p>Research for Educational Communications and Technology (pp. 10991130).</p><p>Lawrence Erlbaum Associates Publishers.</p><p></p><p>R. E. Collin. (2000). Foundations for Microwave Engineering (2nd Edition). New York: John</p><p>Wiley & Sons Inc.</p><p></p><p>Ram Kumar, Anandini Devi, Abahan Sarkar, & F. A. Talukdar. (2016). Design of 5.5 GHz</p><p>Linear Low Noise Amplifier using Post Distortion Technique with Body Biasing.</p><p>Microsystem Technologies, 22(11), 26812690.</p><p></p><p>Reinaldo Perez. (1998). Wireless Communications Design Handbook: Aspects of Noise,</p><p>Interference, and Environmental Concerns. Sang Diego, CA: Academic Press.</p><p></p><p>Ruchi Kumari, V. Vignesh, & Navin Kumar. (2018). Wideband Low Noise Amplifer Design</p><p>for Microwave Frequency using CMOS 65nm Technology. 2018 International</p><p>Conference on Advances in Computing, Communications and Informatics, ICACCI</p><p>2018, 732736.</p><p></p><p>S. Azzouni, N. Khitouni & M.S. Bouhlel. (2019). Direct-Conversion Receiver Front-End for</p><p>LTE wireless network. 19th International Conference on Sciences and Techniques of</p><p>Automatic Control and Computer Engineering, STA 2019, 479 484.</p><p></p><p>S. Chrisben Gladson, S. Vijayalakshmi, M. Sowmya Lakshmi, & M. Bhaskar. (2019).</p><p>Linearity Improvement of RF Mixer using Double-Linearization for 5 GHz</p><p>Application. AEU International Journal of Electronics and Communication,</p><p>110(2019), 14348411.</p><p></p><p>S. Kolakaluri, S. S. Nagura, R. Kar, S. P. Ghoshal, & D. Mandal. (2016). Optimization of</p><p>Low Noise Amplifier using Particle Swarm Optimization. Iternational Conference on</p><p>Electrical, Electronics and Optimization Techniques (ICEEOT), 1(1), 2055 2058.</p><p></p><p>S. Radha, D. S. Shylu, P. Nagabushanam, & J. Mathew. (2019). Low Noise Amplifier with</p><p>Resistive and Capacitive Feedback for 2.4 GHz RF Receiver Front End. Journal of</p><p>High-Speed Networks, 25(2), 181203.</p><p></p><p>S. S. Mousavi Khaleghi, G. Moradi, R. Sarraf Shirazi, & A. Jafargholi. (2019). Microstrip</p><p>Line Impedance Matching using ENZ Metamaterials, Design, and Application. IEEE</p><p>Transactions on Antennas and Propagation, 67(4), 22432251.</p><p></p><p>S. Udaya Shankar, & M. Davidson K. D. (2015). Design and Performance Measure of 5.4</p><p>GHz CMOS Low Noise Amplifier using Current Reuse Technique in 0.18m</p><p>Technology. Procedia Computer Science, 47(C), 135143.</p><p></p><p>Shahdon Chandhon Mohonta, M. Firoj Ali, & Golam Sadeque. (2015). Study of Different</p><p>Types of Noise and Its Effects in Communication Systems. International Journal of</p><p>Engineering and Management Research, 5(2), 410413.</p><p></p><p>Shayea Ibraheem, Hadri Azmi Marwan, Abd. Rahman Tharek, Ergen Mustafa, Han C. T., &</p><p>Arsad Arsany. (2019). Spectrum gap analysis with practical solutions for future</p><p>mobile data traffic growth in Malaysia. IEEE Access, 7, 2491024933.</p><p></p><p>Snehal Bharadi & K. U. Aade. (2015). A Review on Low Noise Amplifier. International</p><p>Journal of Innovation Research in Science, Engineering and Technology, 4(7), 6470</p><p>6475.</p><p></p><p>Sonia Sharma, C. C. Tripathi, & Rahul Rishi. (2017). Impedance Matching Techniques for</p><p>Microstrip Patch Antenna. Indian Journal of Science and Technology, 10(28), 116.</p><p></p><p>Sumathi Manicham. (2018). Design Concepts of Low Noise Amplifier for Radio Frequency</p><p>Receiver. RF Systems, Circuits and Components (pp. 121). IntechOpen. Retrieved</p><p>from https://www.intechopen.com/books/rf-systems-circuits-andcomponents/</p><p>design-concepts-of-low-noise-amplifier-for-radio- frequency-receivers</p><p></p><p>Syuhaimi Kassim & Fareq Malek. (2010). Microwave FET Amplifier Stability Analysis</p><p>using Geometrically-Derived Stability Factors. 2010 International Conference on</p><p>Intelligent and Advanced Systems (ICIAS), Manila, 2010, 15.</p><p></p><p>T. J. Ellis, & Y. Levy. (2010). A Guide for Novice Researchers: Design and Development</p><p>Research Methods What Design and Development Research Is. Informing Science,</p><p>107118.</p><p></p><p>T. Van Hoi, N. T. Lanh, N. X. Truong, N. H. Duc, & B. G. Duong. (2016). Design of a Front-</p><p>End for Satellite Receiver. International Journal of Electrical and Computer</p><p>Engineering, 6(5), 22822290.</p><p></p><p>T.Liu. (2011). Design of a Now Noise Amplifier for Wireless Sensor Networks. (Masters</p><p>thesis, University of Arkansas, Fayetteville). Retrieved from</p><p>http://scholarworks.uark.edu/etd/140</p><p></p><p>Tim Das. (2013). Practical Considerations for Low Noise Amplifier Design. Freescale</p><p>Semiconductor, 110.</p><p></p><p>Vikram Singh, Sandeep K. Arya, & Manoj Kumar. (2018). A 0 . 7 V , Ultra-Wideband</p><p>Common Gate LNA with Feedback Body Bias Topology for Wireless Applications.</p><p>Journal of Low Power Electronics and Applications, 8(42), 113.</p><p></p><p>W. Liao & J. Yang. (2016). A 0.5-3.5GHz Wideband CMOS LNA for LTE Application.</p><p>IMFEDK 2016 - 2016 International Meeting for Future of Electron Devices, Kansai,</p><p>(2), 56.</p><p></p><p>William H.Hayt, Jack E. Kemmerly, & Steven M. Durbin. (2012). Engineering Circuit</p><p>Analysis (8th Edition). New York: McGraw-Hill.</p><p></p><p>Wu T.Y. & Yang J. R. (2017). A Multiband Fully Integrated High Linearity Power Amplifier</p><p>Using a 0.18 CMOS Process for LTE Application. International SOC Design</p><p>Conference, 3132.</p><p></p><p>Xin Yang, Tsuyoshi Sugiura, Norihisa Otani, Tadamasa Murakami, Eiichiro Otobe &</p><p>Toshihiko Yoshimasu. (2015). A 5-GHz Band WLAN SiGe HBT Power Amplifier</p><p>IC with Novel Adaptive-Linearizing CMOS Bias Circuit. IEICE Transactions on</p><p>Electronics, E98.C(7), 651658.</p><p></p><p>Ying L.L., Teong C.C., Jonathan L., & Alexey V. (2014). Recent Advances In Radio</p><p>Resource Management For Heterogeneous LTE/LTE-A Networks. IEEE</p><p>Communications Surveys and Tutorials, 16(4), 21422180.</p><p></p><p>Youngoo Yang, Kevin Choi, & Kenneth P. W. (2004). DC Boosting Effect of Active Bias</p><p>Circuits and Its Optimization for Class-AB InGaP-GaAs HBT Power Amplifiers.</p><p>IEEE Transactions on Microwave Theory and Techniques, 52(5), 14551463.</p><p></p><p>Yu W., Jie C., & Renli Z. (2019). A C To Ku Band Ultra-wideband LNA With RLCFeedback</p><p>And T-matching Network. IEEE MTT-S 2019 International Microwave</p><p>Biomedical Conference, IMBioC 2019 - Proceedings, 1, 13.</p><p></p><p>Z. A. Yamayee & J. L.Jr. Bala. (1994). Electromechanical Energy Devices and Power</p><p>Systems. New York: John Wiley & Sons Inc.</p><p></p><p>Z. H. Talukder, S.S. Islam, D. Mahjabeen, A. Ahmed, S. Rafique, & M.A. Rashid. (2013).</p><p>Cell Coverage Evaluation for LTE and WiMAX in Wireless Communication System.</p><p>World Applied Sciences Journal, 22(10), 14861491.</p><p></p><p>Z. Zhang. (2013). High Linearity Universal LNA Designs for Next Generation Wireless</p><p>Application. (Doctoral Dissertation, University of Saskatchewan, Saskatoon,</p><p>Canada). Retrieved from https://harvest.usask.ca/handle/10388/ETD-2013-12- 1337</p><p></p>