Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers

<p>This study aimed to prepare and characterise dental resin composite with</p><p>hydroxyapatite-yttria stabilised zirconia (HAp-YSZ) fillers from natural and synthetic sources of</p><p>hydroxyapatite (HAp). The yttria stabilised...

Full description

Saved in:
Bibliographic Details
Main Author: Nursuhaila Mohd Nor Rulhadi
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7231
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7231
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic
spellingShingle
Nursuhaila Mohd Nor Rulhadi
Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
description <p>This study aimed to prepare and characterise dental resin composite with</p><p>hydroxyapatite-yttria stabilised zirconia (HAp-YSZ) fillers from natural and synthetic sources of</p><p>hydroxyapatite (HAp). The yttria stabilised zirconia (YSZ) and HAp were used as reinforcement</p><p>inorganic fillers, while the organic resin were the blended monomers of bisphenol A glycerolate</p><p>dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and diurethane dimethacrylate</p><p>(UDMA). The composites were thoroughly blended at ratio of 70:30 wt/wt of fillers and resin. The</p><p>mixing ratios of fillers (YSZ:HAp) were fixed at 0:100; 10:90; 25:75; 50:50 and 75:25 wt/wt. The</p><p>composites were moulded and crosslinked under UV-light for 60 s on the both sides of samples</p><p>surfaces. The degree of conversion, flexural strength (FS), compression strength (CS), Vickers</p><p>hardness (VH), surface roughness (SR), water sorption, water solubility and cytotoxicity of</p><p>composites were measured. The results exhibited that the mechanical properties of YSZ-natural HAp</p><p>composites with ratio of 10:90 wt/wt (FS = 65.61 MPa; CS = 160.34 MPa; VH = 50.80 HV; SR = 120.00</p><p>nm) were better</p><p>performance than YSZ-synthetic HAp composites. Water sorption and solubility of this composite are</p><p>25.19 g mm? and 5.58 g mm?, respectively. The cytotoxicity test showed that this compositeis</p><p>non-toxic. As a conclusion, HAp-YSZ dental resin composites were successfully prepared and</p><p>characterised. The implication of this study is that the composite produced shows a potential to be</p><p>used as dental resin</p><p>composite.</p><p></p>
format thesis
qualification_name
qualification_level Master's degree
author Nursuhaila Mohd Nor Rulhadi
author_facet Nursuhaila Mohd Nor Rulhadi
author_sort Nursuhaila Mohd Nor Rulhadi
title Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
title_short Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
title_full Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
title_fullStr Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
title_full_unstemmed Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
title_sort characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=7231
_version_ 1747833366890151936
spelling oai:ir.upsi.edu.my:72312022-07-05 Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers 2019 Nursuhaila Mohd Nor Rulhadi <p>This study aimed to prepare and characterise dental resin composite with</p><p>hydroxyapatite-yttria stabilised zirconia (HAp-YSZ) fillers from natural and synthetic sources of</p><p>hydroxyapatite (HAp). The yttria stabilised zirconia (YSZ) and HAp were used as reinforcement</p><p>inorganic fillers, while the organic resin were the blended monomers of bisphenol A glycerolate</p><p>dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and diurethane dimethacrylate</p><p>(UDMA). The composites were thoroughly blended at ratio of 70:30 wt/wt of fillers and resin. The</p><p>mixing ratios of fillers (YSZ:HAp) were fixed at 0:100; 10:90; 25:75; 50:50 and 75:25 wt/wt. The</p><p>composites were moulded and crosslinked under UV-light for 60 s on the both sides of samples</p><p>surfaces. The degree of conversion, flexural strength (FS), compression strength (CS), Vickers</p><p>hardness (VH), surface roughness (SR), water sorption, water solubility and cytotoxicity of</p><p>composites were measured. The results exhibited that the mechanical properties of YSZ-natural HAp</p><p>composites with ratio of 10:90 wt/wt (FS = 65.61 MPa; CS = 160.34 MPa; VH = 50.80 HV; SR = 120.00</p><p>nm) were better</p><p>performance than YSZ-synthetic HAp composites. Water sorption and solubility of this composite are</p><p>25.19 g mm? and 5.58 g mm?, respectively. The cytotoxicity test showed that this compositeis</p><p>non-toxic. As a conclusion, HAp-YSZ dental resin composites were successfully prepared and</p><p>characterised. The implication of this study is that the composite produced shows a potential to be</p><p>used as dental resin</p><p>composite.</p><p></p> 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=7231 https://ir.upsi.edu.my/detailsg.php?det=7231 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abbas, F., Bahman, N.-T., & Reza, E.-K. (2012). Synthesis of calcium phosphate-</p><p>based composite nanopowders by mechanochemical process and subsequent thermal treatment. Ceramics</p><p>International, 38(8), 67296738.</p><p></p><p>Abdulrahman, I., Hamzat Ibiyeye, T., Abubakar, B. M., Saidu, H., Hindatu, Y., Mohammed Ndejiko, J.,</p><p>& Sulaiman, M. (2014). From garbage to biomaterials: An overview on egg shell based hydroxyapatite.</p><p>Journal of Materials, 2014, 16.</p><p></p><p>Abouelnaga, M. A. A. (2014). A comparison of gingival marginal adaptation and surface microhardness</p><p>of class II resin based composites (conventional and bulk fill) placed in layering versus bulk fill</p><p>techniques. University of Iowa.</p><p></p><p>Abuelenain, D. A., & Neel, E. A. A. (2015). Surface and mechanical properties of different dental</p><p>composites. Austin Journal of Dentistry, 2(2), 10191023.</p><p></p><p>ADA Council on Scientific Affairs. (2003). Direct and indirect restorative materials.</p><p>The Journal of the American Dental Association, 134(April), 463472.</p><p></p><p>Ahn, E. S., Gleason, N. J., & Ying, J. Y. (2005). The Effect of Zirconia Reinforcing Agents on the</p><p>Microstructure and Mechanical Properties of Hydroxyapatite- Based Nanocomposites. Journal of the</p><p>American Ceramic Society, 88(12), 3374 3379.</p><p></p><p>Al-sanabani, J. S., Madfa, A. A., & Al-sanabani, F. A. (2013). Application of Calcium Phosphate</p><p>Materials in Dentistry. International Journal of Biomaterials, 2013, 1 12.</p><p></p><p>Albers, H. F. (2002). Tooth-colored Restoratives: Principles and Techniques (Ninth ed.). London: BC</p><p>Decker INC. Hamilton.</p><p></p><p>Ali Doostmohammadi, Ahmad Monshi, Rasoul Salehi, Mohammad Hossein Fathi, Ehsan Seyedjafari, Abbas</p><p>Shafieee, & Masoud Soleimani. (2011). Cytotoxicity evaluation of 63S bioactive glass and</p><p>bone-derived hydroxyapatite particles using human bone-marrow stem cell. Biomedical Papers of the</p><p>Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 155(4), 323326.</p><p></p><p>Alnazzawi, A. A. (2012). Temperature-dependent properties of resin-composites before and during the</p><p>setting process. University of Manchester.</p><p></p><p>Alqap, A. S. F., & Sopyan, I. (2009). Low temperature hydrothermal synthesis of calcium phosphate</p><p>ceramics: Effect of excess Ca precursor on phase behaviour.</p><p>Indian Journal of Chemistry, 48, 14921500.</p><p></p><p>ngela, C., Volpato, M., Gustavo, L., Garbelotto, D. A., Fredel, M. C., Bondioli, F.,</p><p> Bondioli, F. (2011). Application of Zirconia in Dentistry : Biological , Mechanical and Optical</p><p>Considerations. In Advances in Ceramics (p. 550). Itali: InTech.</p><p></p><p>Ansteinsson, V. (2013). In vitro toxicity of filler particles and methacrylates used in dental</p><p>composite materials. Nordic Institute of Dental Materials (NIOM).</p><p></p><p>Arkin, V. H., Lakhera, M., Manjubala, I., & Narendra Kumar, U. (2015). Solid state synthesis and</p><p>characterization of calcium phosphate for biomedical application. International Journal of ChemTech</p><p>Research, 8(6), 264267.</p><p></p><p>Asmussen, E., & Peutzfeldt, A. (1998). Influence of UEDMA, BisGMA and TEGDMA on selected mechanical</p><p>properties of experimental resin composites. Dental Materials.</p><p></p><p>Awan, M. (2010). A Study Investigating the Mechanical Testing of a Novel Dental Restorative</p><p>Material and its Biocompatibility. University of Birmingham.</p><p></p><p>Azarhoosh, M. J. (2017). Application of Biomaterials in Dentistry. Current Trends in Biomedical</p><p>Engineering & Biosciences, 2(3).</p><p></p><p>Balamurugan, A., Michel, J., Benhayoune, H., Wortham, L., Sockalingum, G., Banchet, V., </p><p>Balossier, G. (2006). Synthesis and structural analysis of sol gel derived stoichiometric</p><p>monophasic hydroxyapatite. CeramicsSilikty, 50(1), 2731.</p><p></p><p>Balazsi, C., Gergely, G., Sahin, F. C., & Goller, G. (2011). Spark Plasma Sintered</p><p>HydroxyapatiteZirconia Composites: Structural and Mechanical Properties. In 18th International</p><p>Conference on Composite Materials (pp. 14).</p><p></p><p>Baldissera, R. A., Corra, M. B., Schuch, H. S., Collares, K., Nascimento, G. G., Jardim, P. S., </p><p>Demarco, F. F. (2013). Are there universal restorative composites for anterior and posterior teeth?</p><p>Journal of Dentistry, 41(11), 1027 1035.</p><p></p><p>Bannach, G., Cavalheiro, C., Calixto, L., & Cavalheiro, E. (2015). Thermoanalytical study of</p><p>monomers: BisGMA, BisEMA, TEGDMA, UDMA and their mixture. Brazilian Journal of Thermal Analysis,</p><p>4(12), 2834.</p><p></p><p>Baroudi, K., & Rodrigues, J. C. (2015). Flowable Resin Composites: A Systematic Review and Clinical</p><p>Considerations. Journal of Cinical and Diagnostic Research, 9(6), 1824.</p><p></p><p>Barszczewska-rybarek, I. M. (2009). Structure property relationships in dimethacrylate</p><p>networks based on Bis-GMA , UDMA and TEGDMA. Dental Materials, 25(9), 10821089.</p><p></p><p>Bayne, S. C., Thompson, J. Y., Swift, E. J., Stamatiades, P., & Wilkerson, M. (1998). A</p><p>characterization of first-generation flowable composites. Journal of the American Dental</p><p>Association, 129(5), 56777.</p><p></p><p>Beun, S., Glorieux, T., Devaux, J., Vreven, J., & Leloup, G. (2007). Characterization of nanofilled</p><p>compared to universal and microfilled composites. Dental Materials, 23(1), 5159.</p><p></p><p>Bittencourt, B. F., Gomes, G. M., Trentini, F. A., Azevedo, M. R. De, Gomes, J. C., Maria, O., &</p><p>Gomes, M. (2014). Effect of finishing and polishing on surface roughness of composite resins after</p><p>bleaching. Brazilian Journal of Oral Sciences, 13(2), 158162.</p><p></p><p>Bollen, C. M., Lambrechts, P., & Quirynen, M. (1997). Comparison of surface roughness of oral hard</p><p>materials to the threshold surface roughness for bacterial plaque retention: a review of the</p><p>literature. Dental Materials : Official Publication of the Academy of Dental Materials, 13(4),</p><p>25869.</p><p></p><p>Braden, M., & Clarke, R. (1984). Water absorption characteristics of dental microfine composite</p><p>filling materials: I. Proprietary materials. Biomaterials, 5(6), 369372.</p><p></p><p>Calabrese, L., Fabiano, F., Curr, M., Borsellino, C., Bonaccorsi, L. M., Fabiano, V.,</p><p> Proverbio, E. (2016). Hydroxyapatite Whiskers Based Resin Composite versus Commercial Dental</p><p>Composites: Mechanical and Biocompatibility Characterization. Advances in Materials Science and</p><p>Engineering, 2016, 19.</p><p></p><p>Camposilvan, E., Marro, F. G., Mestra, A., & Anglada, M. (2015). Enhanced reliability of</p><p>yttria-stabilized zirconia for dental applications. Acta Biomaterialia, 17, 3646.</p><p></p><p>Cangul, S., & Adiguzel, O. (2017). The Latest Developments Related to Composite Resins.</p><p>International Dental Research, 7(2), 32.</p><p></p><p>Ceci, M., Viola, M., Rattalino, D., Beltrami, R., Colombo, M., & Poggio, C. (2017). Discoloration</p><p>of different esthetic restorative materials: A spectrophotometric evaluation. European Journal of</p><p>Dentistry, 11(2), 149156.</p><p></p><p>Chen, M. H. (2010). Update on Dental Nanocomposites. Journal of Dental Research, 89(6), 549560.</p><p></p><p>Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The Tetragonal- Monoclinic</p><p>Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic</p><p>Society, 92(9), 19011920.</p><p></p><p>Ching, T. Y. (2017). The effects of various processing conditions on the properties of</p><p>hydroxyapatite. University of Malaya.</p><p></p><p>Choi, K. K., Ferracane, J. L., Hilton, T. J., & Charlton, D. (2000). Properties of Packable Dental</p><p>Composites. Journal of Esthetic and Restorative Dentistry, 12(4), 216226.</p><p></p><p>Chuenarrom, C., Benjakul, P., & Daosodsai, P. (2009). Effect of Indentation Load and Time on Knoop</p><p>and Vickers Microhardness Tests for Enamel and Dentin. Materials Research, 12(4), 473476.</p><p></p><p>Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. In</p><p>Encyclopedia of Analytical Chemistry (pp. 123). John Wiley & Sons Ltd.</p><p></p><p>Cramer, N. B., Stansbury, J. W., & Bowman, C. N. (2011). Recent advances and developments in</p><p>composite dental restorative materials. Journal of Dental Research, 90(4), 40216.</p><p></p><p>Curtis, A. R., Shortall, A. C., Marquis, P. M., & Palin, W. M. (2008). Water uptake and strength</p><p>characteristics of a nanofilled resin-based composite. Journal of Dentistry, 36(3), 186193.</p><p></p><p>Dafar, M. (2014). Reinforcement of Flowable Dental Composites with Titanium Dioxide Nanotubes. The</p><p>University of Western Ontario.</p><p></p><p>Darmani, H., & Al-hiyasat, A. S. (2006). The effects of BIS-GMA and TEG-DMA on female mouse</p><p>fertility. Dental Materials, 22(4), 353358.</p><p></p><p>de Moraes, R. R., Marimon, J. L. M., Jochims Schneider, L. F., Sinhoreti, M. A. C.,</p><p>Correr-Sobrinho, L., & Bueno, M. (2008). Effects of 6 Months of Aging in Water on Hardness and</p><p>Surface Roughness of Two Microhybrid Dental Composites. Journal of Prosthodontics, 17(4), 323326.</p><p></p><p>Della Bona, A., Pecho, O. E., & Alessandretti, R. (2015). Zirconia as a dental biomaterial.</p><p>Materials, 8, 49784991.</p><p></p><p>Demir, F., Oktay, A., & Topcu, F. T. (2017). Smile and dental aesthetics: a literature review.</p><p>Medicine Science, 6(1), 172179.</p><p></p><p>Dewaele, M., Truffier-Boutry, D., Devaux, J., & Leloup, G. (2006). Volume contraction in photocured</p><p>dental resins: the shrinkage-conversion relationship revisited. Dental Materials : Official</p><p>Publication of the Academy of Dental Materials, 22(4), 35965.</p><p></p><p>Dorozhkin, S. V. (2012). Nanodimensional and Nanocrystalline Calcium Orthophosphates.</p><p>American Journal of Biomedical Engineering, 2(3), 4897.</p><p></p><p>Duc, O., Betrisey, E., Di Bella, E., Krejci, I., & Ardu, S. (2018). Staining susceptibility of</p><p>recently developed resin composite materials. Journal of Clinical Advances in Dentistry, 2, 17.</p><p></p><p>Dudek, A., & Wlodarczyk, R. (2012). Composites Hydroxyapatite with Addition of</p><p></p><p>Zirconium Phase. In Feng Shi (Ed.), Ceramic Materials Progress in Modern Ceramics (pp. 129148).</p><p>Shanghai, China: In Tech.</p><p></p><p></p><p>Elbishari, H. I. (2012). Characterisation of the effect of filler size on handling, mechanical and</p><p>surface properties of resin composites. University of Manchester.</p><p></p><p>Erdal, S., & Orris, P. (2012). Mercury in Dental Amalgam and Resin-Based Alternatives : A</p><p>Comparative Health Risk Evaluation. Health Care Without Harm. Reston.</p><p></p><p>Evis, Z. (2007). Reactions in hydroxylapatitezirconia composites. Ceramics International, 33(6),</p><p>987991.</p><p></p><p>Fengwei, L., Bin, S., Xiaoze, J., Aldeyab, S. S., Qinghong, Z., & Meifang, Z. (2014). Mechanical</p><p>properties of dental resin/composite containing urchin-like hydroxyapatite. Dental Materials,</p><p>30, 13581368.</p><p></p><p>Fengwei, L., Ruili, W., Yanhua, C., Xiaoze, J., Qinghong, Z., & Meifang, Z. (2013). Polymer grafted</p><p>hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical</p><p>properties. Materials Science and Engineering, 33, 49945000.</p><p></p><p>Fengwei, L., Xiaoze, J., Shuang, B., Ruili, W., Bin, S., & Meifang, Z. (2015). Effect of</p><p>hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity</p><p>of the dental resin composite. Materials Science and Engineering C, 53, 150155.</p><p></p><p>Ferracane, J. L. (2011). Resin compositeState of the art. Dental Materials, 27(1), 2938.</p><p></p><p>Firdausy, M. D. (2015). Evaluation of experimental bioactive glass resin composites.</p><p>The University of Hong Kong.</p><p></p><p>Frazer, R. Q., Byron, R. T., Osborne, P. B., & West, K. P. (2005). PMMA: an essential material in</p><p>medicine and dentistry. Journal of Long-Term Effects of Medical Implants, 15(6), 62939.</p><p></p><p>Gajewski, V. E. S., Pfeifer, C. S., Froes-salgado, N. R. G., Boaro, L. C. C., & Braga,</p><p>R. R. (2012). Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and</p><p>Water Sorption/ Solubility. Brazilian Dental Journal, 23(5), 508514.</p><p></p><p>Ganss, C., Lussi, A., & Schlueter, N. (2012). The histological features and physical properties of</p><p>eroded dental hard tissues. In Erosive Tooth Wear: From Diagnosis to Therapy (pp. 99107).</p><p></p><p>Goenka, S., Balu, R., & Sampath Kumar, T. S. (2012). Effects of nanocrystalline</p><p>calcium deficient hydroxyapatite incorporation in glass ionomer cements.</p><p>Journal of the Mechanical Behavior of Biomedical Materials, 7, 6976.</p><p></p><p></p><p>Gouveia, T. H. N., Theobaldo, J. D., Vieira-Junior, W. F., Lima, D. A. N. L., & Aguiar, F. H. B.</p><p>(2017). Esthetic smile rehabilitation of anterior teeth by treatment with biomimetic restorative</p><p>materials: a case report. Clinical, Cosmetic and Investigational Dentistry, 9, 2731.</p><p></p><p>Guo, H., Khor, K. A., Boey, Y. C., & Miao, X. (2003). Laminated and functionally graded</p><p>hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma</p><p>sintering. Biomaterials, 24(4), 667675.</p><p></p><p>Hambire, U. V., & Tripathi, V. K. (2012). Experimental evaluation of different fillers in dental</p><p>composites in terms of mechanical properties. ARPN Journal of Engineering and Applied Sciences,</p><p>7(2), 147151.</p><p></p><p>Hannink, R. H. J., Kelly, P. M., & Muddle, B. C. (2004). Transformation Toughening in</p><p>Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 83(3), 461487.</p><p></p><p>Harda, F. (2008). Zirconia Reinforced Hydroxyapatite Biocomposite for Strength and Toughness</p><p>Improvement.</p><p></p><p>Heintze, S. D., Forjanic, M., Ohmiti, K., & Rousson, V. (2010). Surface deterioration of dental</p><p>materials after simulated toothbrushing in relation to brushing time and load. Dental Materials,</p><p>26(4), 306319.</p><p></p><p>Herrero, A. A., Yaman, P., & Dennison, J. B. (2005). Polymerization shrinkage and depth of cure of</p><p>packable composites. Quintessence International (Berlin, Germany : 1985), 36(1), 2531.</p><p></p><p>Hland, W., Schweiger, M., Watzke, R., Peschke, A., & Kappert, H. (2008). Ceramics as biomaterials</p><p>for dental restoration. Expert Review of Medical Devices, 5(6), 729745.</p><p></p><p>Holzapfel, B. M., Reichert, J. C., Schantz, J.-T., Gbureck, U., Rackwitz, L., Nth, U.,</p><p> Hutmacher, D. W. (2013). How smart do biomaterials need to be? A translational science and</p><p>clinical point of view. Advanced Drug Delivery Reviews, 65(4), 581603.</p><p></p><p>Jillavenkatesa, A., & Condrate, R. A. (1998). Solgel processing of hydroxyapatite.</p><p>Journal of Materials Science, 33(16), 41114119.</p><p></p><p>Khalaf Al-Khazraji, K., Asim Hanna, W., & Suhbat Ahmed, P. (2010). Effect of Sintering Temperature</p><p>on Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue</p><p>Healing. Journal, 28(10), 18801892.</p><p></p><p>Khoo, W., Nor, F. M., Ardhyananta, H., & Kurniawan, D. (2015). Preparation of Natural</p><p>Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures. Procedia</p><p>Manufacturing, 2, 196201.</p><p></p><p>Khoroushi, M., & Mansoori, M. (2012). Marginal Sealing Durability of Two Contemporary Self-Etch</p><p>Adhesives, 2012.</p><p></p><p>Kim, S. W., Khalil, K. A., Cockcroft, S. L., Hui, D., & Lee, J. H. (2013). Sintering behavior and</p><p>mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated</p><p>sintering. Composites Part B, 45(1), 1689 1693.</p><p></p><p>Klapdohr, S., & Moszner, N. (2005). New Inorganic Components for Dental Filling Composites.</p><p>Monatshefte for Chemie - Chemical Monthly, 136(1), 2145.</p><p></p><p>Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013). Nanocrystalline</p><p>hydroxyapatite from fish scale waste: Preparation, characterization and application for</p><p>selenium adsorption in aqueous solution. The Chemical Engineering Journal, 215216, 522532.</p><p></p><p>Kumar Mishra, V., Nath Bhattacharjee, B., Kumar, D., Rai, S. B., & Parkash, O. (2015). Effect of</p><p>Chelating Agent at Different pH on Spectroscopic and Structural Properties of Microwave Derived</p><p>Hydroxyapatite Nanoparticles: A Bone Mimetic Material. New Journal of Chemistry, 0, 13.</p><p></p><p>Laila, A. D. (2010). The effect of filler on the mechanical properties of a novel resin- based</p><p>calcium phosphate cement. Indiana University School of Dentistry.</p><p></p><p>Le Rvrend, B. J. D., Edelson, L. R., & Loret, C. (2014). Anatomical, functional, physiological</p><p>and behavioural aspects of the development of mastication in early childhood. The British Journal</p><p>of Nutrition, 111(3), 40314.</p><p></p><p>Lee, S.-Y., Regnault, W. F., Antonucci, J. M., & Skrtic, D. (2007). Effect of particle size of an</p><p>amorphous calcium phosphate filler on the mechanical strength and ion release of polymeric</p><p>composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80B(1), 1117.</p><p></p><p>Leitune, V., Collares, F., Trommer, R., Andriolia, D., Bergmann, C., & Samuela, S. (2013). The</p><p>addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry,</p><p>41(1), 321327.</p><p></p><p>Leong, C. H., Muchtar, A., Tan, C. Y., Razali, M., & Noor Faeizah, A. (2014). Sintering of</p><p>hydroxyapatite/yttria stabilized zirconia nanocomposites under nitrogen gas for dental</p><p>materials. Advances in Materials Science and Engineering, 2014, 16.</p><p></p><p>Lim, K. F., Andanastuti, M., Rusnah, M., & Yong Tan, C. (2014). Synthesis and characterization of</p><p>hydroxyapatite-zirconia composites for dental application. Asian Journal of Scientific Research,</p><p>7(4), 609615.</p><p></p><p>Lindberg, A. (2005). Resin composites: Sandwich restorations and Curing techniques.</p><p>Umea University.</p><p></p><p>Liuyun, J., Yubao, L., & Chengdong, X. (2009). Preparation and biological properties of a novel</p><p>composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue. Journal</p><p>of Biomedical Science, 16(1), 65.</p><p></p><p>Lukic, M. J., Veselinovic, L., Stevanovic, M., Nunic, J., Drazic, G., Markovic, S., & Uskokovic, D.</p><p>(2014). Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Material S Letters,</p><p>122, 296300.</p><p></p><p>Maas, M. S., Alania, Y., Natale, L. C., Rodrigues, M. C., Watts, D. C., & Braga, R. R. (2017).</p><p>Trends in restorative composites research: what is in the future? Brazilian Oral Research, 31,</p><p>2336.</p><p></p><p>Madhav, V. N. . (2012). Nanocomposites - A Step Towards Improved Restorative Dentistry. Indian</p><p>Journal of Dental Sciences, 3(4), 123126.</p><p></p><p>Miletic, V. (2017). Dental Composite Materials for Direct Restorations - Google Books.</p><p></p><p>Mohammed, A. H. (2011). Polimerisation kinetics and optical phenomena of photoactive dental resins.</p><p>University of Birmingham.</p><p></p><p>Moharam, L. M., Sherief, M. A., & Nagi, S. M. (2016). Mechanical properties of resin composite</p><p>reinforced with synthesized nano-structured hydroxyapatite. International Journal of ChemTech</p><p>Researc, 9(7), 634644.</p><p></p><p>Morks, M., & Kobayashi, A. (2007). Microstructure and mechanical properties of HA/ZrO2 coatings by</p><p>gas tunnel plasma spraying. Transactions of JWRI, 36(1), 4751.</p><p></p><p>Mousavinasab, S. M. (2011). Effects of Filler Content on Mechanical and Optical Properties of</p><p>Dental Composite Resin. In Metal, Ceramic and Polymeric Composites for Various Uses (pp. 421429).</p><p>InTech.</p><p></p><p>Muddugangadhar, B. C., Amarnath, G. S., Tripathi, S., Dikshit, S., & Ms, D. (2012). Biomaterials</p><p>for Dental Implants: An Overview International Journal of Oral Implantology and Clinical Research.</p><p>International Journal of Oral Implantology and Clinical Research, 2(1), 1324.</p><p></p><p>Murugan, R., & Ramakrishna, S. (2003). Effect of zirconia on the formation of calcium phosphate</p><p>bioceramics under microwave irradiation, 58, 230234.</p><p></p><p>Musanje, L., Ferracane, J. L., & Sakaguchi, R. L. (2009). Determination of the optimal</p><p>photoinitiator concentration in dental composites based on essential material properties. Dental</p><p>Materials, 25(8), 9941000.</p><p></p><p>Mustafa, N., Ibrahim, M. H. I., Asmawi, R., & Amin, A. M. (2015). Hydroxyapatite extracted from</p><p>waste fish bones and scales via calcination method. Applied Mechanics and Materials, 773774,</p><p>287290.</p><p></p><p>Nakamura, K. (2015). Mechanical and Microstructural Properties of Monolithic Zirconia.</p><p></p><p>Nascimento, M. M., Gordan, V. V, Qvist, V., Litaker, M. S., Rindal, D. B., Williams,</p><p>O. D., Gilbert, G. H. (2010). Reasons for Placement of Restorations on Previously Unrestored</p><p>Tooth Surfaces by Dental PBRN Dentists. Journal of the American Dental Association, 141(4), 4418.</p><p></p><p>Nayak, A. K. (2010). Hydroxyapatite Synthesis Methodologies: An Overview.</p><p>International Journal of ChemTech Research, 2(2), 9744290.</p><p></p><p>Nayak, Y., Rana, R. P., Pratihar, S. K., & Bhattacharyya, S. (2008). Pressureless sintering of</p><p>dense hydroxyapatite-zirconia composites. Journal of Materials Science: Materials in Medicine,</p><p>19(6), 24372444.</p><p></p><p>OBrien, W. J. (2002). Dental materials and their selection (3rd ed.). Quintessence Publishing Co.</p><p>OBrien, W. J. (2009). Dental Materials and Their Selection. Quintessence Pub. Co. Oduncu, B. S.,</p><p>Yucel, S., Aydin, I., Sener, I. D., & Yamaner, G. (2010).</p><p>Polymerisation Shrinkage of Light Cured Hydroxyapatite ( HA ) Reinforced Dental Composites,</p><p>4(4), 130135.</p><p></p><p>Okulus, Z., Buchwald, T., Szybowicz, M., & Voelkel, A. (2014). Study of a new resin-based</p><p>composites containing hydroxyapatite filler using Raman and infrared spectroscopy. Materials</p><p>Chemistry and Physics, 145(3), 304312.</p><p></p><p>Oliveira, M., & Sander Mansur, H. (2007). Synthetic Tooth Enamel : SEM Characterization of a</p><p>Fluoride Hydroxyapatite Coating for Dentistry Applications. Material Research, 10(2), 115118.</p><p></p><p>Pankaew, P., Hoonnivath, E., Limsuwan, P., & Naemchanth, K. (2010). Temperature Effect on Calcium</p><p>Phosphate Synthesized from Chicken Eggshells and Ammonium Phosphate. Journal of Applied</p><p>Sciences, 10(24), 33373342.</p><p></p><p>Patel, N., & Gohil, P. (2012). A review on biomaterials: scope, applications & human anatomy</p><p>significance. International Journal of Emerging Technology and, 2(4), 91101.</p><p></p><p>Pavlovic, M. (2015). What are biomaterials? In Bioengineering (pp. 229244). Cham: Springer</p><p>International Publishing.</p><p></p><p>Peskersoy, C., & Culha, O. (2017). Comparative Evaluation of Mechanical Properties of Dental</p><p>Nanomaterials. Journal of Nanomaterials, 2017, 18.</p><p></p><p>Petrik, J., & Palfy, P. (2009). The Quality of Hardness Tester Calibration. Quality Innovation</p><p>Prosperity, 1(13), 3444.</p><p></p><p>Pittayachawan, P. (2009). Comparative study of physical properties of zirconia based dental</p><p>ceramics.</p><p></p><p>Pittayachawan, P., McDonald, A., Young, A., & Knowles, J. C. (2009). Flexural strength, fatigue</p><p>life, and stress-induced phase transformation study of Y-TZP dental ceramic. Journal of Biomedical</p><p>Materials Research Part B: Applied Biomaterials, 88B(2), 366377.</p><p></p><p>Qahtani, M. Q. A. L. (2010). R Estorative D Entistry Water Sorption and Desorption of Different</p><p>Types of Direct Tooth-Colored Restorative Materials. Pakistan Oral & Dental, 30(2), 476480.</p><p></p><p>Quan, R., Yang, D., Wu, X., Wang, H., Miao, X., & Li, W. (2008). In vitro and in vivo</p><p>biocompatibility of graded hydroxyapatite-zirconia composite bioceramic. Journal of Materials</p><p>Science: Materials in Medicine, 19(1), 183187.</p><p></p><p>Rahim, T., Mohamad, D., & Ismail, A. (2011). Synthesis of Nanosilica Fillers for Experimental</p><p>Dental Nanocomposites and Their Characterisations. Journal of Physical Science, 22(1), 93105.</p><p></p><p>Rajabzadeh, G., Salehi, S., Nemati, A., Tavakoli, R., & Hashjin, M. S. (2013). Enhancing glass</p><p>ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling.</p><p>Journal of the Mechanical Behavior of Biomedical Materials, 29, 317327.</p><p></p><p>Rameshbabu, A. P., Mohanty, S., Bankoti, K., Ghosh, P., & Dhara, S. (2015). Effect of alumina, silk</p><p>and ceria short fibers in reinforcement of Bis-GMA/TEGDMA dental resin. Composites: Part B, 70,</p><p>238246.</p><p></p><p>Raya, I., Mayasari, E., Yahya, A., Syahrul, M., & Latunra, A. I. (2015). Shynthesis and</p><p>Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells ( Portunus pelagicus ) and</p><p>Its Potency in Safeguard against to Dental Demineralizations, 2015.</p><p></p><p>Ricca, C., Ringued, A., Cassir, M., Adamo, C., & Labat, F. (2015). A comprehensive DFT</p><p>investigation of bulk and low-index surfaces of ZrO2 polymorphs. Journal of Computational</p><p>Chemistry, 36(1), 921.</p><p></p><p>Rueggeberg, F. A. (2002). From vulcanite to vinyl, a history of resins in restorative dentistry.</p><p>The Journal of Prosthetic Dentistry, 87(4), 36479.</p><p></p><p>Rueggeberg, F. A. (2011). State-of-the-art: Dental photocuringA review. Dental Materials, 27(1),</p><p>3952.</p><p></p><p>Saha, S., & Pal, S. (1984). Mechanical properties of bone cement: A review. Journal of Biomedical</p><p>Materials Research, 18(4), 435462.</p><p></p><p>Sahin, E. (2006). Synthesis and characterization of hydroxyapatite-alumina-zirconia biocomposites.</p><p>Sakaguchi, R. L., Ferracane, J. L., & Powers, J. M. (2018). Craigs restorative dental materials.</p><p>(R. L. Sakaguchi, Ed.) (Fourth Edi). Missouri: Elsevier, Inc.</p><p></p><p>Saxena, P., Pant, A., Gupta, S., & Pant, V. (2012). Release and toxicity of dental resin composite.</p><p>Toxicology International, 19(3), 225.</p><p></p><p>Schneider, L. F. J., Cavalcante, L. M., & Silikas, N. (2010). Shrinkage Stresses Generated during</p><p>Resin-Composite Applications: A Review. Journal of Dental Biomechanics, 14.</p><p></p><p>Shah, P. K. (2012). Investigation and Control of Filler-Matrix Interactions Applied to Dental</p><p>Composites. University of Colorado, Boulder.</p><p></p><p>Sideridou, I. D., & Achilias, D. S. (2005). Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and</p><p>Bis-EMA from light-cured dental resins and resin composites using HPLC. Journal of Biomedical</p><p>Materials Research Part B: Applied Biomaterials, 74B(1), 617626.</p><p></p><p>Silva, C. M., & Dias, K. R. H. C. (2009). Compressive strength of esthetic restorative materials</p><p>polymerized with quartz-tungsten-halogen light and blue LED. Brazilian Dental Journal, 20(1),</p><p>547.</p><p></p><p>Silva, E. M. da, Almeida, G. S., Poskus, L. T., & Guimares, J. G. A. (2008). Relationship between</p><p>the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin</p><p>composite. Journal of Applied Oral Science, 16(2), 161166.</p><p></p><p>Silva, V. V., Lameiras, F. S., & Lobato, Z. I. P. (2002). Biological reactivity of</p><p>zirconia-hydroxyapatite composites. Journal of Biomedical Materials Research, 63(5), 583590.</p><p></p><p>Siraparapu, Y., Bassa, S., & Sanasi, P. (2013). A review on recent applications of biomaterials.</p><p>International Journal of Science and Research, 7075.</p><p></p><p>Skrtic, D., & Antonucci, J. (2007). Effect of chemical structure and composition of the resin phase</p><p>on vinyl conversion of amorphous calcium phosphate-filled composites. Polymer International,</p><p>56(4), 497505.</p><p></p><p>Sopyan, I., Singh, R., & Hamdi, M. (2008). Synthesis of nano sized hydroxyapatite powder using</p><p>sol-gel technique and its conversion to dense and porous bodies. Indian Journal of Chemistry, 47A,</p><p>16261631.</p><p></p><p>St-pierre, L. (2011). Effect of finishing and polishing direction on the marginal adaptation of</p><p>resin-based composite restorations in vitro. The University of Iowa.</p><p></p><p>Sukaryo, S. G., Purnama, A., & Hermawan, H. (2016). Structure and Properties of Biomaterials. In H.</p><p>H. Ferdiansyah Mahyudin (Ed.), Biomaterials and Medical Devices: A Perspective from an Emerging</p><p>Country (pp. 122). Switzerland: Springer International Publishing Switzerland.</p><p></p><p>Sung, Y.-M., Shin, Y.-K., & Ryu, J.-J. (2007). Preparation of hydroxyapatite/zirconia bioceramic</p><p>nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnology, 18(6), 6.</p><p></p><p>Tathe, A., Ghodke, M., & Pratima Nikalje, A. (2010). A brief review: Biomaterials and their</p><p>application. International Journal of Pharmacy and Pharmaceutical Sciences, 2(4), 1923.</p><p></p><p>Tham, W., Chow, W., & Ishak, Z. (2010). Simulated body fluid and water absorption effects on poly</p><p>(methyl methacrylate)/hydroxyapatite denture base composites. Express Polymer Letters, 4(9),</p><p>517528.</p><p></p><p>Thornton, I. (2014). Mechanical properties of dental resin composite cad/cam blocks.</p><p>University Ottawa. The Univesity of British Columbia.</p><p></p><p>Trautmann, R. (2010). Effect of composition on adhesion strength between particle filled composite</p><p>and fiber reinforced composite. Brno University of Technology.</p><p></p><p>Vagkopoulou, T., Koutayas, S. O., Koidis, P., & Strub, J. R. (2009). Zirconia in dentistry: Part 1.</p><p>Discovering the nature of an upcoming bioceramic. The European Journal of Esthetic Dentistry, 4(2),</p><p>130151.</p><p></p><p>Venkatesan, J., & Kim, S. K. (2010). Effect of Temperature on Isolation and Characterization of</p><p>Hydroxyapatite from Tuna (Thunnus obesus) Bone. Materials, 3(10), 47614772.</p><p></p><p>Victor, O., Ajibola, V. O., Agbaji, E. B., & Giwa, A. A. (2015). Synthesis of Calcium</p><p>Hydroxyapatite Nanocrystals using Chemical Precipitation Technique : A Review. International</p><p>Journal of Nano and Material Sciences, 4(1), 3954.</p><p></p><p>Vitalariu, A., Tatarciuc, M., Cotaie, G., & Diaconu, D. (2015). In vitro testing-An esential method</p><p>for evaluating the performance of dental materials and devices. International Journal of Medical</p><p>Dentistry, 5(2), 927.</p><p></p><p>Wang, R., Zhu, M., Bao, S., Liu, F., Jiang, X., & Zhu, M. (2013). Synthesis of Two Bis-GMA</p><p>Derivates with Different Size Substituents as Potential Monomer to Reduce the Polymerization</p><p>Shrinkage of Dental Restorative Composites. Journal of Materials Science Research, 2(4).</p><p></p><p>Williams, D., & Jong, W. De. (2008). The Safety of Dental Amalgam and Alternative</p><p>Dental Restoration Materials for Patients and Users. Health and Consumer Protection</p><p>Directorate-General. Europian Commision.</p><p></p><p>Wilson, K. S., & Antonucci, J. M. (2006). Interphase structure-property relationships in thermoset</p><p>dimethacrylate nanocomposites. Dental Materials : Official Publication of the Academy of</p><p>Dental Materials, 22(11), 9951001.</p><p></p><p>Wong, J. D. C., Kei Lung, C. Y., Tsoi, J. K. H., & Matinlinna, J. P. (2014). Effects of a zirconate</p><p>coupling agent incorporated into an experimental resin composite on its compressive strength and</p><p>bonding to zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 29, 171176.</p><p></p><p>Wopenka, B., & Pasteris, J. D. (2005). A mineralogical perspective on the apatite in bone.</p><p>Materials Science and Engineering, 25, 131143.</p><p></p><p>Zadpoor, A. A. (2015). Mechanics of biological tissues and biomaterials: Current trends. Materials,</p><p>8(7), 45054511.</p><p></p><p>Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. (2012).</p><p>Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales. Advanced Materials</p><p>Research, 545, 235239.</p><p></p><p>Zena Joma, H. A.-B. (2014). Evaluation the effect of incorporated hydroxyapatite prepared from</p><p>dried egg shell on some properties of relief denture base. University of Mosul.</p><p></p><p>Zhang, H., & Darvell, B. W. (2012). Mechanical properties of hydroxyapatite whisker-reinforced</p><p>bis-GMA-based resin composites. Dental Materials, 28(8),</p><p>824830.</p><p></p>