Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide
<p>This study aimed to enhance the optical properties on neodymium oxide (Nd2O3) and</p><p>erbium oxide (Er2O3) doped tellurite-based glass coated with graphene oxide (GO). The two series of</p><p>tellurite glasses with chemical c...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2020
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=7232 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:7232 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
|
spellingShingle |
Azlina Yahya Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
description |
<p>This study aimed to enhance the optical properties on neodymium oxide (Nd2O3) and</p><p>erbium oxide (Er2O3) doped tellurite-based glass coated with graphene oxide (GO). The two series of</p><p>tellurite glasses with chemical composition of {[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Nd2O3)y and</p><p>{[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Er2O3)y with varying</p><p>concentrations of Nd+ and Er+ ions from y=0.005, 0.01, 0.02, 0.03, 0.04, and 0.05 mol% were</p><p>prepared and coated with GO using melt-quenching and spray coating methods. The physical,</p><p>structural and optical properties of prepared glasses were characterized using densimeter, scanning</p><p>electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR),</p><p>Ellipsometer, and ultraviolet- visible (UV- Vis) spectrophotometer. The structural analysis</p><p>determined by XRD pattern proved an amorphous structure for the glass samples. The obtained results</p><p>through FT-IR analysis showed the formation of non-bridging oxygens (NBOs) in the glass network</p><p>system. The SEM images revealed the surface morphology of GO on the glass surface. The values of</p><p>the refractive index were escalated with the increasing concentration of neodymium from</p><p>2.301 to 2.332, and erbium from 2.275 to 2.299 with the existence of GO. This was due to the</p><p>presence of a high degree number of oxygen atoms consisted in GO structure. The values of optical</p><p>bandgap energy were enhanced with the increasing concentrations of neodymium from 3.315 to 3.381 eV</p><p>while for erbium from 3.392 to 3.495 eV. The increment of optical bandgap energy was due to the</p><p>high in GO optical absorptions. The electronic polarizability values of glass samples were enhanced</p><p>for neodymium from 8.815 to 8.887 while for erbium from 8.815 to 8.894 due to high surface</p><p>area and low particle density in GO. In conclusion, the synthesized GO is a good candidate for use</p><p>as a coating material on tellurite-based glass surfaces. This study may contribute to the</p><p>potential uses for high optical performance of fiber optics applications.</p><p></p> |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Azlina Yahya |
author_facet |
Azlina Yahya |
author_sort |
Azlina Yahya |
title |
Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
title_short |
Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
title_full |
Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
title_fullStr |
Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
title_full_unstemmed |
Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
title_sort |
optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2020 |
url |
https://ir.upsi.edu.my/detailsg.php?det=7232 |
_version_ |
1747833367202627584 |
spelling |
oai:ir.upsi.edu.my:72322022-07-05 Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide 2020 Azlina Yahya <p>This study aimed to enhance the optical properties on neodymium oxide (Nd2O3) and</p><p>erbium oxide (Er2O3) doped tellurite-based glass coated with graphene oxide (GO). The two series of</p><p>tellurite glasses with chemical composition of {[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Nd2O3)y and</p><p>{[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Er2O3)y with varying</p><p>concentrations of Nd+ and Er+ ions from y=0.005, 0.01, 0.02, 0.03, 0.04, and 0.05 mol% were</p><p>prepared and coated with GO using melt-quenching and spray coating methods. The physical,</p><p>structural and optical properties of prepared glasses were characterized using densimeter, scanning</p><p>electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR),</p><p>Ellipsometer, and ultraviolet- visible (UV- Vis) spectrophotometer. The structural analysis</p><p>determined by XRD pattern proved an amorphous structure for the glass samples. The obtained results</p><p>through FT-IR analysis showed the formation of non-bridging oxygens (NBOs) in the glass network</p><p>system. The SEM images revealed the surface morphology of GO on the glass surface. The values of</p><p>the refractive index were escalated with the increasing concentration of neodymium from</p><p>2.301 to 2.332, and erbium from 2.275 to 2.299 with the existence of GO. This was due to the</p><p>presence of a high degree number of oxygen atoms consisted in GO structure. The values of optical</p><p>bandgap energy were enhanced with the increasing concentrations of neodymium from 3.315 to 3.381 eV</p><p>while for erbium from 3.392 to 3.495 eV. The increment of optical bandgap energy was due to the</p><p>high in GO optical absorptions. The electronic polarizability values of glass samples were enhanced</p><p>for neodymium from 8.815 to 8.887 while for erbium from 8.815 to 8.894 due to high surface</p><p>area and low particle density in GO. In conclusion, the synthesized GO is a good candidate for use</p><p>as a coating material on tellurite-based glass surfaces. This study may contribute to the</p><p>potential uses for high optical performance of fiber optics applications.</p><p></p> 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=7232 https://ir.upsi.edu.my/detailsg.php?det=7232 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abdel-Baki, M. & El-Diasty, F. (2007). Optical properties of oxide glasses containing transition</p><p>metals : Case of titanium- and chromium-containing glasses. Current Opinion in Solid State and</p><p>Materials Science, 10(56), 217229.</p><p></p><p>Abdul, H., Sidek, A., Chow, S. P., & Talib, Z. A. (2004). Formation and Elastic Behavior of</p><p>Lead-Magnesium Chlorophosphate Glasses. Turk. J. Pyhs, 28, 6571.</p><p></p><p>Abdullahi, I., Hashim, S., & Ghoshal, S. K. (2019). Waveguide laser potency of samarium doped</p><p>BaSO4-TeO2-B2O3 glasses : Evaluation of structural and optical qualities. Journal of Luminescence,</p><p>216, 116686.</p><p></p><p>Abid, Sehrawat, P., Islam, S. S., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO)</p><p>based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency.</p><p>Scientific Reports, 8(1).</p><p></p><p>Abushahab, W. S., Moustafa, E. B., Hammad, A. H., Ramadan, R. M., & Wassel, A. R. (2019).</p><p>Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses</p><p>by nickel ions. Journal of Materials Science: Materials in Electronics.</p><p></p><p>Adel, G., & Mokhtar, H. M. (2018). Physical Properties of Nb2O5BaO TeO2 Glass System with</p><p>Compositional Variations. Egyptian Journal of Physics, 46, 2328.</p><p></p><p>Ahmed, E. M., Youssif, M. I., & Elzelaky, A. A. (2019). Structural, thermal and photoemission</p><p>properties of erbium doped phosphate glass. Ceramics International, 45(18), 2401424021.</p><p></p><p>Akbari, E., Akbari, I., & Ebrahimi, M. R. (2019). sp/ sp bonding ratio dependence of the band-gap</p><p>in graphene oxide. The European Physical Journal B, 92(4).</p><p></p><p>Al-azzawi, A. A., Almukhtar, A. A., Hamida, B. A., Das, S., Dhar, A., & Paul, M. C. (2019).</p><p>Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward</p><p>pumping distribution technique. Results in Physics, 13, 102186.</p><p></p><p>Al-hiti, A. S., Rahman, M. F. A., Harun, S. W., Yupapin, P., & Yasin, M. (2019). Holmium oxide thin</p><p>fi lm as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers.</p><p>Optical Fiber Technology, 52, 101996.</p><p></p><p>Alazoumi, S. H., Aziz, S. A., El-Mallawany, R., Aliyu, U. S., Kamari, H. M., Zaid, M. H.</p><p>M. M., Matori, K. M., Ushah, A. (2018). Optical properties of zinc lead tellurite</p><p>. Results in Physics, 9, 13711376.</p><p></p><p>Alvarez-Ramos, M. E., Alvarado-Rivera, J., Zayas, M. E., Caldio, U., & Hernndez- Paredes, J.</p><p>(2018). Yellow to orange-reddish glass phosphors: Sm+, Tb+and Sm+/Tb+in zinc</p><p>tellurite-germanate glasses. Optical Materials, 75, 8893.</p><p></p><p>Anashkina, E. A., Dorofeev, V. V, Koltashev, V. V, & Kim, A. V. (2017). Development of Er+-doped</p><p>high-purity tellurite glass fibers for gain-switched laser operation at</p><p>2.7 m. Optical Materials Express, 7(12), 235238.</p><p></p><p>Anita, K., & Singh, N. R. (2011). Spectrochimica Acta Part A : Molecular and Biomolecular</p><p>Spectroscopy Absorption spectral analysis of 4f4f transitions for the complexation of Pr (III) and</p><p>Nd (III) with thiosemicarbazide in absence and presence of Zn (II) in aqueous and organics.</p><p>Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 117121.</p><p></p><p>Anjaiah, J. (2019). Influence Of Modifier Oxide On Spectroscopic Characteristics Of Neodymium Ion</p><p>In Lithium Borate Glass System. International Journal of Research in Advent Technology, 7(3),</p><p>14501457.</p><p></p><p>Arashloo, B. A., Ahmadi, M. T., & Afrang, S. (2017). The Band Energy Engineering on High Epoxy</p><p>(Hydroxyl) Content Graphene Oxide. Surface Review and Letters, 26(1), 18.</p><p></p><p>Assadi, A. A., Damak, K., Lachheb, R., Herrmann, A., Yousef, E., Rssel, C., & Malej,</p><p>R. (2015). Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing</p><p>materials. Journal of Alloys and Compounds, 620, 129136.</p><p></p><p>Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., & D. Malhotra, B. (2017).</p><p>Biomaterials Science Recent advances in carbon based nanosystems for cancer theranostics.</p><p>Biomaterials Science, 5, 901952.</p><p></p><p>Ayuni, J. N., Halimah, M. K., Talib, Z. A., Sidek, H. A. A., Daud, W. M., Zaidan, A. W., &</p><p>Khamirul, A. M. (2011). Optical properties of ternary TeO2-B2O3-ZnO glass system. IOP Conference</p><p>Series: Materials Science and Engineering, 17, 012027.</p><p></p><p>Azlan, M. N., & Halimah, M. K. (2018). Role of Nd+ nanoparticles on enhanced optical efficiency in</p><p>borotellurite glass for optical fiber. Results in Physics, 11, 5864.</p><p></p><p>Azlan, M. N., Halimah, M. K., Baki, S. O., & Daud, W. M. (2016). Effect of Neodymium Concentration</p><p>on Structural and Optical Properties of Tellurite Based Glass System. Materials Science Forum, 846,</p><p>183188.</p><p></p><p>Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2014). Polarizability and optical</p><p>basicity of Er+ ions doped tellurite based glasses. Chalcogenide Letters, 11(7), 319335.</p><p></p><p>Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of</p><p>zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211218.</p><p></p><p>Bachvarova-nedelcheva, A., Iordanova, R., Ganev, S., & Dimitriev, Y. (2018). Glass formation and</p><p>structural studies of glasses in the TeO-ZnO-Bi2O3NbO5 system. Journal of Non-Crystalline Solids.</p><p></p><p>Balachander, L., Ramadevudu, G., Sayanna, R., & Venudhar, Y. C. (2013). IR analysis of borate</p><p>glasses containing three alkali oxides. Science Asia, 39, 278283.</p><p></p><p>Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical Basicity and Polarizability of</p><p>Nd+-Doped Bismuth Borate Glasses. New Journal of Glass and Ceramics, 5, 4452.</p><p></p><p>Bhatia, V., Kumar, D., Kumar, A., Mehta, V., Chopra, S., & Vij, A. (2018). Mixed transition and</p><p>rare earth ion doped borate glass : structural, optical and thermoluminescence study.</p><p>Journal of Materials Science: Materials in Electronics.</p><p></p><p>Bilir, G., Kaya, A., Cinkaya, H., & Eryrek, G. (2016). Spectroscopic investigation of zinc</p><p>tellurite glasses doped with Yb+ and Er+ ions. Spectrochimica Acta Part A: Molecular and</p><p>Biomolecular Spectroscopy, 165, 183190.</p><p></p><p>Bolundut, L., Pop, L., Bosca, M., Tothazan, N., Borodi, G., Culea, E., Pascuta, P., Stefan,</p><p>R. (2017). Structural, spectroscopic and magnetic properties of Nd+ doped lead tellurite glass</p><p>ceramics containing silver. Journal of Alloys and Compounds, 692, 934940.</p><p></p><p>Boucher, Y. G., Zur, L., & Ferrari, M. (2018). Modal properties of an Erbium-doped asymmetric</p><p>single-mode slab waveguide in the glass-ceramics SnO2-SiO2 system. Optical Materials.</p><p></p><p>Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal</p><p>Society of London, 149(0), 249259.</p><p></p><p>Bulus, I., Hussin, R., Ghoshal, S. K., Tamuri, A. R., & Jupri, S. A. (2019). Enhanced elastic and</p><p>optical attributes of boro-telluro-dolomite glasses : Role of CeO2 doping. Ceramics International,</p><p>45(15), 1864818658.</p><p></p><p>Bunch, J. S., Verbridge, S. S., Alden, J. S., Zande, A. M. Van Der, Parpia, J. M., Craighead, H.</p><p>G., & Mceuen, P. L. (2008). Impermeable Atomic Membranes from 2008. Nano Letters, 8(8), 24582462.</p><p></p><p>Cao, R., Lu, Y., Tian, Y., Huang, F., Guo, Y., Xu, S., & Zhang, J. (2016). 2 m emission properties</p><p>and nonresonant energy transfer of Er+ and Ho+ codoped silicate glasses. Scientific Reports,</p><p>6(1), 111.</p><p></p><p>Cervantes-jurez, E., Meza-rocha, A. N., Romero-romo, W., Caldio, U., Falcony, C., Alvarez, E.,</p><p>Palomino-Ovando, M., Lozada-morales, R. (2018). Up and down- shifting emission properties of novel</p><p>Er+-doped CdO-V2O -P2O5 glass system. Ceramics International.</p><p></p><p>Chanthima, N., Kiwsakunkran, N., Kaewkhao, J., & Sangwaranatee, N. (2019). Optical and luminescence</p><p>investigation of Er+ doped in Na2O-Al2O3-P2O5 glasses for photonics material application. Journal</p><p>of Metals, Materials and Minerals, 29(2), 5863.</p><p></p><p>Chavan, V. K., & Sreenivasulu, M. (2019). Physical, optical and morphological studies of V2O5 doped</p><p>zinc lead lithium phosphate (ZnPbLiP) glasses. Materials Today: Proceedings.</p><p></p><p>Chopra, N., Kaur, S., Kaur, M., Singla, S., Marwaha, R., Sharma, G., & Heer, M. S. (2018). Optical,</p><p>Physical and Structural Properties of Er+ Doped Low-Phonon Energy Vitreous Matrix: ZnO-B2O3-TeO2.</p><p>Physica Status Solidi (A), 215(13), 1700934.</p><p></p><p>Costa, F. B., Yukimitu, K., Nunes, L. A. O., Figueiredo, M. S., Andrade, L. H. C., Lima,</p><p>S. M., & Moraes, J. C. S. (2015). Spectroscopic properties of Nd+ -doped tungsten- tellurite</p><p>glasses. Journal of Physical and Chemistry of Solids, 88, 5459.</p><p></p><p>Damodaraiah, S., Prasad, V. R., & Ratnakaram, Y. C. (2019). Investigations on spectroscopic</p><p>properties of Nd+ doped alkali bismuth phosphate glasses for 1.053 m laser applications. Optics</p><p>and Laser Technology, 113, 322329.</p><p></p><p>Dato, A., & Frenklach, M. (2010). Substrate-free microwave synthesis of graphene: experimental</p><p>conditions and hydrocarbon precursors. New Journal of Physics, 12(12), 125013.</p><p></p><p>Deb, S. K., Wilding, M., Somayazulu, M., & Mcmillan, P. F. (2001). an amorphous amorphous</p><p>transition in densi ed porous silicon. Nature, 414(6863), 528530.</p><p></p><p>Deepa, A. V, Murugasen, P., Muralimanohar, P., Sathyamoorthy, K., & Vinothkumar, P. (2018). A</p><p>comparison on the Structural and Optical Properties of Different Rare Earth Doped Phosphate</p><p>Glasses. Optik - International Journal for Light and Electron Optics.</p><p></p><p>Deopa, N., & Rao, A. S. (2017). Spectroscopic studies of Sm+ ions activated lithium lead alumino</p><p>borate glasses for visible luminescent device applications. Optical Materials, 72, 3139.</p><p></p><p>Devaraja, C., Gowda, G. V. J., & Keshavamurthy, K. (2019). The optical and physical properties of</p><p>holmium (Ho+) ions doped bismuthtellurite glasses. Proceedings of the International Conference on</p><p>Advanced Materials: Icam 2019, 2162, 020172.</p><p></p><p>Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple</p><p>oxides. Journal of Applied Physics, 79(3), 17361740.</p><p></p><p>Dimitrov, V, & Komatsu, T. (2010). An Interpretation of Optical Properties of Oxides and Oxide</p><p>Glasses in terms of the Electronic Ion Polarizability and Average Single Bond Strength (Review).</p><p>Journal of the University of Chemical Technology and Metallurgy, 45(3), 219250.</p><p></p><p>Dimitrov, Vesselin, & Komatsu, T. (1999). Electronic polarizability, optical basicity and</p><p>non-linear optical properties of oxide glasses, 249, 160179.</p><p></p><p>Dimitrov, Vesselin, & Komatsu, T. (2005). Classification of oxide glasses : A polarizability</p><p>approach. Journal of Solid State Chemistry, 178(3), 831846.</p><p></p><p>Ding, L., Xu, C., Xia, Z., Xu, B., & Huang, J. (2017). Controlling polarization-dependent optical</p><p>absorption of graphene through its thickness. Optik - International Journal for Light and Electron</p><p>Optics, 137, 5964.</p><p></p><p>Divina, R., Marimuthu, K., Sayyed, M. I., Tekin, H. O., & Agar, O. (2019). Physical, structural,</p><p>and radiation shielding properties of B2O3MgOK2OSm2O3 glass network modified with TeO2.</p><p>Radiation Physics and Chemistry, 160, 7582.</p><p></p><p>Dousti, M. R. (2017). Enhanced 1.06 m emission in Nd+-doped lead-tellurite glasses doped with</p><p>silver nanoparticles. Journal of Nanophotonics, 10(4), 046010.</p><p></p><p>Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization : An</p><p>Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International</p><p>Edition, 49(49), 93369344.</p><p></p><p>Dubois, S. M., Zanolli, Z., Declerck, X., & Charlier, J. (2009). Electronic properties and quantum</p><p>transport in Graphene-based nanostructures. The European Physical Journal B, 72(1), 124.</p><p></p><p>Duffy, J. A., & Ingram, M. D. (1971). Establishment of an Optical Scale for Lewis Basicity in</p><p>Inorganic Oxyacids, Molten Salts, and Glasses, 1(2), 64486454.</p><p></p><p>Duffy, J. A., & Ingram, M. D. (1992). Comment. Journal of Non-Crystalline Solids, 144, 7680.</p><p>Duffy, J. A. (1989). Optical Basicity of Titanium( IV] Oxide and Zirconium( IV) Oxide.</p><p>Journal of the American Ceramic Society, 72(10), 20122013.</p><p></p><p>Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to Semimetal</p><p>Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113(35), 1576815771.</p><p></p><p>Edwards, R. S., & Coleman, K. S. (2013). Graphene synthesis : relationship to applications.</p><p>Nanoscale, 5(1), 3851.</p><p></p><p>El-Maaref, A. A., Shimaabadr, Shaaban, K. S., Abdel Wahab, E. A., & Elokr, M. M. (2018). Optical</p><p>Properties and Radiative Rates of Nd+ Doped Zinc-Sodium Phosphate Glasses. Journal of Rare Earths.</p><p></p><p>Elbadawi, N. I. A., Abdallah, M. D., Elhai, R. A., & Ahmed, S. A. E. (2018). The Effect of</p><p>Oxidation Number on Refractive Index Based on String Theory. International Journal of Engineering</p><p>Sciences and Research Technology, 7(1), 122129.</p><p></p><p>Elgazery, M., Ali, A. A., & El-Mallawany, R. (2019). Ultrasonic and Thermal Properties of Bismuth</p><p>Borotellurite Glasses Doped with NdCl3. Egyptian Journal of Chemistry, 62(4), 655664.</p><p></p><p>Elkhoshkhany, N., Essam, O., & Embaby, A. M. (2018). Optical, thermal and antibacterial properties</p><p>of tellurite glass system doped with ZnO. Materials Chemistry and Physics, 214, 489498.</p><p></p><p>Emiru, T. F., & Ayele, D. W. (2016). Controlled synthesis , characterization and reduction of</p><p>graphene oxide : A convenient method for large scale production. Egyptian Journal of Basic and</p><p>Applied Sciences, 4(1), 7479.</p><p></p><p>Ennouri, M., Jlassi, I., Habib, E., & Bernard, G. (2019). Improvement of spectroscopic properties</p><p>and luminescence of Er+ ions in phospho-tellurite glass ceramics by formation of ErPO4</p><p>nanocrystals. Journal of Luminescence, 216, 116753.</p><p></p><p>Fang, M., Xiong, X., Hao, Y., Zhang, T., & Wang, H. (2019). Journal of Materials Science &</p><p>Technology Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating</p><p>method. Journal of Materials Science & Technology, 35(9), 19891995.</p><p></p><p>Farouk, M., Abdallauh, K., Attallah, M., & El-fattah, Z. M. A. (2019). Influence of different</p><p>alkaline oxide modifiers on VO+ ions doped zinc borate glasses. Journal of Non-Crystalline Solids,</p><p>523, 119607.</p><p></p><p>Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of Lanthanum Oxide on Optical</p><p>Properties of Zinc Borotellurite Glass System. Journal of Optoelectronics and Biomedical Materials,</p><p>8(2), 4959.</p><p></p><p>Fu, S., Zhu, X., Wang, J., Wu, J., Tong, M., Zong, J., Li, M., Wiersma K., Chavez- Pirson, A., &</p><p>Peyghambarian, N. (2019). L-band wavelength-tunable Er+-doped tellurite fiber lasers. Journal of</p><p>Lightwave Technology, 8724, 15.</p><p></p><p>Fuks-janczarek, I., Miedzinski, R., Reben, M., & Sayed, E. (2019). Linear and non-linear optical</p><p>study of fluorotellurite glasses as function of selected alkaline earth metals doped with Er+.</p><p>Optics and Laser Technology, 111, 184190.</p><p></p><p>Gaikwad, D. K., Sayyed, M. I., Botewad, S. N., Shamsan, S. O., Khattari, Z. Y., Gawai,</p><p>U. P., Afaneh, F., Shirshat, M. D., & Pawar, P. P. (2018). Physical, structural, optical</p><p>investigation and shielding features of tungsten bismuth tellurite based glasses. Journal of</p><p>Non-Crystalline Solids.</p><p></p><p>Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., & Purohit, L. P. (2019). Study of zinc doped</p><p>tellurite glasses using XRD, UV-Vis and FTIR. Materials Today: Proceedings, 17, 329337.</p><p></p><p>Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183191.</p><p></p><p>Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad Family of Carbon</p><p>Nanoallotropes : Classification, Chemistry, and Applications of Fullerenes, Carbon Dots,</p><p>Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 115(11),</p><p>47444822.</p><p></p><p>Gke, M., & Koyigit, D. (2018). Optical and luminescence characteristics of Sm+ doped</p><p>B2O3-GeO2-Gd2O3 glasses. Optical Materials, 83, 233240.</p><p></p><p>Gomes, J. F., Lima, A. M. O., Sandrini, M., Medina, A. N., Steimacher, A., Pedrochi, F., & Barboza,</p><p>M. J. (2017). Optical and spectroscopic study of erbium doped calcium borotellurite glasses.</p><p>Optical Materials, 66, 211219.</p><p></p><p>Gordon, R. (1997). Chemical vapor deposition of coatings on glass. Journal of Non- Crystalline</p><p>Solids, 218, 8191.</p><p></p><p>Gorni, G., Vel, J. J., Mosa, J., Balda, R., Fern, J., Dur, A., & Castro, Y. (2018). Transparent</p><p>Glass-Ceramics Produced by Sol-Gel : A Suitable Alternative for Photonic Materials. Materials,</p><p>11(2), 212.</p><p></p><p>Greer, A. L. (2015). New horizons for glass formation and stability. Nature Materials, 14(6),</p><p>542546.</p><p></p><p>Guo, C., Zhang, J., Xu, W., Liu, K., Yuan, X., Qin, S., & Zhu, Z. (2018). Graphene- Based Perfect</p><p>Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications.</p><p>Nanomaterials, 8(12), 1033.</p><p></p><p>Gupta, P. K. (1996). Non-crystalline solids: glasses and amorphous solids. Journal of</p><p>Non-crystalline solids, 195, 158-164.</p><p></p><p>Gupta, V., Sharma, N., Singh, U., Arif, M., & Singh, A. (2017). ( Revised Manuscript ) Synthesis</p><p>and characterization of Graphene Oxide. Optik.</p><p></p><p>Hajer, S. S., Halimah, M. K., Azmi, Z., & Azlan, M. N. (2014). Optical properties of</p><p>Zinc-Borotellurite doped samarium. Chalcogenide Letters, 11(11), 553566.</p><p></p><p>Halimah, M. K., Umar, S. A., Chan, K. T., Latif, A. A., Azlan, M. N., Abubakar, A. I., & Hamza, A.</p><p>M. (2019). Study Of Rice Husk Silicate Effects On The Elastic, Physical And Structural Properties</p><p>Of Borotellurite Glasses. Materials Chemistry and Physics.</p><p></p><p>Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T., Usman, A., Faznny, M. F., Zaitizila,</p><p>I., & Tafida, R. A. (2019). Structural, optical and thermal properties of Er+ -Ag codoped</p><p>bio-silicate borotellurite glass. Results in Physics, 14, 102457.</p><p></p><p>Han, J. W., & Kim, J. (2013). Green synthesis of graphene and its cytotoxic effects in human breast</p><p>cancer cells. International Journal of Nanomedicine, 8, 10151027.</p><p></p><p>Hasan, T., Senger, B. J., Ryan, C., Culp, M., Gonzalez-rodriguez, R., Coffer, J. L., & Naumov, A.</p><p>V. (2017). Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Scientific Reports,</p><p>7(1).</p><p></p><p>He, W., Zhang, W., Zhu, L., Lou, X., & Dong, M. (2018). C-band switchable multi- wavelength</p><p>erbium-doped fiber laser based on MachZehnder interferometer employing seven-core fiber. Optical</p><p>Fiber Technology, 46, 3035.</p><p></p><p>Hegde, V., Prabhu, N., Wagh, A., Sayyed, M. I., Agar, O., & Kamath, S. D. (2019). Influence of 1.25</p><p>MeV gamma rays on optical and luminescent features of Er+ doped zinc bismuth borate glasses.</p><p>Results in Physics, 12, 17621769.</p><p></p><p>Hernaez, M., Zamarreo, C. R., Melendi-Espina, S., Bird, L. R., Mayes, A. G., & Arregui, F. J.</p><p>(2017). Optical fibre sensors using graphene-based materials: A review. Sensors, 17(12), 155.</p><p></p><p>Hivrekar, M. M., Sable, D. B., Solunke, M. B., & Jadhav, K. M. (2018). Different property studies</p><p>with network improvement of CdO doped alkali borate glass. Journal of Non-Crystalline Solids, 491,</p><p>1423.</p><p></p><p>Honma, T., Sato, R., Benino, Y., & Komatsu, T. (2000). Electronic polarizability, optical basicity</p><p>and XPS spectra of Sb2O3-B2O3 glasses. Journal of Non-Crystalline Solids, 272, 113.</p><p></p><p>Hu, L., He, D., Chen, H., Wang, X., Meng, T., Wen, L., Hu, J., Xu, Y., Li, S., Chen, Y.,</p><p>Chen, W., Chen, S., Tang, J., & Wang, B. (2016). Research and development of neodymium phosphate</p><p>laser glass for high power laser application. Optical Materials, 62, 3441.</p><p></p><p>Huang, F., Fei, E., Lei, R., Li, Y., Li, B., Ye, R., & Xu, S. (2019). Enhancing the Er+: Infrared</p><p>and mid-infrared emission performance in germanosilicate-zinc glasses. Journal of Luminescence,</p><p>213, 370375.</p><p></p><p>Huang, Y., Sutter, E., Shi, N. N., Zheng, J., Yang, T., Englund, D., Gao, H., & Sutter, P. (2015).</p><p>Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional</p><p>Materials. ACS Nano, 9(11), 1061210620.</p><p></p><p>Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American</p><p>Chemical Society, 80(6), 1339.</p><p></p><p>Ibrahim, A. M., Hammad, A. H., Abdelghany, A. M., & Rabie, G. O. (2018). Mixed alkali effect and</p><p>samarium ions effectiveness on the structural, optical and non- linear optical properties of borate</p><p>glass. Journal of Non-Crystalline Solids, 495, 67 74.</p><p></p><p>Ichoja, A., Hashim, S., Ghoshal, S. K., Hashim, I. H., & Omar, R. S. (2018). Physical, Structural</p><p>and Optical Studies onMagnesium Borate Glasses Doped with Dysprosium Ion. Journal of Rare</p><p>Earths.</p><p></p><p>Ismail, Mahmoud M, Batisha, I. K., Zur, L., Chiasera, A., Ferrari, M., & Lukowiak, A. (2020).</p><p>Optical properties of Nd+-doped phosphate glasses. Optical Materials, 99, 109591.</p><p></p><p>Jamalaiah, B. C. (2018). GeO2 activated tellurite tungstate glass : A new candidate for solid state</p><p>lasers and fiber devices. Journal of Non-Crystalline Solids.</p><p></p><p>Jastrzebska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family</p><p>materials toxicity investigations. Journal of Nanoparticle Research, 14(12).</p><p></p><p>Jearnkulprasert, N., Chaemlek, O., & Wantana, N. (2017). Physical Optical Properties of</p><p>20CaO-(80-x)B2O3-xZnO Glass System. Journal of Metals, Materials and Minerals, 27(2), 4347.</p><p></p><p>Jha, A., Shen, S., & Naftaly, M. (2000). Structural origin of spectral broadening of 1.5- m</p><p>emission in Er+-doped tellurite glasses, 62(10).</p><p></p><p>Jha, K., Jayasimhadri, M., Haranath, D., & Jang, K. (2019). Influence of modifier oxides on</p><p>spectroscopic properties of Eu+ doped oxy-fluoro tellurophosphate glasses for visible photonic</p><p>applications. Journal of Alloys and Compounds, 789, 622629.</p><p></p><p>Ji, Y., Xiao, Y. B., Wang, W. C., Huang, S. J., Liu, J. L., & Zhang, Q. Y. (2019). Optical</p><p>properties of Nd+-doped fluoro-sulfo-phosphate glasses. Journal of Non-Crystalline Solids, 512,</p><p>155160.</p><p></p><p>Jimenez, J. A., Sendova, M., & Manchini, M. (2020). Thermal and spectroscopic characterization of</p><p>copper and erbium containing aluminophosphate glass. Spectrochimica Acta Part A: Molecular and</p><p>Biomolecular Spectroscopy, 226, 117546.</p><p></p><p>Jlassi, I., Fares, H., & Elhouichet, H. (2018). Enhancement of spectroscopic and luminescence</p><p>properties of Er+ doped tellurite glasses by adding P2O5 for lasing materials. Journal of</p><p>Luminescence, 194, 569578.</p><p></p><p>Jupri, S. A., Ghoshal, S. K., Omar, M. F., & Yusof, N. N. (2018). Spectroscopic traits of holmium</p><p>in magnesium zinc sulfophosphate glass host: Judd-Ofelt evaluation. Journal of Alloys and</p><p>Compounds, 753, 446456.</p><p></p><p>Kaewnum, E., Wantana, N., & Kaewkhao, J. (2018). Luminescence study and Judd-Ofelt analysis of Nd+</p><p>doped lithium lanthanum borate glass for green laser device. Materials Today: Proceedings, 5(6),</p><p>1395413962.</p><p></p><p>Kaky, K. M., Farah, M. I. S., Alyaa, L., Tekin, H. A. H. O., & Baki, S. O. (2019).</p><p>Stuctural, optical and radiation shielding properties of zinc boro- tellurite alumina glasses.</p><p>Applied Physics A.</p><p></p><p>Kalampounias, A. G., Nasikas, N. K., & Papatheodorou, G. N. (2011). Journal of Physics and</p><p>Chemistry of Solids tellurite glasses : A composition dependent Raman spectroscopic study. Journal</p><p>of Physical and Chemistry of Solids, 72(9), 10521056.</p><p></p><p>Kang, S., Wang, X., Xu, W., Wang, X., He, D., & Hu, L. (2017). Effect of B2O3 content on structure</p><p>and spectroscopic properties of neodymium-doped calcium aluminate glasses. Optical Materials, 66,</p><p>287292.</p><p></p><p>Kashif, I., Ratep, A., & Adel, G. (2018). Polarizability, optical basicity and optical properties</p><p>of SiO2B2O3Bi2O3TeO2 glass syetm. Applied Physics A, 124(7), 486.</p><p></p><p>Kaur, A., & Khanna, A. (2019). Thermal, optical and Raman spectroscopy studies of lithium tellurite</p><p>glasses containing molybdenum and tungsten ions. DAE Solid State Physics Symposium 2018, 2115,</p><p>030253.</p><p></p><p>Kesavulu, C. R., Suresh, K., Santos, J. F. M., Catunda, T., Kim, H. J., & Jayasankar, C.</p><p>K. (2017). Spectroscopic investigations of 1.06 m emission and time resolved Z- scan studies in</p><p>Nd+-doped zinc tellurite based glasses. Journal of Luminescence, 192, 10471055.</p><p></p><p>Khan, M. A., Amjad, R. J., Ahmad, M. A., Sattar, A., Hussain, S., Yasmeen, S., & Dousti, M. R.</p><p>(2019). Structural and Optical Study of Erbium Doped Borophosphate Glasses. Optik - International</p><p>Journal for Light and Electron Optics, 163707.</p><p></p><p>Kilic, G., Issever, U. G., & Ilik, E. (2019). Characterization of -Er+ doped ZnTeTa semiconducting</p><p>oxide glass. Journal of Materials Science: Materials in Electronics, 30(9), 89208930.</p><p></p><p>Kindrat, I. I., Padlyak, B. V, Lisiecki, R., & Adamiv, V. T. (2019). Optical spectroscopy and</p><p>luminescence properties of a Tm+-doped LiKB4O7 glass. Journal of Non- Crystalline Solids, 521,</p><p>119477.</p><p></p><p>Kibrisli, O., Ersundu, A. E., & Ersundu, M. . (2019). Dy+ doped tellurite glasses for solid-state</p><p>lighting : An investigation through physical, thermal, structural and optical spectroscopy studies.</p><p>Journal of Non-Crystalline Solids, 513, 125136.</p><p></p><p>Klimesz, B., Lisiecki, R., & Ryba-Romanowski, W. (2018). Oxyfluorotellurite glasses doped with</p><p>neodymium and ytterbium-thermal and spectroscopic properties as well as energy transfer phenomena.</p><p>Journal of Luminescence, 199, 310318.</p><p></p><p>Kolavekar, S. B., & Ayachit, N. H. (2019). Synthesis of praseodymium trioxide doped</p><p>lead-boro-tellurite glasses and their optical and physical properties. Journal of Materiomics.</p><p></p><p>Kragh, H. (2018). The Lorenz-Lorentz Formula : Origin and Early History. Substantia.</p><p>An International Journal of the History of Chemistry, 2(2), 718.</p><p></p><p>Kruskopf, M., Pierz, K., Pakdehi, D. M., Stosch, R., Bakin, A., & Schumacher, H. W. (2018). A</p><p>morphology study on the epitaxial growth of graphene and its buffer layer. Thin Solid Films.</p><p></p><p>Kumar, D., Rao, S. M., & Singh, S. P. (2019). Effect of Er+ on NaSrB glass : thermoluminescence</p><p>and structural analysis. Applied Physics A, 125(38), 110.</p><p></p><p>Kuroda, K., & Yoshikuni, Y. (2017). Optical Fiber Technology Two-wavelength pump- probe technique</p><p>using single distributed feedback laser array to probe gain recovery of an erbium-doped fiber</p><p>amplifier. Optical Fiber Technology, 34, 2022.</p><p></p><p>Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. (2012). Ultraviolet-visible spectroscopy of</p><p>graphene oxides. AIP Advances, 2(3), 38.</p><p></p><p>Lakshmi, Y. A., Swapna, K., Rama, K. S., Reddy, K., Venkateswarlu, M., Mahamuda, S., & Rao, A. S.</p><p>(2019). Structural, optical and NIR studies of Er+ ions doped bismuth boro tellurite glasses</p><p>for luminescence materials applications. Journal of Luminescence, 211, 3947.</p><p></p><p>Lakshminarayana, G., Kityk, I. V, Mahdi, M. A., & Plucinski, K. J. (2017). Er/Pr- codoped</p><p>borotellurite glasses as efficient laser operated nonlinear optical materials. Materials Letters,</p><p>214, 2325.</p><p></p><p>Laopaiboon, R., Thumsa-ard, T., & Bootjomchai, C. (2018). The thermoluminescence properties and</p><p>determination of trapping parameters of soda lime glass doped with erbium oxide. Journal of</p><p>Luminescence, 197, 304309.</p><p></p><p>Lau, K. Y., Bakar, M. H. A., Zain, A. R., Abas, A. F., Alresheedi, M. T., & Mahdi, M. A. (2018).</p><p>Stable multi-wavelength erbium-doped fiber laser assisted by graphene/ PMMA thin film. Optics and</p><p>Laser Technology, 105, 129134.</p><p></p><p>Leal, J. J., Narro-garca, R., Ros, J. P. F. L., Gutierrez-mendez, N., Ramos-Snchez, V. H.,</p><p>Gonzlez-Castillo, J. R., & Rodrguez, E. (2019). Effect of TiO2 on the thermal and optical</p><p>properties of Er+/Yb+ co-doped tellurite glasses for optical sensor. Journal of Luminescence,</p><p>208, 342349.</p><p></p><p>Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S.</p><p>(2018). Review on graphene and its derivatives : Synthesis methods and potential industrial</p><p>implementation. Journal of the Taiwan Institute of Chemical Engineers.</p><p></p><p>Lee, K. H., Kim, T. H., Kim, Y. S., Jung, Y. J., Na, Y. H., & Ryu, B. K. (2008).</p><p>Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization.</p><p>Korean Journal of Materials Research, 18(5), 235240.</p><p></p><p>Li, J., Xiao, X., Gu, S., Xu, Y., Zhou, Z., & Guo, H. (2017). Preparation and optical properties of</p><p>TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications. Optical</p><p>Materials, 66, 567572.</p><p></p><p>Li, L. X., Wang, W. C., Zhang, C. F., Liu, J. L., Zhang, Q. Y., & Jiang, Z. H. (2019).</p><p>Exploration of the new tellurite glass system for efficient 2 m luminescence.</p><p>Journal of Non-Crystalline Solids, 508, 1520.</p><p></p><p>Li, S., Tu, ?. K., Lin, ?. C., Chen, C., & Chhowalla, M. (2010). Solution-Processable Graphene</p><p>Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 4(6), 31693174.</p><p></p><p>Li, X., Ming, Y., Gui, W., Yang, C., Sanjayan, J. G., Hui, W., & Li, Z. (2017). Effects of graphene</p><p>oxide agglomerates on workability, hydration, microstructure and compressive strength of</p><p>cement paste. Construction and Building Materials, 145, 402410.</p><p></p><p>Li, Z., Zhang, W., & Xing, F. (2019). Graphene Optical Biosensors. International Journal of</p><p>Molecular Sciences, 20(10), 2461.</p><p></p><p>Lima, A. M. O., Gomes, J. F., Hegeto, F. L., Medina, A. N., Steimacher, A., & Barboza,</p><p>M. J. (2017). Evaluation of TeO2 content on the optical and spectroscopic properties of Yb+-doped</p><p>calcium borotellurite glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,</p><p>193, 212218.</p><p></p><p>Liu, D., Li, C., Xu, Y., Zhou, D., Wang, H., Sun, P., & Jiang, H. (2017). Near-infrared luminescent</p><p>erbium complexes with 8-hydroxyquinoline-terminated hyperbranched polyester. Polymer.</p><p></p><p>Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable</p><p>platform for optical applications. Nature Chemistry, 2(12), 10151024.</p><p></p><p>Luewarasirikul, N., Chanthima, N., Tariwong, Y., & Kaewkhao, J. (2018). Erbium-doped calcium barium</p><p>phosphate glasses for 1.54 m broadband optical amplifier. Materials Today: Proceedings, 5(6),</p><p>1400914016.</p><p></p><p>Lunt, A. J. G., Chater, P., & Korsunsky, A. M. (2018). On the origins of strain inhomogeneity in</p><p>amorphous materials. Scientific Reports, 8(1).</p><p></p><p>Maaoui, A., Haouari, M., Bulou, A., Boulard, B., & Ouada, H. Ben. (2018). Effect of BaF2 on the</p><p>structural and spectroscopic properties of Er+/Yb+ ions codoped fluoro-tellurite glasses. Journal</p><p>of Luminescence, 196, 110.</p><p></p><p>Madhu, A., Eraiah, B., Manasa, P., & Srinatha, N. (2018). Nd+ -doped lanthanum lead boro-tellurite</p><p>glass for lasing and ampli fi cation applications. Optical Materials, 75, 357366.</p><p></p><p>Maia, L. J. Q., Moura, A. L., Jerez, V., & Arajo, C. B. De. (2019). Structural properties and near</p><p>infrared photoluminescence of Nd+ doped YBO3 nanocrystals. Optical Materials, 95, 109227.</p><p></p><p>Manasa, P., & Jayasankar, C. K. (2019). Spectroscopic assessment of Dy+ ions in lead</p><p>fluorosilicate glass as a prospective material for solid state yellow laser. Spectrochimica</p><p>Acta Part A: Molecular and Biomolecular Spectroscopy, 212, 315 321.</p><p></p><p>Manning, S., Ebendorff-heidepriem, H., & Monro, T. M. (2012). Ternary tellurite glasses for the</p><p>fabrication of nonlinear optical fibres Abstract : Optical Materials Express, 2(2), 305308.</p><p></p><p>Marcano, D. C., Kosynkin, D. V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.</p><p>B., Lu. W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8).</p><p></p><p>Mariselvam, K., Kumar, R. A., & Manasa, P. (2018). Spectroscopic investigations of neodymium doped</p><p>barium bismuth fluoroborate glasses. Infrared Physics and Technology, 91, 1826.</p><p></p><p>Martynova, E., & Cebulla, H. (2018). Glass Fibers. Inorganic and Composite Fibers.</p><p>Elsevier Ltd.</p><p></p><p>Marzuki, A., & Fausta, D. E. (2018). Physical and Optical Studies of Bi+-Modified Erbium Doped</p><p>Tellurite Glasses. IOP Conference Series: Materials Science and Engineering, 333, 012015.</p><p></p><p>Masuno, A. (2019). High refractive index La-rich lanthanum borate glasses composed of isolated BO3</p><p>units. Dalton Transactions, 48(10804), 1075711146.</p><p></p><p>Mawlud, S. Q. (2018). Optical Properties of Tellurite Glasses Embedded with Gold Nanoparticles.</p><p></p><p>Mawlud, S. Q., Ameen, M. M., Sahar, R., Ashur, Z., Mahraz, S., & Ahmed, K. F. (2017). Spectroscopic</p><p>properties of Sm+ doped sodium-tellurite glasses : Judd-Ofelt analysis. Optical Materials, 69,</p><p>318327.</p><p></p><p>Mclaughlin, J. C., Tagg, S. L., Zwanziger, J. W., & Hae, D. R. (2000). The structure of tellurite</p><p>glass : a combined NMR, neutron diffraction, and X-ray diffraction study. Journal of</p><p>Non-Crystalline Solids, 274, 18.</p><p></p><p>Meejitpaisan, P., Phothong, K., & Kaewkhao, J. (2019). NIR emission of Nd+-doped sodium barium</p><p>borate oxyfluoride glasses for 1.07 m laser materials. Journal of Thai Interdisciplinary Research,</p><p>14(3), 5459.</p><p></p><p>Meng, L., Cheng, F., Xu, Y., Zhang, J., & Zhao, X. (2019). 2.7 m mid-infrared emission enhancement</p><p>of Nd+ and Er+ ions co-doped Bi2O3-PbO-Ga2O3 heavy metal oxide glass. Journal of Non-Crystalline</p><p>Solids, 517, 137142.</p><p></p><p>Mhareb, M. H. A., Almessiere, M. A., Sayyed, M. I., & Alajerami, Y. S. M. (2019). Physical,</p><p>structural, optical and photons attenuation attributes of lithium- magnesium-borate glasses</p><p>: Role of Tm2O3 doping. Optik - International Journal for Light and Electron Optics, 182, 821831.</p><p></p><p>Miniscalco, W. J., & Andrews, L. J. (1988). Fiber Optic Lasers and Amplifiers for the</p><p>Near-Infrared. Materials Science Forum, 33, 501510.</p><p></p><p>Mohan, S., & Thind, S. K. (2017). Optical and spectroscopic properties of neodymium doped</p><p>cadmium-sodium borate glasses. Optics and Laser Technology, 95, 3641.</p><p></p><p>Mohan, V. B., Souri, H., Jayaraman, K., & Bhattacharyya, D. (2018). Mechanical properties of thin</p><p>films of graphene materials: A study on their structural quality and functionalities. Current</p><p>Applied Physics.</p><p></p><p>Mohd Zaid, M. H., Matori, K. A., Abdul Aziz, S. H., Zakaria, A., & Mohd Ghazali, M. S. (2012).</p><p>Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass.</p><p>International Journal of Molecular Sciences, 13(6), 7550 7558.</p><p></p><p>Monshi, M. M., Aghaei, S. M., & Calizo, I. (2018). Band gap opening and optical absorption</p><p>enhancement in graphene using ZnO nanocluster. Physics Letters A, 1, 3 7.</p><p></p><p>Moon, I. K., Kim, J. Il, Lee, H., Hur, K., Kim, W. C., & Lee, H. (2013). 2D graphene oxide</p><p>nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes.</p><p>Scientific Reports, 3, 17.</p><p></p><p>Moreira, L., Falci, R. F., Darabian, H., Anjos, V., Bell, M. J. V, Kassab, L. R. P., Bordon,</p><p>C. D. S., Doualan, J. L., Camy, P., & Moncorge, R. (2018). The effect of excitation intensity</p><p>variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and</p><p>zinc oxide glass doped with Nd2O3 studied through ultrafast z- scan spectroscopy. Optical</p><p>Materials, 79, 397402.</p><p></p><p>Morigaki, K., & Ogihara, C. (2006). Amorphous Semiconductors: Structure, Optical, and Electrical</p><p>Properties. Springer Handbook of Electronic and Photonic Materials, 565580.</p><p></p><p>Mosner, P., Kupetska, O., Koudelka, L., & Kalenda, P. (2019). Physical properties and structural</p><p>studies of lithium borophosphate glasses containing TeO2. Journal of Solid State Chemistry, 270,</p><p>547552.</p><p></p><p>Mott, N. F., Davis, E. A., & Weiser, K. (1972). Electronic Processes in Non-Crystalline Materials.</p><p>Physics Today, 25(12), 1415.</p><p></p><p>Mun, S. C., Park, J. J., Park, Y. T., Kim, D. Y., Lee, S. W., Cobos, M., Ye, S. J.,</p><p>Macosko, C. W., & Park, O. O. (2017). High electrical conductivity and oxygen barrier property of</p><p>polymer- stabilized graphene thin films. Carbon, 125, 492499.</p><p></p><p>Munisudhakar, B., Raju, C. N., Babu, M. R., Reddy, N. M., & Moorthy, L. R. (2019). Materials Today</p><p>: Proceedings Luminescence characteristics of Nd+ doped bismuth borate glasses for photonic</p><p>applications. Materials Today: Proceedings.</p><p></p><p>Musfir, P. N., Soumya, S., Mehaboob, C. V. A., Ali, V. R., & Thomas, S. (2019). Tunable optical</p><p>bandgap in ternary Ge-As-S chalcogenide glass. The 3rd International Conference on</p><p>Optoelectronic and Nano Materials for Advanced Technology (IcONMAT 2019), 030024.</p><p></p><p>Mustafa, I., Kamari, H., Yusoff, W., Aziz, S., & Rahman, A. (2013). Structural and Optical</p><p>Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray. International Journal of Molecular</p><p>Sciences, 14, 32013214.</p><p></p><p>Naftaly, M., & Jha, A. (2010). Nd+-doped fluoroaluminate glasses for a 1.3 m amplifier. Journal</p><p>of Applied Physics, 87(5), 20982104.</p><p></p><p>Nanba, T. (2011). Characterization of glasses based on basicity. Journal of the Ceramic Society of</p><p>Japan, 119[10], 720725.</p><p></p><p>Nanda, K., Kundu, R. S., Punia, R., Mohan, D., & Kishore, N. (2019). Linear and nonlinear optical</p><p>characterization of neodymium doped barium-zinc-borate glasses. DAE Solid State Physics Symposium,</p><p>2115, 030266.</p><p></p><p>Nandi, P., Srinivasan, A., & Jose, G. (2009). Structural dependent thermal and optical properties</p><p>of rare earth doped glass with mixed glass formers. Optical Materials, 31(4), 653659.</p><p></p><p>Napotalino, S., Glynos, E., & Tito, B. N. (2017). Glass transition of polymers in bulk , confined</p><p>geometries , and near interfaces. Reports on Progress in Physics, 80(3), 036602.</p><p></p><p>Naresh, P., Kavitha, B., Inamdar, H. K., Sreenivasu, D., Narsimlu, N., Srinivas, C., Sathe, V., &</p><p>Kumar, K. S. (2019). Modifier role of ZnO on the structural and transport properties of lithium</p><p>boro tellurite glasses. Journal of Non-Crystalline Solids, 514, 3545.</p><p></p><p>Naseer, K. A., Arunkumar, S., & Marimuthu, K. (2019). The impact of Er+ ions on the spectroscopic</p><p>scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 m amplification.</p><p>Journal of Non-Crystalline Solids, 520, 119463.</p><p></p><p>Nasser, K., Aseev, V., Ivanov, S., Ignatiev, A., & Nikonorov, N. (2019). Optical , spectroscopic</p><p>properties and Judd Ofelt analysis of Nd+ -doped. Journal of Luminescence, 213, 255262.</p><p></p><p>Naumov, A. V. (2017). Optical Properties of Graphene Oxide.</p><p>Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny,</p><p>M. F., Hazlin, M. A., & Zaitizila, I. (2018). The effect of erbium oxide in physical and structural</p><p>properties of zinc tellurite glass system. Journal of Non-Crystalline Solids, 490, 3543.</p><p></p><p>Neelima, G., Krishnaiah, K. V., Ravi, N., Suresh, K., Tyagarajan, K., & Prasad, T. J. (2019).</p><p>Investigation of optical and spectroscopic properties of neodymium doped oxy fl</p><p>uoro-titania-phosphate glasses for laser applications. Scripta Materialia, 162, 246250.</p><p></p><p>Noguera, O., Mirgorodsky, A. P., Smirnov, M. B., & Thomas, P. (2003). Vibrational and structural</p><p>properties of glass and crystalline phases of TeO2. Journal of Non- Crystalline Solids, 330, 5060.</p><p></p><p>Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Veen, M. H. Van Der, Hofkens,</p><p>J., Heyns, M. M., Gendt, S. D. & Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated</p><p>graphene. Nanotechnology, 21(43), 435203.</p><p></p><p>Novatski, A., Somer, A., Gonalves, A., Piazzetta, R. L. S., Gunha, J. V, Andrade, A. V. C., Lenzi,</p><p>E. K., Medina, A. N., Astrath, N. G. C., & El-mallawany, R. (2019). Thermal and optical properties</p><p>of lithium-zinc-tellurite glasses. Materials Chemistry and Physics, 231, 150158.</p><p></p><p>Onodera, Y., Takimoto, Y., Hijiya, H., Taniguchi, T., Urata, S., Inaba, S., Fujita, S., Obayashi,</p><p>I., Hiraoka, Y., & Kohara, S. (2019). Origin of the mixed alkali effect in silicate glass. NPG Asia</p><p>Materials, 11(75).</p><p></p><p>Oueslati-omrani, R., & Hamzaoui, A. H. (2020). Effect of ZnO incorporation on the structural,</p><p>thermal and optical properties of phosphate based silicate glasses. Materials Chemistry and</p><p>Physics, 242, 122461.</p><p></p><p>Ouis, M. A., Batal, F. H., & Azooz, M. A. (2019). FTIR, optical, and thermal studies of cadmium</p><p>borate glass doped with Bi2O3 and effects of gamma irradiation. Journal of Australian Ceramic</p><p>Society.</p><p></p><p>Pach, K., Golis, E., Yousef, E. S., Sitarz, M., & Filipecki, J. (2018). Structural studies of</p><p>tellurite glasses doped with erbium ions. Journal of Molecular Structure, 1164, 328 333.</p><p></p><p>Pal, I., Agarwal, A., Sanghi, S., & Aggarwal, M. P. (2012). Structure and optical absorption of</p><p>Sm+ and Nd+ ions in cadmium bismuth borate glasses with large radiative transition probabilities.</p><p>Optical Materials, 34(7), 11711180.</p><p></p><p>Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes.</p><p>Nature Nanotechnology, 4, 4547.</p><p></p><p>Patwari, R. D., & Eraiah, B. (2019). Optical and Plasmonic Properties of Er+ and Silver Co-doped</p><p>Borate Nano-composite Glasses. Materials Research Express.</p><p></p><p>Pavani, P. G., Sadhana, K., & Mouli, V. C. (2011). Optical, physical and structural studies of</p><p>boro-zinc tellurite glasses. Physica B: Physics of Condensed Matter, 406(67), 12421247.</p><p></p><p>Pepe, Y., Erdem, M., Sennaroglu, A., & Eryurek, G. (2019). Enhanced gain bandwidth of Tm+ and Er+</p><p>doped tellurite glasses for broadband optical amplifier. Journal of Non-Crystalline Solids, 522,</p><p>119501.</p><p></p><p>Pirouz, A. A., Karjiban, R. A., Bakar, F. A., & Selamat, J. (2018). A novel adsorbent magnetic</p><p>graphene oxide modified with Chitosan for the simultaneous reduction of mycotoxins. Toxins, 10(9),</p><p>361.</p><p></p><p>Pisarski, W. A., Pisarska, J., Lisiecki, R., & Ryba-romanowski, W. (2017). Opto- Electronics Review</p><p>Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion</p><p>applications. Opto-Electronics Review, 25(3), 238241.</p><p></p><p>Polosan, S. (2019). Structure and low field magnetic properties in phosphate-tellurite glasses.</p><p>Journal of Non-Crystalline Solids, 524, 119651.</p><p></p><p>Pop, L., Bolundut, L., Pascuta, P., & Culea, E. (2019). Influence of Er+ ions addition on thermal</p><p>and optical properties of phosphategermanate system. Journal of Thermal Analysis and Calorimetry,</p><p>4, 15.</p><p></p><p>Prabhu, N. S., Hegde, V., Sayyed, M. I., Sakar, E., & Kamath, S. D. (2019). Investigations on the</p><p>physical, structural, optical and photoluminescence behavior of Er+ ions in lithium zinc</p><p>fluoroborate glass system. Infrared Physics and Technology, 98, 715.</p><p></p><p>Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., & Zyryanov, G. V. (2020). An</p><p>overview of graphene oxide supported semiconductors based photocatalysts: Properties,</p><p>synthesis and photocatalytic applications. Journal of Molecular Liquids, 297, 111826.</p><p></p><p>Price, R. J., Ladislaus, P. I., Smith, G. C., & Davies, T. J. (2019). A novel bottom-up synthesis</p><p>of few- and multi-layer graphene platelets with partial oxidation via cavitation. Ultrasonics -</p><p>Sonochemistry, 56, 466473.</p><p></p><p>Qi, J., Xue, D., Ratajczak, H., & Ning, G. (2004). Electronic polarizability of the oxide ion and</p><p>density of binary silicate, borate and phosphate oxide glasses. Physica B, 349, 265269.</p><p></p><p>Queiroz, M. N., Dantas, N. F., Brito, D. R. N., Barboza, M. J., Steimacher, A., & Pedrochi, F.</p><p>(2019). Optical and Spectroscopic Investigation of Sm+-Doped Calcium Borotellurite Glasses.</p><p>Journal of Electronic Materials.</p><p></p><p>Rajagukguk, J., Sinaga, B., & Kaewkhao, J. (2019). Molecular and Biomolecular Spectroscopy</p><p>Structural and spectroscopic properties of Er+ doped sodium lithium borate glasses.</p><p>Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117342.</p><p></p><p>Rajesh, D., & Camargo, A. S. S. De. (2019). Nd+ doped new oxyfluoro tellurite glasses and glass</p><p>ceramics containing NaYF4 nano crystals1.06 m emission analysis. Journal of Luminescence, 207,</p><p>469476.</p><p></p><p>Ramachari, D., Yang, C., Wada, O., Uchino, T., & Pan, C. (2019). High-refractive index, low-loss</p><p>oxyfluorosilicate glasses for sub-THz and millimeter wave applications. Journal of Applied Physics,</p><p>125, 151609.</p><p></p><p>Rammah, Y. S., Ali, A. A., & Abdelghany, A. M. (2019). Optical properties of bismuth borotellurite</p><p>glasses doped with NdCl3. Journal of Molecular Structure, 1175, 504 511.</p><p></p><p>Rammah, Y. S., Sayyed, M. I., Abohaswa, A. S., & Tekin, H. O. (2018). FTIR, electronic</p><p>polarizability and shielding parameters of B2O3 glasses doped with-SnO2. Applied Physics A, 124(9),</p><p>650.</p><p></p><p>Rao, K. V., Babu, S., Balanarayana, C., & Ratnakaram, Y. C. (2019). Comparative impact of Nd+ ion</p><p>doping concentration on near-infrared laser emission in lead borate glassy materials. Optik -</p><p>International Journal for Light and Electron Optics, 163562.</p><p></p><p>Rao, M. C. (2018). Effect of Al2O3 on structural and luminescent properties of neodymium (Nd+)</p><p>doped lead germanate glasses. Optik - International Journal for Light and Electron Optics, 172,</p><p>509518.</p><p></p><p>Ravangvong, S., Chanthima, N., Rajaramakrishna, R., Kim, H. J., & Kaewkhao, J. (2020). Effect of</p><p>sodium oxide and sodium fluoride in gadolinium phosphate glasses doped with Eu2O3 content. Journal</p><p>of Luminescence, 116950.</p><p></p><p>Rout, S. S. G. C. (2017). Band gap opening in graphene : a short theoretical study.</p><p>International Nano Letters, 7(2), 8189.</p><p></p><p>Sajna, M. S., Perumbilavil, S., Prakashan, V. P., Sanu, M. S., Joseph, C., Biju, P. R., &</p><p>Unnikrishnan, N. V. (2018). Enhanced resonant nonlinear absorption and optical limiting in Er+</p><p>ions doped multicomponent tellurite glasses. Materials Research Bulletin.</p><p></p><p>Sakida, S., Hayakawa, S., & Yoko, T. (2001). Ga NMR Study of M2O3 TeO2 ( M ? Al and Ga) Glasses,</p><p>42, 836842.</p><p></p><p>Sanjay, Kishore, N., Sheoran, M. S., & Devi, S. (2018). Study of Boro-Tellurite Glasses Doped With</p><p>Neodymium Oxide. 2nd International Conference on Condensed Matter and Applied Physics.</p><p></p><p>Saudi, H. A., & Adel, G. (2018). Study on Mass Attenuation Coefficients and Optical Properties for</p><p>Boro-Tellurite Glass doped with Barium. American Journal of Astronomy and Astrophysics, 6(1),</p><p>2125.</p><p></p><p>Sekiya, T., Mochida, N., & Ohtsuka, A. (1994). Raman spectra of MO-TeO2 ( M = Mg , Sr , Ba and Zn)</p><p>glasses, 168, 106114.</p><p></p><p>Selvaraju, K., & Marimuthu, K. (2012). Structural and spectroscopic studies on concentration</p><p>dependent Er+ doped boro-tellurite glasses. Journal of Luminescence, 132(5), 11711178.</p><p></p><p>Shaaban, K. S. (2019). Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics.</p><p>Optik - International Journal for Light and Electron Optics, 163976.</p><p></p><p>Shang, J., Li, J., Ai, W., Yu, T., & Gurzadyan, G. G. (2012). The Origin of Fluorescence from</p><p>Graphene Oxide. Scientific Reports, 2(1), 18.</p><p></p><p>Shekhawat, M. S., Basha, S. K. S., & Rao, M. C. (2018). Spectroscopic Studies on Samarium Oxide</p><p>(Sm2O3) Doped Tungsten Tellurite Glasses. 2nd International Conference on Condensed Matter and</p><p>Applied Physics (ICC 2017).</p><p></p><p>Shen, C., Jia, Y., Yan, X., Zhang, W., Li, Y., Qing, F., & Li, X. (2018). Effects of Cu</p><p>contamination on system reliability for graphene synthesis by chemical vapor deposition method.</p><p>Carbon, 127, 676680.</p><p></p><p>Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y., Odkhuu, D., Tsogbadrakh, N., Lee, H., &</p><p>Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from</p><p>low-temperature atomic layer deposition of titanium oxide. Royal Society of Chemistry, 7,</p><p>1397913984.</p><p></p><p>Shoaib, M., Chanthima, N., Rooh, G., Sangwaranatee, N., & Kaewkhao, J. (2019). Physical and</p><p>Luminescence Study of Nd+ ions doped Phosphate Glass for Lasing Applications. Materials Today:</p><p>Proceedings, 17, 18001808.</p><p></p><p>Shwetha, M., & Eraiah, B. (2019). Influence of Er+ ions on the physical, structural, optical, and</p><p>thermal properties of ZnO-Li2O-P2O5 glasses. Applied Physics A, 125(3).</p><p></p><p>Sidek, H. A. A., Rosmawati, S., Azmi, B. Z., & Shaari, A. H. (2013). Effect of ZnO on the Thermal</p><p>Properties of Tellurite Glass. Advances in Condensed Matter Physics, 2013, 16.</p><p></p><p>Silva, A. A., Pinheiro, R. A., Rodrigues, A. C., Baldan, M. R., Trava-Airoldi, V. J., & Corat, E.</p><p>J. (2018). Graphene sheets produced by carbon nanotubes unzipping and their performance as</p><p>supercapacitor. Applied Surface Science.</p><p></p><p>Singh, V., Seshadri, M., Singh, N., & Mohapatra, M. (2019). Radiative properties of Er+ doped and</p><p>Er+/Yb+ co-doped Sr3Al2O6 phosphors: exploring the usefulness as a phosphor material. Journal of</p><p>Materials Science: Materials in Electronics.</p><p></p><p>Singh V , Joung D , Zhai L , Das S , Khondaker SI, S. S. (2011). Graphene based materials : Past,</p><p>present and future. Progress in Materials Science, 56, 11781271.</p><p></p><p>Siva Rama Krishna Reddy, K Swapna, K., Venkateswarlu, M., Mahamuda, S., & Rao, A.</p><p>S. (2019). Thermal, Up-Conversion and Near-Infrared Luminescence studies of Erbium ions doped</p><p>Alkaline-Earth Boro Tellurite Glasses. Solid State Sciences, 106016.</p><p></p><p>Smith, A. T., Marie, A., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and</p><p>applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials</p><p>Science.</p><p></p><p>Soares, B. P., Desa, J. A. E., & Krishna, P. S. R. (2019). Influence of praseodymium on alumino-</p><p>germanate glasses containing Nd and La inclusions. DAE Solid State Physics Symposium 2018, 030247,</p><p>37.</p><p></p><p>Soriano-Romero, O., Lozada-Morales, R., Caldino, U., Mendez-Blas, A., Falcony, C., Alvarez, E.,</p><p>Palomino-Ovando, M., & Meza-Rocha, A. N. (2019). Spectroscopic evaluation a new and novel Nd+/Yb+</p><p>co-doped CdO- V2O5 glass system for 1 m laser application. Journal of Alloys and Compunds, 777,</p><p>886893.</p><p></p><p>Sreedhar, V. B., Krishnaiah, K. V., Rasool, S. K. N., Venkatramu, V., & Jayasankar, C.</p><p>K. (2019). Raman and photoluminescence studies of europium doped zinc- fluorophosphate glasses for</p><p>photonic applications. Journal of Non-Crystalline Solids, 505, 115121.</p><p></p><p>Sreenivasulu, M., Chavan, V. K., Rupa, B., & Rao, V. (2019). Characterization of Cr+</p><p>Doped Zinc Lead Lithium Phosphate Glasses. Materials Research Express.</p><p></p><p>Sribunrueng, S., Sivanavin, S., & Yasaka, P. (2019). Study on physical, optical and luminescence of</p><p>zinc tellurite glasses doped with bismuth oxide. Interdisciplinary Research Review, 14(4), 3436.</p><p></p><p>Stambouli, W., Elhouichet, H., & Ferid, M. (2012). Study of thermal, structural and optical</p><p>properties of tellurite glass with different TiO2 composition. Journal of Molecular Structure,</p><p>1028, 3943.</p><p></p><p>Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsure. Berichte Der Deutschen</p><p>Chemischen Gesellschaft.</p><p></p><p>Suaif, A., Yuliantini, L., Djamal, M., Kaewkhao, J., & Yasaka, P. (2019). A Comparative study of</p><p>TeO2 concentration on zinc barium boro-tellurite glass doped with Sm+. Materials Today:</p><p>Proceedings, 17, 18091814.</p><p></p><p>Sun, G. (2010). Intersubband approach to silicon based lasers-circumventing the indirect bandgap</p><p>limitation. Advances in Optics and Photonics, 3(1), 53.</p><p></p><p>Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile</p><p>one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor</p><p>applications. Materials Letters, 161, 665668.</p><p></p><p>Szumera, M., Waclawska, I., & Sulowska, J. (2016). Influence of CuO and ZnO addition on the</p><p>multicomponent phosphate glasses: spectroscopic studies. Journal of Molecular Structure.</p><p></p><p>Tagiara, N. S., Palles, D., Simandiras, E. D., Psycharis, V., Kyritsis, A., & Kamitsos, E. I.</p><p>(2017). Synthesis , thermal and structural properties of pure TeO2 glass and zinc- tellurite</p><p>glasses. Journal of Non-Crystalline Solids, 457, 116125.</p><p></p><p>Taherunnisa, S. K., Krishna Reddy, D. V., SambasivaRao, T., Rudramamba, K. S., Zhydachevskyy, Y.</p><p>A., Suchocki, A., Piasecki, M., & Rami Reddy, M. (2019). Effect of up-conversion luminescence in</p><p>Er+ doped phosphate glasses for developing Erbium-Doped Fibre Amplifiers (EDFA) and G-LEDs.</p><p>Optical Materials: X.</p><p></p><p>Talebian, E., & Talebian, M. (2013). A general review on the derivation of Clausius- Mossotti</p><p>relation. Optik-International Journal for Light and Electron Optics, 124(16), 23242326.</p><p></p><p>Talewar, R. A., Mahamuda, S., Swapna, K., & Rao, A. S. (2018). Sensitization of Yb+ by Nd+</p><p>emission in alkaline-earth chloro borate glasses for laser and fiber amplifier applications.</p><p>Journal of Alloys and Compounds.</p><p></p><p>Tang, S., Wu, W., Xie, X., Li, X., & Gu, J. (2017). Band gap opening of bilayer graphene by</p><p>graphene oxide support doping. Royal Society of Chemistry, 7, 98629871.</p><p></p><p>Tanko, Y. A., Ghoshal, S. K., & Sahar, M. R. (2016). Ligand field and Judd-Ofelt intensity</p><p>parameters of samarium doped tellurite glass. Journal of Molecular Structure, 1117, 6468.</p><p></p><p>Tatsumisago, M., Lee, S., Minami, T., & Kowada, Y. (1994). Raman spectra of TeO2- based glasses and</p><p>glassy liquids : local structure change with temperature in relation to fragility of liquid Tg/T,</p><p>177, 154163.</p><p></p><p>Tong, H. T., Demichi, D., Nagasaka, K., Suzuki, T., & Ohishi, Y. (2018). Suppressing</p><p>1.06 m spontaneous emission of neodymium ions using a novel tellurite all-solid photonic bandgap</p><p>fiber. Optics Communications, 415, 8792.</p><p></p><p>Tuan, T. H., Miura, K., Nishiharaguchi, N., Suzuki, T., & Ohishi, Y. (2019). Suppressing</p><p>1.06 m Emission of Nd+ Ions in Tellurite All Solid Photonic Bandgap Fibers With Double Cladding.</p><p>2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference</p><p>(CLEO/Europe-EQEC), 113, 1.</p><p></p><p>Umamaheswar, G., Devarajulu, G., Rajesh, M., Sushma, N. J., Gowthami, T., Nagajyothi, P. C.,</p><p>Ramaswamy, V., & Raju, B. D. P. (2018). Effect of Eu+ ions on optical and fluorescence studies of</p><p>Nd+ ions doped zinc-lithium fluoroborate glasses. Journal of Luminescence. Elsevier B.V.</p><p></p><p>Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability , optical basicity</p><p>and electric susceptibility of Er+ doped silicate borotellurite glasses. Journal of</p><p>Non-Crystalline Solids.</p><p></p><p>Vani, P., Vinitha, G., Sayyed, M. I., Elbashir, B. O., & Manikandan, N. (2019). Investigation on</p><p>structural, optical, thermal and gamma photon shielding properties of zinc and barium doped</p><p>fluorotellurite glasses. Journal of Non-Crystalline Solids, 511, 194200.</p><p></p><p>Vijayalakshmi, L., Kumar, K. N., Rao, K. S., & Hwang, P. (2018). Bright up-conversion white light</p><p>emission from Er+ doped lithium fluoro zinc borate glasses for photonic applications. Journal of</p><p>Molecular Structure, 1155, 394402.</p><p></p><p>Wan, Q., Wang, H., Li, S., & Wang, J. (2018). Journal of Colloid and Interface Science 3,</p><p>3-tetramethylurea solution. Journal of Colloid And Interface Science, 526, 167 173.</p><p></p><p>Wang, J. S., Vogel, E. M., Snitzer, E., Jackel, J. L., Da Silva, J. L., Silberberg, Y. (1994).</p><p>1.3 m emission of neodymium and praseodymium in tellurite-based glasses.</p><p>Journal of Non-Crystalline Solids, 178, 109113.</p><p></p><p>Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of</p><p>graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today,</p><p>16, 120.</p><p></p><p>Wang, R., Yang, Z., Zhou, D., Song, Z., & Qiu, J. (2014). Structure and luminescent property of</p><p>Er+-doped germanate glasses. Journal of Non-Crystalline Solids, 383, 200204.</p><p></p><p>Wang, X. Y., Narita, A., & Mllen, K. (2017). Precision synthesis versus bulk-scale fabrication of</p><p>graphenes. Nature Reviews Chemistry, 2(1).</p><p></p><p>Wen, H., Zhang, J., Yao, Q., Liu, L., Dong, W., Li, J., & Wang, J. (2019). Thermal, Optical</p><p>Characterization and Judd-Ofelt Analyis of Nd+-Doped BaO-TeO2-B2O3 Glasses. Materials and</p><p>Technology, 53(3), 305309.</p><p></p><p>Xie, T., Zhang, L., Wang, J., Xie, T., Zhu, Q., & Zhang, X. (2018). Co-precipitation synthesis,</p><p>structural characterization and fluorescent analysis of Nd+ doped Y3Al5O12 and Yb3Al5O12</p><p>nanocrystallines. Journal of Materials Science: Materials in Electronics.</p><p></p><p>Yang, L., Li, H. Y., Wang, P. W., Wu, S. Y., Guo, G. Q., Liao, B., Guo, Q. L., fan, X. Q.,</p><p>Huang, P., Lou, H. B., Guo, F. M., Zeng, Q. S., Sun, T., Ren, Y., & Chen, L. Y. (2017). Structural</p><p>responses of metallic glasses under neutron irradiation. Scientific Reports, 7(1).</p><p></p><p>Yang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., & Pan, T. (2015). Bottom-up Fabrication of</p><p>Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports,</p><p>5(1).</p><p></p><p>Yasaka, P., Ruangthaweep, Y., Wongdeeying, C., & Kaewkhao, J. (2018). Spectroscopic and structural</p><p>characterization of zinc barium tellurite glass. Materials Today: Proceedings, 5(7), 1507215075.</p><p></p><p>Ye, Q., Wang, J., Liu, Z., Deng, Z., Kong, X., Xing, F., Chen, X., Zhou, W., Zhang, C., & Tian, J.</p><p>(2013). Polarization-dependent optical absorption of graphene under total internal reflection.</p><p>Applied Physics Letters, 102(2), 021912.</p><p></p><p>Yu, C., Yang, Z., Huang, A., Chai, Z., Qiu, J., Song, Z., & Zhou, D. (2017). Photoluminescence</p><p>properties of tellurite glasses doped Dy+ and Eu+ for the UV and blue converted WLEDs. Journal of</p><p>Non-Crystalline Solids, 457, 18.</p><p></p><p>Yuliantini, L., Djamal, M., Hidayat, R., Boonin, K., Yasaka, P., & Kaewnuam, E. (2019). Optical</p><p>and X-ray induced luminescence of Sm+-doped borotellurite and fluoroborotellurite glasses :</p><p>A comparative study. Journal of Luminescence, 213, 1928.</p><p></p><p>Yusof, N. N., Ghoshal, S. K., & Azlan, M. N. (2017). Optical properties of titania nanoparticles</p><p>embedded Er+-doped tellurite glass: Judd-Ofelt analysis. Journal of Alloys and Compounds, 724,</p><p>10831092.</p><p></p><p>Zachariasen, W. H. (1932). The Atomic Arrangement in Glass. Journal of the American Chemical</p><p>Society, 54(10), 38413851.</p><p></p><p>Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Influence of manganese</p><p>doping on elastic and structural properties of silica borotellurite glass. Journal of</p><p>Non-Crystalline Solids, 492, 5055.</p><p></p><p>Zaman, F., Rooh, G., Srisittipokakun, N., Ahmad, T., Khan, I., Shoaib, M., Ataullah., Rajagukguk,</p><p>J., & Kaewkhao, J. (2019). Comparative investigations of gadolinium based borate glasses doped with</p><p>Dy+ for white light generations. Solid State Sciences, 89, 5056.</p><p></p><p>Zamyatin, O. A., Churbanov, M. F., Plotnichenko, V. G., & Zamyatina, E. V. (2018). Optical</p><p>properties of the MoO3TeO2 glasses doped with Ni+-ions. Journal of Non- Crystalline Solids, 480,</p><p>7480.</p><p></p><p>Zanotto, E. D., & Mauro, J. C. (2017). The glassy state of matter : Its definition and ultimate</p><p>fate. Journal of Non-Crystalline Solids.</p><p></p><p>Zhang, W. L., & Choi, H. J. (2015). Graphene/graphene oxide : A new material for electrorheological</p><p>and magnetorheological applications. Journal of Intelligent Material Systems and Structures,</p><p>26(14), 18261835.</p><p></p><p>Zhang, X., Shao, X., & Liu, S. (2012). Dual Fluorescence of Graphene Oxide: A Time- Resolved Study.</p><p>The Journal of Physical Chemistry A, 116(27), 73087313.</p><p></p><p>Zhang, Yifan, Sheng, L., Fang, Y., An, K., Yu, L., Liu, Y., & Zhao, X. (2017). Synthesis of 3C-SiC</p><p>nanowires from a graphene / Si configuration obtained by arc discharge method Abstract SiC</p><p>nanowires were fabricated by heat-treating a graphene/Si configuration without. Chemical Physics</p><p>Letters.</p><p></p><p>Zhang, Yu, Xiao, Z., Lei, H., Zeng, L., & Tang, J. (2019). Er+/Yb+ co-doped tellurite glasses for</p><p>optical fiber thermometry upon UV and NIR excitations. Journal of Luminescence, 212, 6168.</p><p></p><p>Zhao, G., Xu, L., Meng, S., Du, C., Hou, J., Liu, Y., Guo, Y., Fang, Y., Liao, M., Zou, J., & Hu,</p><p>L. (2018). Facile preparation of plasmon enhanced nearinfrared photoluminescence of</p><p>Er+-doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier. Journal of Luminescence.</p><p></p><p>Zhao, X., Wang, X., Lin, H., & Wang, Z. (2007). Electronic polarizability and optical basicity of</p><p>lanthanide oxides. Physica B, 392, 132136.</p><p></p><p>Zhu, Y., Shen, X., Su, X., Zhou, M., Zhou, Y., Li, J., & Yang, G. (2019). Concentration dependent</p><p>structural , thermal and luminescence properties in Er+/Tm+ doped tellurite glasses. Journal of</p><p>Non-Crystalline Solids, 507, 1929.</p><p></p><p>Zmojda, J., Miluski, P., & Kochanowicz, M. (2018). Nanocomposite Antimony-</p><p>Germanate-Borate Glass Fibers Doped with Eu+ Ions with Self-Assembling Silver or Photonic</p><p>Applications. Applied Sciences, 8(5), 790.</p><p></p> |