Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
<p>This study aimed to develop a voltammetric sensor for the determination of bisphenol</p><p>A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled</p><p>carbon nanotubes incorporated with zinc/aluminium...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | chi |
Published: |
2021
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=7274 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:7274 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
chi |
topic |
QE Geology |
spellingShingle |
QE Geology Nurashikin Abd Azis Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
description |
<p>This study aimed to develop a voltammetric sensor for the determination of bisphenol</p><p>A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled</p><p>carbon nanotubes incorporated with zinc/aluminium layered double hydroxidequinmerac</p><p>(Sensor 1), zinc/aluminium layered double hydroxide-quinclorac (Sensor 2)</p><p>and zinc/aluminium layered double hydroxide-clopyralid (Sensor 3). The surface</p><p>morphological was determined using field emission scanning electron microscope. The</p><p>electrochemical properties were characterized by cyclic voltammetry, square wave</p><p>voltammetry and electrochemical impedance spectroscopy. Several experimental</p><p>variables of voltammetric analysis such as composition ratios, type of supporting</p><p>electrolyte, pH of the solution and square wave voltammetry parameters were</p><p>optimized. The effective surface area of electrodes was determined by</p><p>chronocoulometry. At the optimum conditions, Sensor 1 showed three linear ranges for</p><p>the single determination of BPA (30 to 700 nM, 1 to 10 M and 30 to 300 M) with</p><p>detection limit of 4.4 nM. Sensor 2 showed simultaneous determination of UA and</p><p>BPA. The linear ranges for UA is from 0.3 to 30 M and 50 to 100 M while for BPA</p><p>is from 0.3 to 5 M and 10 to 100 M with detection limit are 0.065 M and 0.049 M,</p><p>respectively. Sensor 3 showed simultaneous determination of DA, ACT and BPA with</p><p>linear ranges from 7 to 500 M, 30 to 500 M and 3 to 500 M and with detection limit</p><p>of 0.172 M, 0.179 M and 0.136 M, respectively. All the developed sensors did not</p><p>interfere by several foreign ions. In a conclusion, the proposed electrodes exhibited</p><p>good analytical performance with excellent sensitivity and selectivity. In its</p><p>implication, these fabricated electrodes are applicable for determination of BPA, UA,</p><p>ACT and DA in baby bottle, baby teether, water samples, urine and pharmaceutical</p><p>tablets.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Nurashikin Abd Azis |
author_facet |
Nurashikin Abd Azis |
author_sort |
Nurashikin Abd Azis |
title |
Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
title_short |
Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
title_full |
Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
title_fullStr |
Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
title_full_unstemmed |
Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
title_sort |
voltammetric sensors of bisphenol a, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2021 |
url |
https://ir.upsi.edu.my/detailsg.php?det=7274 |
_version_ |
1747833373393420288 |
spelling |
oai:ir.upsi.edu.my:72742022-07-21 Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste 2021 Nurashikin Abd Azis QE Geology <p>This study aimed to develop a voltammetric sensor for the determination of bisphenol</p><p>A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled</p><p>carbon nanotubes incorporated with zinc/aluminium layered double hydroxidequinmerac</p><p>(Sensor 1), zinc/aluminium layered double hydroxide-quinclorac (Sensor 2)</p><p>and zinc/aluminium layered double hydroxide-clopyralid (Sensor 3). The surface</p><p>morphological was determined using field emission scanning electron microscope. The</p><p>electrochemical properties were characterized by cyclic voltammetry, square wave</p><p>voltammetry and electrochemical impedance spectroscopy. Several experimental</p><p>variables of voltammetric analysis such as composition ratios, type of supporting</p><p>electrolyte, pH of the solution and square wave voltammetry parameters were</p><p>optimized. The effective surface area of electrodes was determined by</p><p>chronocoulometry. At the optimum conditions, Sensor 1 showed three linear ranges for</p><p>the single determination of BPA (30 to 700 nM, 1 to 10 M and 30 to 300 M) with</p><p>detection limit of 4.4 nM. Sensor 2 showed simultaneous determination of UA and</p><p>BPA. The linear ranges for UA is from 0.3 to 30 M and 50 to 100 M while for BPA</p><p>is from 0.3 to 5 M and 10 to 100 M with detection limit are 0.065 M and 0.049 M,</p><p>respectively. Sensor 3 showed simultaneous determination of DA, ACT and BPA with</p><p>linear ranges from 7 to 500 M, 30 to 500 M and 3 to 500 M and with detection limit</p><p>of 0.172 M, 0.179 M and 0.136 M, respectively. All the developed sensors did not</p><p>interfere by several foreign ions. In a conclusion, the proposed electrodes exhibited</p><p>good analytical performance with excellent sensitivity and selectivity. In its</p><p>implication, these fabricated electrodes are applicable for determination of BPA, UA,</p><p>ACT and DA in baby bottle, baby teether, water samples, urine and pharmaceutical</p><p>tablets.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7274 https://ir.upsi.edu.my/detailsg.php?det=7274 text chi closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abollino, O., Giacomino, A., & Malandrino, M. (2018). Stripping Voltammetry. In</p><p>Encyclopedia of Analytical Science, (3rd ed., pp. 120). Elsevier Inc.</p><p></p><p>Abramovic, B. F., Anderluh, V. B., ojic, D. V., & Gal, F. F. (2007). Photocatalytic</p><p>removal of the herbicide clopyralid from water. Journal of the Serbian Chemical</p><p>Society, 72(12), 14771486.</p><p></p><p>Achterberg, E. P., Gledhill, M., Hawkes, J. A., & Avendano, L. C. (2013). Voltammetry</p><p>| Cathodic Stripping. Reference Module in Chemistry, Molecular Sciences and</p><p>Chemical Engineering (pp. 203-211). Elsevier Inc.</p><p></p><p>Adam, N., Mohd Ghazali, S. A. I. S., Dzulkifli, N. N., Hak, C. R. C., & Sarijo, S. H.</p><p>(2019). Intercalations and characterization of zinc/aluminium layered double</p><p>hydroxide-cinnamic acid. Bulletin of Chemical Reaction Engineering &amp;Amp;</p><p>Catalysis, 14(1), 165172.</p><p></p><p>Adeloju, S. B. (2007). Electrochemical stripping analysis of trace and ultra-trace</p><p>concentrations of toxic metals and metalloids in foods and beverages. In Food</p><p>Toxicants Analysis: Techniques, Strategies and Developments (pp. 667696).</p><p>Woodhead Publishing Limited.</p><p></p><p>Adhikari, B.-R., Maduraiveeran, G., & Chen, A. (2014). Sensitive detection of</p><p>acetaminophen with graphene-based electrochemical sensor. Electrochimica Acta,</p><p>162, 198-204</p><p></p><p>Ahmad, M. S., Isa, I., Hashim, N., & Rosmi, M. S. (2018). Electrochemical detection</p><p>of hydroquinone by square wave voltammetry using a Zn layered hydroxideferulate</p><p>(ZLH-F) modified MWCNT paste electrode. International Journal of</p><p>Electrochemical Science, 13, 373383.</p><p></p><p>Ahmad, M. S., Isa, I., Hashim, N., Si, S. M., & Saidin, M. I. (2018). A highly sensitive</p><p>sensor of paracetamol based on zinc-layered hydroxide-L-phenylalanate-modified</p><p>multiwalled carbon nanotube paste electrode. Journal of Solid State</p><p>Electrochemistry, 22(3), 26912701.</p><p></p><p>Ahmad, M. S., Isa, I. M., Hashim, N., Saidin, M. I., Si, S. M., Zainul, R., & Mukdasai,</p><p>S. (2019). Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified</p><p>multiwalled carbon nanotubes as sensor for electrochemical determination of</p><p>dopamine in alkaline medium. International Journal of Electrochemical Science,</p><p>14(9), 90809091.</p><p></p><p>Ahmadpour, S., Tashkhourian, J., & Hemmateenejad, B. (2020). A chemometric</p><p>investigation on the influence of the nature and concentration of supporting</p><p>electrolyte on charging currents in electrochemistry. Journal of Electroanalytical</p><p>Chemistry, 871, 114296.</p><p></p><p>Ahmed, J., Rahman, M. M., Siddiquey, I. A., Asiri, A. M., & Hasnat, M. A. (2017).</p><p>Efficient bisphenol-A detection based on the ternary metal oxide (TMO)</p><p>composite by electrochemical approaches. Electrochimica Acta, 246, 597605.</p><p></p><p>Alderman, M. H. (2001). Serum uric acid as a cardiovascular risk factor for heart</p><p>disease. Current Hypertension Reports, 3, 184189.</p><p></p><p>Allou, N. B., Saikia, P., Borah, A., & Goswamee, R. L. (2017). Hybrid nanocomposites</p><p>of layered double hydroxides : An update of their biological applications and</p><p>future prospects. Colloid and Polymer Science, 295(5), 725747.</p><p></p><p>Alnaimat, A. S., Barciela-Alonso, M. C., & Bermejo-Barrera, P. (2019). Determination</p><p>of bisphenol A in tea samples by solid phase extraction and liquid chromatography</p><p>coupled to mass spectrometry. Microchemical Journal, 147, 598-604.</p><p></p><p>Alvarez-Lario, B., & Macarron-Vicente, J. (2010). Uric acid and evolution.</p><p>Rheumatology, 49, 20102015.</p><p></p><p>Alves, G. M. S., Rocha, L. S., & Soares, H. M. V. M. (2017). Multi-element</p><p>determination of metals and metalloids in waters and wastewaters, at trace</p><p>concentration level, using electroanalytical stripping methods with</p><p>environmentally friendly mercury free-electrodes: A review. Talanta, 175, 53-68.</p><p></p><p>Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., & Cerd, V. (2015). Solid phase</p><p>extraction of organic compounds: A critical review. Trends in Analytical</p><p>Chemistry, 80, 655667.</p><p></p><p>Anson, F. C. (1966). Innovations in the study of adsorbed reactants by</p><p>chronocoulometry. Analytical Chemistry, 38(1), 5457.</p><p></p><p>Apetrei, C., Apetrei, I. M., Saja, J. A. De, & Rodriguez-Mendez, M. L. (2011). Carbon</p><p>paste electrodes made from different carbonaceous materials: Application in the</p><p>study of antioxidants. Sensors, 11, 13281344.</p><p></p><p>Apodaca, D. C., Pernites, R. B., Ponnapati, R., Del Mundo, F. R., & Advincula, R. C.</p><p>(2011). Electropolymerized molecularly imprinted polymer film: EIS sensing of</p><p>bisphenol A. Macromolecules, 44(17), 66696682.</p><p></p><p>Arvand, M., & Hassannezhad, M. (2014). Magnetic core-shell Fe3O4@SiO2/MWCNT</p><p>nanocomposite modified carbon paste electrode for amplified electrochemical</p><p>sensing of uric acid. Materials Science and Engineering C, 36(1), 160167.</p><p></p><p>Asadpour-Zeynali, K., & Amini, R. (2017). Nanostructured hexacyanoferrate</p><p>intercalated Ni/Al layered double hydroxide modified electrode as a sensitive</p><p>electrochemical sensor for paracetamol determination. Electroanalysis, 29(2),</p><p>635642.</p><p></p><p>Atta, N. F., Ali, S. M., El-ads, E. H., & Galal, A. (2013). Nano-perovskite carbon paste</p><p>composite electrode for the simultaneous determination of dopamine, ascorbic</p><p>acid and uric acid. Electrochimica Acta, 128, 1624.</p><p></p><p>Azis, N. A., Isa, I. M., Hashim, N., Ahmad, M. S., Yazid, S. N. A. M., & Saidin, M. I.</p><p>(2019). Voltammetric determination of bisphenol A in the presence of uric acid</p><p>using a Zn/Al-LDH-QM modified MWCNT paste electrode. International</p><p>Journal of Electrochemical Science, 14, 10607-10621.</p><p></p><p>Babaei, A., Afrasiabi, M., & Azimi, G. (2015). Nanomolar simultaneous determination</p><p>of epinephrine and acetaminophen on a glassy carbon electrode coated with a</p><p>novel Mg-Al layered double hydroxide-nickel hydroxide nanoparticles-multiwalled</p><p>carbon nanotubes composite. Analytical Methods, 7(6), 24692478.</p><p></p><p>Baccarin, M., Santos, F. A., Vicentini, F. C., Zucolotto, V., Janegitz, B. C., & Fatibello-</p><p>Filho, O. (2017). Electrochemical sensor based on reduced graphene oxide/carbon</p><p>black/chitosan composite for the simultaneous determination of dopamine and</p><p>paracetamol concentrations in urine samples. Journal of Electroanalytical</p><p>Chemistry, 799(6), 436443.</p><p></p><p>Baig, N., & Sajid, M. (2017). Applications of layered double hydroxides based</p><p>electrochemical sensors for determination of environmental pollutants : A review.</p><p>Trends in Environmental Analytical Chemistry, 16(10), 115.</p><p></p><p>Baruah, A., Mondal, S., Sahoo, L., & Gautam, U. K. (2019). Ni-Fe-layered double</p><p>hydroxide/N-doped graphene oxide nanocomposite for the highly efficient</p><p>removal of Pb(II) and Cd(II) ions from water. Journal of Solid State Chemistry,</p><p>280, 120963.</p><p></p><p>Bas, B., Bugajna, A., Jakubowska, M., Reczynski, W., & Smalec, A. (2013). The</p><p>renewable glassy carbon annular band electrode in a highly sensitive normal pulse</p><p>voltammetric determination of paracetamol with continuous wavelet</p><p>transformation. Electrochimica Acta, 99, 190197.</p><p></p><p>Bashi, A. M., Hussein, M. Z., Zainal, Z., Rahmani, M., & Tichit, D. (2012).</p><p>Simultaneous intercalation and release of 2,4-dichloro and 4-chloro-phenoxy</p><p>acetates into Zn/Al layered double hydroxide. Arabian Journal of Chemistry, 9,</p><p>S1457S1463.</p><p></p><p>Bayram, E., & Akyilmaz, E. (2016). Chemical development of a new microbial</p><p>biosensor based on conductive polymer/multiwalled carbon nanotube and its</p><p>application to paracetamol determination. Sensors & Actuators: B. Chemical, 233,</p><p>409418.</p><p></p><p>Benecyo, J. E. (2016). Simultaneous Determination of BPA and BPS Using UV/ Vis</p><p>Spectrophotometry and HPLC. Ouachita Baptist University Scholarly.</p><p></p><p>Berber, M., Hafez, I., Minagawa, K., Mori, T., & Tanaka, M. (2011). Versatile</p><p>nanocomposite formulation system of non-steroidal anti-inflammatory drugs of</p><p>the arylalkanoic acids, Advances in Nanocomposite Technology, Abbass Hashim,</p><p>IntechOpen.</p><p></p><p>Bessems, J. G. M., & Vermeulen, N. P. E. (2001). Paracetamol (acetaminophen)-</p><p>induced toxicity : Molecular and biochemical mechanisms , analogues and</p><p>protective approaches. Critical Reviews in Toxicology, 31(1), 55138.</p><p></p><p>Bhakta, A. K., Mascarenhas, R. J., DSouza, O. J., Satpati, A. K., Detriche, S.,</p><p>Mekhalif, Z., & Dalhalle, J. (2015). Iron nanoparticles decorated multi-wall</p><p>carbon nanotubes modified carbon paste electrode as an electrochemical sensor</p><p>for the simultaneous determination of uric acid in the presence of ascorbic acid,</p><p>dopamine and L-tyrosine. Materials Science & Engineering C, 57, 328377.</p><p></p><p>Bilal, S. (2014). Cyclic Voltammetry. In G. Kreysa, K. Ota, & R. F. Savinell (Eds.),</p><p>Encyclopedia of Applied Electrochemistry (pp. 285289). New York, NY:</p><p>Springer New York.</p><p></p><p>Bilewicz, R., Wikiel, K., Osteryoung, R., & Osteryoung, J. (2002). General equivalence</p><p>of linear scan and staircase voltammetry : Experimental results. Analytical</p><p>Chemistry, 61(9), 965972.</p><p></p><p>Bini, M., & Monteforte, F. (2018). Layered double hydroxides (LDHs): Versatile and</p><p>powerful hosts for different applications. Journal of Analytical & Pharmaceutical</p><p>Research, 7(1), 00206.</p><p>Bode and nyquist plot (2020). Retrieved from</p><p>https://www.palmsenscorrosion.com/knowledgebase/bode-and-nyquist-plot/</p><p></p><p>Bolat, G., Yaman, Y. T., & Abaci, S. (2018). Highly sensitive electrochemical assay</p><p>for bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil</p><p>graphite electrodes. Sensors and Actuators, B: Chemical, 255, 140148.</p><p></p><p>Bontempelli, G., Dossi, N., & Toniolo, R. (2019). Polarography/Voltammetry. In</p><p>Encyclopedia of Analytical Science, (3rd ed., pp. 218-229). Elsevier Inc.</p><p></p><p>Brede, C., Fjeldal, P., Skjevrak, I., & Herikstad, H. (2003). Increased migration levels</p><p>of bisphenol A from polycarbonate baby bottles after dishwashing , boiling and</p><p>brushing. Food Additives and Contaminants, 20(7), 684689.</p><p></p><p>Brock, J. W., Yoshimura, Y., Barr, J. R., Maggio, V. L., Graiser, S. R., Nakazawa, H.,</p><p>& Needham, L. L. (2001). Measurement of bisphenol A levels in human urine.</p><p>Journal of Exposure Analysis and Environmental Epidemiology, 11, 323328.</p><p></p><p>Brownson, D. A. C., & Banks, C. E. (2014). The Handbook of Graphene</p><p>Electrochemistry (1st ed.). Springer-Verlag London.</p><p></p><p>Bruna, F., Celis, R., Pavlovic, I., Barriga, C., Cornejo, J., & Ulibarri, M. A. (2009).</p><p>Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-</p><p>2-methylphenoxy) acetic acid (MCPA): Systems MgAl, MgFe and MgAlFe.</p><p>Journal of Hazardous Materials, 168, 14761481.</p><p></p><p>Bunchorntavakul, C., & Reddy, K. R. (2013). Acetaminophen-related hepatotoxicity.</p><p>Clinics in Liver Disease, 17(4), 587607.</p><p></p><p>C. Moldoveanu, S., & David, V. (2017). Short overviews of analytical techniques not</p><p>containing an independent separation step. In Selection of the HPLC Method in</p><p>Chemical Analysis (pp. 3153). Elsevier.</p><p></p><p>Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Environment determination</p><p>of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS</p><p>( SIM ) method based on Speedisk extraction disks and DIMETRIS derivatization.</p><p>Science of the Total Environment, 538, 402411.</p><p></p><p>Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A,</p><p>nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface</p><p>water, sediments, and food : A review. Environmental Science and Pollution</p><p>Research, 22, 57115741.</p><p></p><p>Cavani, F., Trifiro, F., Vaccari, A. (1991). Hydrotalcite-type anionic clays: preparation,</p><p>properties and applications. Catalysis Today, 11, 173301.</p><p></p><p>Chapin, R. E., Adams, J., Boekelheide, K., Gray, L. E., Hayward, S. W., Lees, P. S. J.,</p><p>et al. (2008). NTP-CERHR expert panel report on the reproductive and</p><p>developmental toxicity of bisphenol A. Birth Defects Research Part B -</p><p>Developmental and Reproductive Toxicology, 83(3), 157395.</p><p></p><p>Cheemalapati, S., Palanisamy, S., Mani, V., & Chen, S. M. (2013). Simultaneous</p><p>electrochemical determination of dopamine and paracetamol on multiwalled</p><p>carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon</p><p>electrode. Talanta, 117, 297304.</p><p></p><p>Chen, X., Zhou, G., Mao, S., & Chen, J. (2018). Rapid detection of nutrients with</p><p>electronic sensors: A review. Environmental Science: Nano, 5, 837862.</p><p></p><p>Chen, Z., Guo, J., Zhou, T., Zhang, Y., & Chena, L. (2013). A novel nonenzymatic</p><p>electrochemical glucose sensor modified with Ni/Al layered double hydroxide.</p><p>Electrochimica Acta, 109(3), 532535.</p><p></p><p>Chiavazza, E., Berto, S., Giacomino, A., Malandrino, M., Barolo, C., Prenesti, E., et al</p><p>(2016). Electrocatalysis in the oxidation of acetaminophen with an</p><p>electrochemically activated glassy carbon electrode. Electrochimica Acta, 192,</p><p>139147.</p><p></p><p>Chou, J. (1999). Hazardous gas monitors : A practical guide to selection, operation</p><p>and applications (1st ed). New York: McGraw-Hill.</p><p></p><p>Christie, J. H., & Lingane, P. J. (1965). Theory of staircase voltammetry. Journal of</p><p>Electroanalytical Chemistry, 10(3), 176182.</p><p></p><p>Ciszewski, A., & Milczarek, G. (1999). Polyeugenol-modified platinum electrode for</p><p>selective detection of dopamine in the presence of ascorbic acid. Analytical</p><p>Chemistry, 71(5), 10551061.</p><p></p><p>Ciui, A. B., Tertis, M., Feurdean, C., Ilea, A., Sandulescu, R., Wang, J., et al. (2018).</p><p>Cavitas electrochemical sensor toward detection of N-epsilon</p><p>(Carboxymethyl)lysine in oral cavity. Sensors & Actuators: B. Chemical.</p><p></p><p>Conceno, G., Silva, A. F., Ferreira, E. A., Galon, L., Noldin, J. A., Aspiaz, I., et al.</p><p>(2009). Effect of dose and application site on quinclorac absorption by barnyardgrass biotypes. Planta Daninha, 27(3), 541548.</p><p></p><p>Correia-s, L., Norberto, S., Delerue-matos, C., Calhau, C., & Domingues, V. F. (2018).</p><p>Micro-QuEChERS extraction coupled to GCMS for a fast determination of</p><p>bisphenol A in human urine. Journal of Chromatography B, 1072(10), 916.</p><p></p><p>Cosio, M. S., Pellican, A., Brunetti, B., & Fuenmayor, C. A. (2017). A simple</p><p>hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for</p><p>rapid amperometric detection of bisphenol A. Sensors and Actuators, B:</p><p>Chemical, 246, 673679.</p><p></p><p>Cosio, M. S., Scampicchio, M., & Benedetti, S. (2012). Electronic noses and tongues.</p><p>In Chemical analysis of Food: Techniques and Applications (pp. 219247).</p><p>Elsevier Inc.</p><p></p><p>Costa-rama, E., & Abedul, M. T. F. (2020). Adsorptive stripping voltammetry of indigo</p><p>blue in a flow system. In Laboratory Methods in Dynamic Electroanalysis (pp.</p><p>4756). Elsevier Inc.</p><p></p><p>Costello, B. P. J. D. L., Evans, P., & Ratcliffet, N. M. (1996). Preparation of polypyrrole</p><p>composites and the effect of volatile amines on their electrical properties. Analyst,</p><p>121(June), 793797.</p><p></p><p>Courade, J.-P., Caussade, F., Martin, K., Besse, D., Delchambre, C., Hanoun, N., et al.</p><p>(2001). Effects of acetaminophen on monoaminergic systems in the rat central</p><p>nervous system. Naunyn-Schmiedebergs Archives of Pharmacology, 364, 534</p><p>537.</p><p></p><p>Cox, K. H., Gatewood, J. D., Howeth, C., & Rissman, E. F. (2010). Hormones and</p><p>behavior gestational exposure to bisphenol A and cross-fostering affect behaviors</p><p>in juvenile mice. Hormones and Behavior, 58(5), 754761.</p><p></p><p>Crepaldi, E. L., Pavan, P. C., & Valim, J. B. (2000). Anion exchange in layered double</p><p>hydroxides by surfactant salt formation. Journal of Materials Chemistry, 10,</p><p>13371343.</p><p></p><p>DSouza, O. J., Mascarenhas, R. J., Thomas, T., Basavaraja, B. M., Saxena, A. K.,</p><p>Mukhopadhyay, K., et al. (2015). Platinum decorated multi-walled carbon</p><p>nanotubes/Triton X-100 modified carbon paste electrode for the sensitive</p><p>amperometric determination of paracetamol. Journal of Electroanalytical</p><p>Chemistry, 739, 4957.</p><p></p><p>Darmapatni, K. A. G., Basori, A., & Suaniti, N. M. (2016). Pengembangan metode GCMS</p><p>untuk penetapan kadar acetaminophen pada spesimen rambut manusia. Jurnal</p><p>Biosains Pascasarjana, 18(3), 58-71.</p><p></p><p>Dawei, Q., Zhang, Q., Zhou, W., Zhao, J., Zhang, B., Sha, Y., et al. (2016).</p><p>Quantification of dopamine in brain microdialysates with high- performance</p><p>liquid chromatographytandem mass spectrometry. Analytical Sciences, 32(4),</p><p>419424.</p><p></p><p>Dejous, C., Hallil, H., Raimbault, V., Rukkumani, R., & Yakhmi, J. V. (2017). Using</p><p>microsensors to promote the development of innovative therapeutic</p><p>nanostructures. In Nanostructures for Novel Therapy (pp. 539566). Elsevier Inc.</p><p></p><p>Dekanski, A., Stevanovic, J., Stevanovic, R., Nikolic, B. Z., & Jovanovic, V. M. (2001).</p><p>Glassy carbon electrodes I . Characterization and electrochemical activation.</p><p>Carbon, 39, 11951205.</p><p></p><p>Deutch, A. Y. (1993). Prefrontal cortical dopamine systems and the elaboration of</p><p>functional corticostriatal circuits: implications for schizophrenia and Parkinsons</p><p>disease A. Journal of Neural Transmission, 91, 197221.</p><p></p><p>Dong, X., Qi, X., Liu, N., Yang, Y., & Piao, Y. (2017). Direct electrochemical detection</p><p>of bisphenol a using a highly conductive graphite nanoparticle film electrode.</p><p>Sensors, 17(4), 836-846.</p><p></p><p>Electrochemical impedance spectroscopy (2020). Retrived from</p><p>https://www.elproscan.com/secm/electrochemical-impedance-spectroscopy/</p><p></p><p>El Bouabi, Y., Farahi, A., Labjar, N., El Hajjaji, S., Bakasse, M., & El Mhammedi, M.</p><p>A. (2016). Square wave voltammetric determination of paracetamol at chitosan</p><p>modified carbon paste electrode: Application in natural water samples,</p><p>commercial tablets and human urines. Materials Science and Engineering C, 58,</p><p>7077.</p><p></p><p>El Harrad, L., Bourais, I., Mohammadi, H., & Amine, A. (2018). Recent advances in</p><p>electrochemical biosensors pharmaceutical applications. Sensors, 18(1), 164188.</p><p></p><p>Elgrishi, N., Rountree, K. J., Mccarthy, B. D., Rountree, E. S., Eisenhart, T. T., &</p><p>Dempsey, J. L. (2018). A Practical beginners guide to cyclic voltammetry.</p><p>Journal of Chemical Education, 95(2), 197206.</p><p></p><p>Ensafi, A. A., Arashpour, B., Rezaei, B., & Allafchian, A. R. (2014). Voltammetric</p><p>behavior of dopamine at a glassy carbon electrode modified with NiFe2O4</p><p>magnetic nanoparticles decorated with multiwall carbon nanotubes. Materials</p><p>Science and Engineering C, 39(1), 7885.</p><p></p><p>Ensafi, A. A., Karimi-maleh, H., Mallakpour, S., & Hatami, M. (2011). Simultaneous</p><p>determination of N-acetylcysteine and acetaminophen by modified multiwall</p><p>carbon nanotubes paste electrode. Sensors & Actuators B: Chemical, 155(2), 464</p><p>472.</p><p></p><p>Erden, P. E., Kaar, C., ztrk, F., & Kili, E. (2015). Amperometric uric acid</p><p>biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon</p><p>nanotube modified glassy carbon electrode. Talanta, 134, 488495.</p><p></p><p>Eshaq, G., & Elmetwally, A. E. (2016). (MgZn)Al layered double hydroxide as a</p><p>regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate.</p><p>Journal of Molecular Liquids, 214, 16.</p><p></p><p>Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides.</p><p>In Duan. X. & Evans. D.G. (Eds.), Layered Double Hydroxides. Structure and</p><p>Bonding (Vol. 119, pp. 187). Germany: Springer, Berlin, Heidelberg.</p><p></p><p>Fan, G., Li, F., Evans, D. G., & Duan, X. (2014). Catalytic applications of layered</p><p>double hydroxides: Recent advances and perspectives. Chemical Society Review,</p><p>43, 70407066.</p><p></p><p>Fan, H., Li, Y., Wu, D., Ma, H., Mao, K., Fan, D., et al. (2012). Electrochemical</p><p>bisphenol A sensor based on N-doped graphene sheets. Analytica Chimica Acta,</p><p>711, 2428.</p><p></p><p>Faridbod, F., Gupta, V. K., & Zamani, H. A. (2011). Electrochemical sensors and</p><p>biosensors. International Journal of Electrochemistry, 2011, 1-2.</p><p></p><p>Feitknecht, W. (1942). The knowledge of the double hydroxides and basic double salts.</p><p>Helvetica Chimica Acta, 25, 131137.</p><p></p><p>Feng, J., Tao, Y., Shen, X., Jin, H., Zhou, T., Zhou, Y., et al. (2018). Highly sensitive</p><p>and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste</p><p>samples using molecularly imprinted polymer coated quantum dots.</p><p>Microchemical Journal, 144, 93-101.</p><p></p><p>Ferraro, P. M., & Curhan, G. C. (2017). Serum uric acid and risk of kidney stones.</p><p>American Journal of Kidney Diseases, 70(2), 158159.</p><p></p><p>Ferrer, E., Santoni, E., Vittori, S., Font, G., Maes, J., & Sagratini, G. (2011).</p><p>Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by</p><p>pressurised liquid extraction and liquid chromatography-tandem mass</p><p>spectrometry in powdered milk and infant formulas. Food Chemistry, 126(1),</p><p>360367.</p><p></p><p>Flint, S., Markle, T., Thompson, S., & Wallace, E. (2012). Bisphenol A exposure,</p><p>effects, and policy : A wildlife perspective. Journal of Environmental</p><p>Management, 104, 1934.</p><p></p><p>Frye, C. A., Bo, E., Calamandrei, G., Calze, L., Dessi-Fulgheri, F., Fernandez, M., et</p><p>al. (2011). Endocrine disrupters : A review of some sources, effects, and</p><p>mechanisms of actions on behaviour and neuroendocrine systems</p><p>neuroendocrinology system. Journal of Neuroendocrinol, 24(1), 144159.</p><p></p><p>Ganesh, V., Pal, S. K., Kumar, S., & Lakshminarayanan, V. (2006). Self-assembled</p><p>monolayers (SAMs) of alkoxycyanobiphenyl thiols on goldA study of electron</p><p>transfer reaction using cyclic voltammetry and electrochemical impedance</p><p>spectroscopy. Journal of Colloid and Interface Sciene, 296, 195203.</p><p></p><p>Gao, Y., Cao, Y., Yang, D., Luo, X., Tang, Y., & Li, H. (2012). Sensitivity and</p><p>selectivity determination of bisphenol A using SWCNT-CD conjugate modified</p><p>glassy carbon electrode. Journal of Hazardous Materials, 199200, 111118.</p><p></p><p>Gautam, V., Singh, K. P., & Yadav, V. L. (2018). Preparation and characterization of</p><p>green-nano-composite material based on polyaniline, multiwalled carbon nano</p><p>tubes and carboxymethyl cellulose: For electrochemical sensor applications.</p><p>Carbohydrate Polymers, 189, 218-228</p><p></p><p>Germer, T. A., Zwinkels, J. C., & Tsai, B. K. (2014). Introduction to</p><p>Spectrophotometry. In T. A. Germer, J. C. Zwinkels, & P. S. Tsai (Eds.),</p><p>Spectrophotometry (Vol. 46, pp. 19). Academic Press.</p><p></p><p>Ghalkhani, M., & Ghorbani-Bidkorbeh, F. (2019). Development of carbon</p><p>nanostructured based electrochemical sensors for pharmaceutical analysis. Iranian</p><p>Journal of Pharmaceutical Research, 18(2), 658669.</p><p></p><p>Ghanam, A., Lahcen, A. A., & Amine, A. (2017). Electroanalytical determination of</p><p>bisphenol A: Investigation of electrode surface fouling using various carbon</p><p>materials. Journal of Electroanalytical Chemistry, 789, 5866.</p><p></p><p>Ghazali, S. A. I. S. M., Hussein, M. Z., & Sarijo, S. H. (2013). 3,4-</p><p>Dichlorophenoxyacetate interleaved into anionic clay for controlled release</p><p>formulation of a new environmentally friendly agrochemical. Nanoscale Research</p><p>Letters, 8, 362369.</p><p></p><p>Ghiaci, M., Rezaei, B., & Arshadi, M. (2009). Characterization of modified carbon</p><p>paste electrode by using Salen Schiff base ligand immobilized on SiO2-Al2O3 as a</p><p>highly sensitive sensor for anodic stripping voltammetric determination of</p><p>copper(II). Sensors and Actuators, B: Chemical, 139(2), 494500.</p><p></p><p>Gorkina, A. L., Tsapenko, A. P., Gilshteyn, E. P., Koltsova, T. S., Larionova, T. V,</p><p>Talyzin, A., et al. (2016). Transparent and Conductive Hybrid Graphene/Carbon</p><p>Nanotube Films. Carbon. Elsevier Ltd.</p><p></p><p>Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the</p><p>auxin herbicide quinmerac. Pesticide Science, 52(2), 111118.</p><p></p><p>Gulaboski, R., Mirceski, V., Komorsky-Lovric, S., & Lovric. M. (2004). Square-wave</p><p>voltammetry of cathodic stripping reactions. Diagnostic criteria , redox kinetic</p><p>measurements, and analytical applications. Electroanalysis, 16(10), 832842.</p><p></p><p>Guo, X. M., Guo, B., Li, C., & Wang, Y. L. (2016). Amperometric highly sensitive uric</p><p>acid sensor based on manganese(III)porphyrin-graphene modified glassy carbon</p><p>electrode. Journal of Electroanalytical Chemistry, 783, 814.</p><p></p><p>Hao, Y., Xiao, F., Xiao-Xia, C., Jin-Li, Q., Xiao-Ling, G., Na, X., et al. (2017).</p><p>Electrochemical determination of bisphenol a on a glassy carbon electrode</p><p>modified with gold nanoparticles loaded on reduced graphene oxide-multi walled</p><p>carbon nanotubes composite. Chinese Journal of Analytical Chemistry, 45(5),</p><p>713720.</p><p></p><p>Hashim, N., Hussein, M. Z., Yahaya, A. H., & Zainal, Z. (2007). Formation of zinc</p><p>aluminium layered double hydroxides-4(2,4-dichlorophenoxy)butyrate</p><p>nanocomposites by direct and indirect methods. The Malaysian Journal of</p><p>Analytical Sciences, 11(1), 17.</p><p></p><p>Hashim, N., Sharif, S. N. M., md isa, I., Mamat, M., Mohd Ali, N., Suriani, A. B., et al.</p><p>(2019). Intercalation and characterisation of novel broad-leaved herbicide</p><p>nanocomposite from zinc/aluminium layered double hydroxide and quinmerac.</p><p>Research Journal of Chemistry And Environment, 23, 3645.</p><p></p><p>He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Preparation of</p><p>layered double hydroxides. In X. Duan & D. G. Evans (Eds.), Layered Double</p><p>Hydroxides. Structure and Bonding (pp. 89119). New York: Springer, Berlin,</p><p>Heidelberg.</p><p></p><p>Hernndez, M., Fernndez, L., Borrs, C., Mostany, J., & Carrero, H. (2007).</p><p>Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified</p><p>electrodes: Oxidation of phenol. Analytica Chimica Acta, 597(2), 245256.</p><p></p><p>Hochstetter, C. (1842). Investigation of the composition of some minerals. Journal for</p><p>Practical Chemistry, 27, 375378.</p><p></p><p>Honeychurch, K. C. (2012). Printed thick-film biosensors. In Printed Films (pp. 366</p><p>409). Woodhead Publishing.</p><p></p><p>Howes, O., Mccutcheon, R., & Stone, J. (2015). Glutamate and dopamine in</p><p>schizophrenia : An update for the 21 st century. Journal of Psychopharmacology,</p><p>29(2), 97-115.</p><p></p><p>Huang, H., Mao, L., Li, Z., Liu, Y., Fan, S., Jin, Y., et al. (2019). Multifunctional</p><p>Polypyrrole-silver coated layered double hydroxides embedded into a</p><p>biodegradable polymer matrix for enhanced antibacterial and gas barrier</p><p>properties. Journal of Bioresources and Bioproducts, 4(4), 231241.</p><p></p><p>Huang, L., Jiao, S., & Li, M. (2014). Determination of uric acid in human urine by</p><p>eliminating ascorbic acid interference on copper(II)-polydopamine immobilized</p><p>electrode surface. Electrochimica Acta, 121, 233239.</p><p></p><p>Huang, Y., Cheng, C., Tian, X., Zheng, B., Li, Y., Yuan, H., et al. (2013). Low-potential</p><p>amperometric detection of dopamine based on MnO2 nanowires/chitosan modified</p><p>gold electrode. Electrochimica Acta, 89, 832839.</p><p></p><p>Huang, Y., Li, X., & Zheng, S. (2016). A novel and label-free immunosensor for</p><p>bisphenol A using rutin as the redox probe. Talanta, 160, 241246.</p><p></p><p>Huang, Y. Q., Wong, C. K. C., Zheng, J. S., Bouwman, H., Barra, R., Wahlstrm, B.,</p><p>et al. (2012). Bisphenol A (BPA) in China: A review of sources, environmental</p><p>levels, and potential human health impacts. Environment International, 42, 9199.</p><p></p><p>Hudari, F. F., Duarte, E. H., Pereira, A. C., DallAntonia, L. H., Kubota, L. T., & Tarley,</p><p>C. R. T. (2013). Voltammetric method optimized by multi-response assays for the</p><p>simultaneous measurements of uric acid and acetaminophen in urine in the</p><p>presence of surfactant using MWCNT paste electrode. Journal of</p><p>Electroanalytical Chemistry, 696, 5258.</p><p></p><p>Hussein, M. Z., Hashim, N., Yahaya, A. H., & Zainal, Z. (2010). Synthesis of an</p><p>herbicidesinorganic nanohybrid compound by ion exchange-intercalation of 3(2-</p><p>chlorophenoxy) propionate into layered double hydroxide. Journal of</p><p>Experimental Nanoscience, 5(6), 548558.</p><p></p><p>Hussein, M. Z., Rahman, N. S. S. A., Sarijo, S. H., & Zainal, Z. (2012). Synthesis of a</p><p>monophasic nanohybrid for a controlled release formulation of two active agents</p><p>simultaneously. Applied Clay Science, 58, 6066.</p><p></p><p>Hyllested, M., Jones, S., Pedersen, J. L., & Kehlet, H. (2002). Comparative effect of</p><p>paracetamol, NSAIDs or their combination in postoperative pain management: A</p><p>qualitative review. British Journal of Anaesthesia, 88(2), 199214.</p><p></p><p>Inzelt, G. (2014). Chronoamperometry, chronocoulometry, and chronopotentiometry.</p><p>In G. Kreysa, K. Ota, & R. F. Savinell (Eds.), Encyclopedia of Applied</p><p>Electrochemistry (pp. 207214). New York, NY: Springer New York.</p><p></p><p>Irdemez, S., & Tosunoglu, N. D. V. (2011). The effects of supporting electrolyte type</p><p>and concentration on the phosphate removal from wastewater by</p><p>electrocoagulation with aluminum plate electrodes. Igdir University Journal of the</p><p>Institute of Science and Technology, 1(2), 3540.</p><p></p><p>Isa, I., Fasyir, M. R., Hashim, N., Ghani, S. A., Bakar, S. A., Mohamed, A., & Kamari,</p><p>A. (2015). A highly sensitive mercury (II) sensor using Zn/Al layered double</p><p>hydroxide-3(4-hydroxyphenyl) propionate modified multi-walled carbon</p><p>nanotube paste electrode. International Journal of Electrochemical Science, 10,</p><p>62276240.</p><p></p><p>Isa, I. M., Saidin, M. I., Ahmad, M., Hashim, N., Bakar, S. A., Ali, N. M., & Si, S. M.</p><p>(2017). Chloroplatinum(II) complex-modified MWCNTs paste electrode for</p><p>electrochemical determination of mercury in skin lightening cosmetics.</p><p>Electrochimica Acta, 253, 463-471.</p><p></p><p>Isa, I. M., Saruddin, S., Hashim, N., Ahmad, M., & Ghani, S. A. (2016). Determination</p><p>of hydrazine in various water samples by square wave voltammetry with zinclayered</p><p>hydroxide-3(4-methoxyphenyl) propionate nanocomposite modified</p><p>glassy carbon electrode. International Journal of Electrochemical Science, 11(6),</p><p>46194631.</p><p></p><p>Isa, I. M., Sharif, S. N. M., Hashim, N., & Ghani, S. A. (2015). Amperometric</p><p>determination of nanomolar mercury(II) by layered double nanocomposite of</p><p>zinc/aluminium hydroxide-3(4-methoxyphenyl)propionate modified singlewalled</p><p>carbon nanotube paste electrode. Ionics, 21(10), 29492958.</p><p></p><p>Jemelkova, Z., Barek, J., & Zima, J. (2010). Determination of epinephrine at different</p><p>types of carbon paste electrodes. Analytical Letters, 43(7), 13671376.</p><p></p><p>Kalambate, P. K., & Srivastava, A. K. (2016). Simultaneous voltammetric</p><p>determination of paracetamol, cetirizine and phenylephrine using a multiwalled</p><p>carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste</p><p>electrode. Sensors and Actuators, B: Chemical, 233, 237248.</p><p></p><p>Kalcher, K. (1990). Chemically Modified carbon paste electrodes in voltammetric</p><p>analysis. Electroanalysis, 2(6), 419433.</p><p></p><p>Kalcher, K., Kauffmann, J.-M., Wang, J., Svancara, I., Vytras, K., Neuhold, C., &</p><p>Yang, Z. (1995). Sensors based on carbon paste in electrochemical analysis: A</p><p>review with particular emphasis on the period 1990-1993. Electroanalysis, 7(1),</p><p>522.</p><p></p><p>Kalimuthu, P., & John, S. A. (2011). Selective determination of 3,4-</p><p>dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using</p><p>polymer film modified electrode. Journal of Chemical Sciences, 123(3), 349355.</p><p></p><p>Kameda, T., Takeuchi, H., & Yoshioka, T. (2009). Hybrid inorganic/organic</p><p>composites of MgAl layered double hydroxides intercalated with citrate, malate,</p><p>and tartrate prepared by co-precipitation. Materials Research Bulletin, 44, 840</p><p>845.</p><p></p><p>Kang, J.-H., Kito, K., & Kondo, F. (2003). Factors influencing the migration of</p><p>bisphenol A from cans. Journal of Food Protection, 66(8), 14441447.</p><p></p><p>Kannan, P. K., Hu, C., Morgan, H., Moshkalev, S., A. & Rout, C. S. (2016).</p><p>Electrochemical sensing of bisphenol using a multilayer graphene nanobelt</p><p>modified photolithography patterned platinum electrode. Nanotechnology, 27,</p><p>37504.</p><p></p><p>Kannan, A., & Sevvel, R. (2017). A highly selective and simultaneous determination</p><p>of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-</p><p>mercaptopyrimidine (Poly-AHMP) film modified glassy carbon electrode.</p><p>Journal of Electroanalytical Chemistry, 791, 816.</p><p></p><p>Karimi-maleh, H., Karimi, F., Alizadeh, M., & Sanati, A. L. (2020). Electrochemical</p><p>sensors, a bright future in the fabrication of portable kits in analytical systems. The</p><p>Chemical Record, 20(7), 112.</p><p></p><p>Kaya, S. I., Karabulut, T. C., Kurbanoglu, S., & Ozkan, S. A. (2020). Chemically</p><p>modified electrodes in electrochemical drug analysis. Current Pharmaceutical</p><p>Analysis, 16(6), 641-660.</p><p></p><p>Kesebir, S., Yaylaci, E. T., Sner, ., & Gltekin, B. K. (2014). Uric acid levels may</p><p>be a biological marker for the differentiation of unipolar and bipolar disorder: The</p><p>role of affective temperament. Journal of Affective Disorders, 165, 131134.</p><p></p><p>Keyvanfard, M., Shakeri, R., Karimi-Maleh, H., & Alizad, K. (2013). Highly selective</p><p>and sensitive voltammetric sensor based on modified multiwall carbon nanotube</p><p>paste electrode for simultaneous determination of ascorbic acid, acetaminophen</p><p>and tryptophan. Materials Science and Engineering C, 33(2), 811816.</p><p></p><p>Khan, M. I., Haque, A. J., & Kim, K. (2013). Electrochemical determination of uric</p><p>acid in the presence of ascorbic acid on electrochemically reduced graphene oxide</p><p>modified electrode. Journal of Electroanalytical Chemistry, 700, 54-59.</p><p></p><p>Khaskheli, A. R., Fischer, J., Barek, J., Vysko?cil, V., Sirajuddin, & Bhanger, M. I.</p><p>(2013). Differential pulse voltammetric determination of paracetamol in tablet and</p><p>urine samples at a micro-crystalline natural graphitepolystyrene composite film</p><p>modified electrode. Electrochimica Acta, 101, 238242.</p><p></p><p>Kim, D., Lee, S., & Piao, Y. (2017a). Electrochemical determination of dopamine and</p><p>acetaminophen using activated graphene-Nafion modified glassy carbon</p><p>electrode. Journal of Electroanalytical Chemistry, 794, 221228.</p><p></p><p>Kim, M., Eun, Y., Xiong, J., Kim, K., Jang, M., Jeon, B., et al. (2021). Electrochemical</p><p>detection and simultaneous removal of endocrine disruptor , bisphenol A using a</p><p>carbon felt electrode. Journal of Electroanalytical Chemistry, 880, 114907.</p><p></p><p>Kong, R. (2005). LC/MS application in high-throughput ADME Screen. In S. Ahuja &</p><p>M. W. Dong (Eds.), Handbook of Pharmaceutical Analysis by HPLC (Vol. 6, pp.</p><p>413446). Academic Press.</p><p></p><p>Kounaves, S. P. (1998). Voltammetric techniques. In Handbook of Instrumental</p><p>Techniques for Analytical Chemistry (pp. 709726). Taylor & Francis.</p><p></p><p>Krulic, D., & Fatouros, N. (2011). Peak heights and peak widths at half-height in square</p><p>wave voltammetry without and with ohmic potential drop for reversible and</p><p>irreversible systems. Journal of Electroanalytical Chemistry, 652, 26-31.</p><p></p><p>Kumar, Y., Pramanik, P., & Das, D. K. (2019). Electrochemical detection of</p><p>paracetamol and dopamine molecules using nano-particles of cobalt ferrite and</p><p>manganese ferrite modified with graphite. Heliyon, 5(7), e02031.</p><p></p><p>Kuramoto, K., Intasa-Ard, S. (Grace), Bureekaew, S., & Ogawa, M. (2017).</p><p>Mechanochemical synthesis of finite particle of layered double hydroxide-acetate</p><p>intercalation compound: Swelling, thin film and ion exchange. Journal of Solid</p><p>State Chemistry, 253, 147153.</p><p></p><p>Kuthati, Y., Kankala, R. K., & Lee, C. (2015). Layered double hydroxide nanoparticles</p><p>for biomedical applications: Current status and recent prospects. Applied Clay</p><p>Science, 112113, 100116.</p><p></p><p>Kutzing, M. K., & Firestein, B. L. (2008). Altered uric acid levels and disease states.</p><p>Perspective in Pharmacology, 324(1), 17.</p><p></p><p>Lakshmi, D., Whitcombe, M. J., Davis, F., Sharma, S., & Prasad, B. (2011).</p><p>Electrochemical detection of uric acid in mixed and clinical samples: A Review.</p><p>Electroanalysis, 23(2), 305320.</p><p></p><p>Lasia, A. (1999). Electrochemical impedance spectroscopy and its applications. In</p><p>Modern Aspects of Electrochemistry (pp. 143248). Boston: Springer.</p><p></p><p>Laviron, E., & Roullier, L. (1983). Electrochemical reactions with protonations at</p><p>equilibrium. Journal of Electroanalytical Chemistry and Interfacial</p><p>Electrochemistry, 157(1), 718.</p><p></p><p>Lee, J. (2014). Electrochemical Sensing of Oxygen Gas in Ionic Liquids on Screen</p><p>Printed Electrodes. Curtin University.</p><p></p><p>Lehotay, S. J., & Schenck, F. J. (2000). Multiresidue methods: Extraction. In</p><p>Encyclopedia of Separation Science (pp. 34093415). Oxford: Academic Press.</p><p></p><p>Li, F., Wang, Y., Yang, Q., Evans, D. G., Forano, C., & Duan, X. (2005). Study on</p><p>adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAllayered</p><p>double hydroxides in aqueous solution. Journal of Hazardous Materials,</p><p>125, 8995.</p><p></p><p>Li, L., Qi, G., Fukushima, M., Wang, B., Xu, H., & Wang, Y. (2017). Insight into the</p><p>preparation of Fe3O4 nanoparticle pillared layered double hydroxides composite</p><p>via thermal decomposition and reconstruction. Applied Clay Science, 140, 8895.</p><p></p><p>Li, M., Zhu, J. E., Zhang, L., Chen, X., Zhang, H., Zhang, F., et al. (2011). Facile</p><p>synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced</p><p>electrochemical properties for detection of dopamine. Nanoscale, 3(10), 4240</p><p>4246.</p><p></p><p>Li, Q., Qiu, Y., Han, W., Zheng, Y., Wang, X., Xiao, D., et al. (2018). Determination</p><p>of uric acid in biological samples by high performance liquid chromatographyelectrospray</p><p>ionization-tandem mass spectrometry and study on pathogenesis of</p><p>pulmonary arterial hypertension in pulmonary artery endothelium cells. Royal</p><p>Society of Chemistry, 8, 2580825814.</p><p></p><p>Li, S., Zhang, J., Li, J., Yang, H., Meng, J., & Zhang, B. (2017). A 3D sandwich</p><p>structured hybrid of gold nanoparticles decorated MnO2/graphene-carbon</p><p>nanotubes as high performance H2O2 sensors. Sensors & Actuators B: Chemical,</p><p>260, 1-11.</p><p></p><p>Li, X., Li, S., Bai, J., Peng, Y., Ning, B., Shi, H., et al. (2019). Determination of</p><p>bisphenol A by high-performance liquid chromatography based on graphene</p><p>magnetic dispersion solid phase extraction. Journal of Chromatographic Science,</p><p>58(3), 280-286.</p><p></p><p>Li, Y., Gao, Y., Cao, Y., & Li, H. (2012). Electrochemical sensor for bisphenol A</p><p>determination based on MWCNT/melamine complex modified GCE. Sensors &</p><p>Actuators B: Chemical, 171172, 726733.</p><p></p><p>Li, Y., Liu, J., Liu, M., Yu, F., Zhang, L., Tang, H., et al. (2016). Fabrication of ultrasensitive</p><p>and selective dopamine electrochemical sensor based on molecularly</p><p>imprinted polymer modified graphene@carbon nanotube foam. Electrochemistry</p><p>Communications, 64, 4245.</p><p></p><p>Li, Y., Xu, W., Zhao, X., Huang, Y., Kang, J., Qi, Q., & Zhong, C. (2018).</p><p>Electrochemical sensors based on molecularly imprinted polymer on</p><p>Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive</p><p>detection of trace ractopamine in water. Analyst, 143(21), 5094-5102.</p><p></p><p>Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., & Wang, H. (2016). Electrochemical</p><p>determination of bisphenol A at ordered mesoporous carbon modified nanocarbon</p><p>ionic liquid paste electrode. Talanta, 148, 362369.</p><p></p><p>Lian, H., Sun, Z., Sun, X. & Liu, B. (2012). Graphene doped molecularly imprinted</p><p>electrochemical sensor for uric acid. Analytical Letters, 45, 2717-2727.</p><p></p><p>Lin, C., Li, P., Yang, M., Ye, J., & Huang, X. (2019). Metal replacement causing</p><p>interference in stripping analysis of multiple heavy metal analytes: Kinetic study</p><p>on Cd(II) and Cu(II) electroanalysis via experiment and simulation. Analytical</p><p>Chemistry, 91(15), 9978-9985.</p><p></p><p>Lisdat, F., & Schfer, D. (2008). The use of electrochemical impedance spectroscopy</p><p>for biosensing. Analytical and Bioanalytical Chemistry, 391(5), 15551567.</p><p></p><p>Liu, Q., Kang, X., Xing, L., Ye, Z., & Yang, Y. (2020). A facile synthesis of</p><p>nanostructured CoFe2O4 for the electrochemical sensing of bisphenol A. Royal</p><p>Society of Chemistry Advances, 10(11), 61566162.</p><p></p><p>Locke, C. J., Fox, S. A., Caldwell, G. A., & Caldwell, K. A. (2008). Acetaminophen</p><p>attenuates dopamine neuron degeneration in animal models of Parkinsons</p><p>disease. Neuroscience Letters, 439, 129133.</p><p></p><p>Lubert, K., & Kalcher, K. (2010). History of electroanalytical methods.</p><p>Electroanalysis, 22, 19371946.</p><p></p><p>Ma, B., Guo, H., Wang, M., Li, L., Jia, X., Chen, H., et la. (2019). Electrocatalysis of</p><p>CuMOF/graphene composite and its sensing application for electrochemical</p><p>simultaneous determination of dopamine and paracetamol. Electroanalysis, 31(6),</p><p>10021008.</p><p></p><p>Mabbott, G. A. (1983). An introduction to cyclic voltammetry. Journal of Chemical</p><p>Education, 60(9), 697702.</p><p></p><p>Macdonald, A. A., Seergobin, K. N., Owen, A. M., Tamjeedi, R., Monchi, O., Ganjavi,</p><p>H., et al. (2013). Differential effects of Parkinsons disease and dopamine</p><p>replacement on memory encoding and retrieval. PLoS One, 8(9), e74044.</p><p></p><p>Black, M. (1984). Acetaminophen hepatotoxicity. Annual Reviews of Medicine, 35(5),</p><p>577593.</p><p></p><p>Mashhadizadeh, M. H., & Akbarian, M. (2009). Voltammetric determination of some</p><p>anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nanowire.</p><p>Talanta, 78, 14401445.</p><p></p><p>Mazloum-Ardakani, M., Rajabzadeh, N., Deghani-Firouzabadi, A., Sheikh-Mohseni,</p><p>M. A., Benvidi, A., Naeimi, H., et al. (2012). Analytical methods carbon</p><p>nanoparticles and a new derivative of hydroquinone for modification of a carbon</p><p>paste electrode for simultaneous determination of epinephrine and acetaminophen.</p><p>Analytical Methods, 4, 21272133.</p><p></p><p>McDonald, J. G., Ivanova, P. T., & Brown, H. A. (2016). Approaches to lipid analysis.</p><p>In Biochemistry of Lipids, Lipoproteins and Membranes: Sixth edition (pp. 41</p><p>72). Elsevier Inc.</p><p></p><p>Mehri-Talarposhti, F., Saraei, A. G. H., Karimi-Maleh, H., Golestan, L., & Shahidi, S.</p><p>A. (2020). Determination of bisphenol in food samples using an electrochemical</p><p>method based on modification of a carbon paste electrode with CdO</p><p>nanoparticle/ionic liquid. International Journal of Electrochemical Science, 15(3),</p><p>19041914.</p><p></p><p>Mendoza-Huizar, L. H. (2014). Chemical reactivity of quinmerac herbicide through the</p><p>Fukui function. Acta Chimica Slovenica, 61(4), 694702.</p><p></p><p>Messaoud, N. Ben, Ghica, M. E., Ali, M. Ben, & Brett, C. M. A. (2017).</p><p>Electrochemical sensor based on multiwalled carbon nanotube and gold</p><p>nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors</p><p>& Actuators B: Chemical, 253, 513522.</p><p></p><p>Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., & Kappl, R. (2013). Square-wave</p><p>voltammetry: A review on the recent progress. Electroanalysis, 25(11), 2411</p><p>2422.</p><p></p><p>Mirzahosseini, A., Palla, T., Orgovan, G., Toth, G., Noszal, B. (2018). Dopamine:</p><p>Acid-base properties and membrane penetration capacity. Journal of</p><p>Pharmaceutical and Biomedical Analysis, 158, 346350.</p><p></p><p>Mishra, G., Dash, B., & Pandey, S. (2018). Layered double hydroxides: A brief review</p><p>from fundamentals to application as evolving biomaterials. Applied Clay Science,</p><p>153, 172186.</p><p></p><p>Molaakbari, E., Mostafavi, A., & Beitollahi, H. (2014). Simultaneous electrochemical</p><p>determination of dopamine, melatonin, methionine and caffeine. Sensors &</p><p>Actuators B: Chemical, 208, 195203.</p><p></p><p>Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gueho, C., Besse, J.-P., & Morel,</p><p>J.-P. (2003). Intercalation of dicarboxylate anions into a ZnAlCl layered double</p><p>hydroxide: Microcalorimetric determination of the enthalpies of anion exchange.</p><p>Journal of Materials Chemistry, 13, 25822585.</p><p></p><p>Morris, R. (2015). Spectrophotometry. Current Protocols Essential Laboratory</p><p>Techniques, 11(1), 130.</p><p></p><p>Moscatello, J. P., Prasad, A., Chintala, R., & Yap, Y. K. (2012). A simple scheme of</p><p>molecular electronic devices with multiwalled carbon nanotubes as the top</p><p>electrodes. Carbon, 50(10), 35303534.</p><p></p><p>Musshoff, F., Schmidt, P., Dettmeyer, R., Priemer, F., Jachau, K., & Madea, B. (2000).</p><p>Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and</p><p>norsalsolinol in various human brain areas using solid-phase extraction and gas</p><p>chromatography/mass spectrometry. Forensic Science International, 113, 359</p><p>366.</p><p></p><p>Naegeli, R., Redepenning, J., & Anson, F. C. (1986). Influence of supporting electrolyte</p><p>concentration and composition on formal potentials and entropies of redox couples</p><p>incorporated in nafion coatings on electrodes. Journal of Physical Chemistry,</p><p>90(23), 62276232.</p><p></p><p>Najafi, M., Khalilzadeh, M. A., & Karimi-maleh, H. (2014). A new strategy for</p><p>determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic</p><p>liquid paste electrode in food samples. Food Chemistry, 158, 125131.</p><p></p><p>Nakamura, K., Itoh, K., Dai, H., Han, L., Wang, X., Kato, S., et al. (2012). Prenatal and</p><p>lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain</p><p>and Development, 34(1), 5763.</p><p></p><p>Nakayama, H., Wada, N., & Tsuhako, M. (2004). Intercalation of amino acids and</p><p>peptides into MgAl layered double hydroxide by reconstruction method.</p><p>International Journal of Pharmaceutics, 269, 469478.</p><p></p><p>Nambudumada, P. S., Manjunatha, J. G., & Chenthattil, R. (2019). Electrocatalytic</p><p>analysis of dopamine, uric acid and ascorbic acid at poly(adenine) modified carbon</p><p>nanotube paste electrode: A Cyclic voltammetric study. Analytical &</p><p>Bioanalytical Electrochemistry, 11(6), 742756.</p><p></p><p>Narayana, P. V., Reddy, T. M., Gopal, P., & Naidu, G. R. (2014). Electrochemical</p><p>sensing of paracetamol and its simultaneous resolution in the presence of</p><p>dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine)</p><p>composite modified electrode. Analytical Methods, 6(23), 94599468.</p><p></p><p>Newman, S. P., & Jones, W. (1998). Synthesis, characterization and applications of</p><p>layered double hydroxides containing organic guests. New Journal of Chemistry,</p><p>22, 105115.</p><p></p><p>Ni, F., Wang, Y., Zhang, D., Gao, F., & Li, M. (2010). Electrochemical oxidation of</p><p>epinephrine and uric acid at a layered double hydroxide film modified glassy</p><p>carbon electrode and its application. Electroanalysis, 22(10), 11301135.</p><p></p><p>Nieszporek, J., Gugala-Fekner, D., & Nieszporek, K. (2019). The effect of supporting</p><p>electrolyte concentration on zinc electrodeposition kinetics from methimazole</p><p>solutions. Electroanalysis, 31(6), 11411149.</p><p></p><p>Nikahd, B., & Khalilzadeh, M. A. (2016). Liquid phase determination of bisphenol A</p><p>in food samples using novel nanostructure ionic liquid modified sensor. Journal</p><p>of Molecular Liquids, 215, 253257.</p><p></p><p>Niu, X., Yang, W., Wang, G., Ren, J., Guo, H., & Gao, J. (2013). A novel</p><p>electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold</p><p>nanoparticles composite modified glassy carbon electrode. Electrochimica Acta,</p><p>98, 167175.</p><p></p><p>Nkunu, Z. N., Kamau, G. N., Kithure, J. G., & Muya, C. N. (2017). Electrochemical</p><p>studies of potassium ferricyanide in acetonitrile-water media (1:1) using cyclic</p><p>voltammetry method. International Journal of Scientific Research and Innovative</p><p>Technology, 4(5), 23133759.</p><p></p><p>Noroozifar, M., Khorasani-motlagh, M., Jahromi, F. Z., & Rostami, S. (2013). Sensitive</p><p>and selective determination of uric acid in real samples by modified glassy carbon</p><p>electrode with holmium fluoride nanoparticles/multi-walled carbon nanotube as a</p><p>new biosensor. Sensors & Actuators: B. Chemical, 188, 6572.</p><p></p><p>Nuki, G., & Simkin, P. A. (2006). A concise history of gout and hyperuricemia and</p><p>their treatment. Arthritis Research & Therapy, 8, 15.</p><p></p><p>Olaleye, M. T., & Rocha, B. T. J. (2008). Acetaminophen-induced liver damage in</p><p>mice: Effects of some medicinal plants on the oxidative defense system.</p><p>Experimental and Toxicologic Pathology, 59, 319327.</p><p></p><p>Osteryoung, J. G., & Osteryoung, R. A. (1985). Square wave voltammetry. Analytical</p><p>Chemistry, 57(1), 101102.</p><p></p><p>Ostoji, J., Herenda, S., Besic, Z., Milos, M., & Galic, B. (2017). Advantages of an</p><p>electrochemical method compared to the spectrophotometric kinetic study of</p><p>peroxidase inhibition by boroxine derivative. Molecules, 22, 11201128.</p><p></p><p>tles, S. (2016). Handbook of food analysis instruments. (S. Otles, Ed.). Boca Raton:</p><p>CRC Press.</p><p></p><p>Ouassif, H., Moujahid, E. M., Lahkale, R., Sadik, R., Bouragba, F. Z., Sabbar, E.</p><p>mouloudi, & Diouri, M. (2020). Zinc-aluminum layered double hydroxide: High</p><p>efficient removal by adsorption of tartrazine dye from aqueous solution. Surfaces</p><p>and Interfaces, 18, 100401.</p><p></p><p>Palza, H., Delgado, K., & Govan, J. (2019). Novel magnetic CoFe2O4/layered double</p><p>hydroxide nanocomposites for recoverable anionic adsorbents for water treatment.</p><p>Applied Clay Science, 183(4), 105350.</p><p></p><p>Panahi, Y., Motaharian, A., Reza, M., Hosseini, M., & Mehrpour, O. (2018). High</p><p>sensitive and selective nano-molecularly imprinted polymer based</p><p>electrochemical sensor for midazolam drug detection in pharmaceutical</p><p>formulation and human urine samples. Sensors & Actuators B: Chemical, 273(2),</p><p>15791586.</p><p></p><p>Hkov, M., Havlkov, L. C., Chvojka, J., Solich, P., & atnsk, D. (2018). An online</p><p>coupling of nanofibrous extraction with column-switching high performance</p><p>liquid chromatography-A case study on the determination of bisphenol A in</p><p>environmental water samples. Talanta, 178(2), 141-146.</p><p></p><p>Podlipna, D., & Cichna-Markl, M. (2007). Determination of bisphenol A in canned fish</p><p>by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection.</p><p>European Food Research and Technology, 224(5), 629634.</p><p></p><p>Prabakar, S. J. R., & Narayanan, S. S. (2007). Amperometric determination of</p><p>paracetomol by a surface modified cobalt hexacyanoferrate graphite wax</p><p>composite electrode. Talanta, 72(5), 18181827.</p><p></p><p>Price, H. (2019). Air analysis: Field portable instruments for the measurement of</p><p>airborne hazards. In Encyclopedia of Analytical Science (3rd ed., pp. 4043).</p><p>Stirling, United Kingdom: Elsevier Inc.</p><p></p><p>Qiu, D., Hou, W., Xu, J., Liu, J., & Liu, S. (2009). Synthesis and characterization of</p><p>imidacloprid/hydrotalcite-like compound nanohybrids. Chinese Journal of</p><p>Chemistry, 27, 18791885.</p><p></p><p>Qu, W., & Meyer, J.-U. (1997). Thick-film humidity sensor based on porous MnWO4</p><p>material. Measurement Science and Technology, 8(6), 593600.</p><p></p><p>Rais, N. S. M., Isa, I. M., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., Ahmad, M. S.,</p><p>et al. (2019). Simultaneously determination of bisphenol A and uric acid by</p><p>zinc/aluminum-layered double hydroxide-2-(2,4-dichlorophenoxy) propionate</p><p>paste electrode. International Journal of Electrochemical Science, 14(8), 7911</p><p>7924.</p><p></p><p>Raj, C. R., & Ohsaka, T. (2003). Voltammetric detection of uric acid in the presence of</p><p>ascorbic acid at a gold electrode modified with a self-assembled monolayer of</p><p>heteroaromatic thiol. Journal of Electroanalytical Chemistry, 540, 6977.</p><p></p><p>Rajakumaran, R., Ramki, S., Chen, S. M., Chen, T. W., Veerasankar, S., Tseng, T. W.,</p><p>& Huang, C. C. (2019). Rose-petal-like morphology of yttrium molybdate</p><p>nanosheets (YMoO4) anchored on functionalized carbon nanofibers: An efficient</p><p>electrocatalyst for the electrochemical sensing of bisphenol-A. International</p><p>Journal of Electrochemical Science, 14(7), 65716585.</p><p></p><p>Ramesh, P., & Sampath, S. (2004). Selective determination of uric acid in presence of</p><p>ascorbic acid and dopamine at neutral pH using exfoliated graphite electrodes.</p><p>Electroanalysis, 16(10), 866869.</p><p></p><p>Raoof, J. B., Baghayeri, M., & Ojani, R. (2012). A high sensitive voltammetric sensor</p><p>for qualitative and quantitative determination of phenobarbital as an antiepileptic</p><p>drug in presence of acetaminophen. Colloids and Surfaces B: Biointerfaces, 95,</p><p>121128.</p><p></p><p>Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor</p><p>applications. In E. Ensafi (Ed.), Electrochemical Biosensors (pp. 1143). Elsevier</p><p>Inc.</p><p></p><p>Rives, V. (2001). Layered double hydroxides: Present and Future. New York: Nova</p><p>Publishers.</p><p></p><p>Rives, V., Arco, M. del, & Martn, C. (2014). Intercalation of drugs in layered double</p><p>hydroxides and their controlled release: A review. Applied Clay Science, 8889,</p><p>239269.</p><p></p><p>Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature.</p><p>Reproductive Toxicology, 42, 132155.</p><p></p><p>Rosu, D., Mustata, F., Tudorachi, N., Musteata, V. E., Rosu, L., & Varganici, C. D.</p><p>(2015). Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A</p><p>cured with castor oil maleate. Royal Society of Chemistry Advances, 5(57), 45679</p><p>45687.</p><p></p><p>Saal, F. S. vom, & Hughes, C. (2005). Commentary an extensive new literature</p><p>concerning low-dose effects of bisphenol A shows the need for a new risk</p><p>assessment. Environmental Health Perspectives, 113(8), 926933.</p><p></p><p>Sabatani, E., & Rubinstein, I. (1987). Organized self-assembling monolayers on</p><p>electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very</p><p>electrode kinetics. Journal of Electroanalytical Chemistry, 91, 66636669.</p><p></p><p>Saifullah, B., Zowalaty, M. E. El, Arulselvan, P., Fakurazi, S., Webster, T. J., Geilich,</p><p>B. M., & Hussein, M. Z. (2014). Antimycobacterial, antimicrobial and</p><p>biocompatibility properties of para-aminosalicylic acid with zinc layered</p><p>hydroxide and Zn/Al layered double hydroxide nanocomposites. Drug Design,</p><p>Development and Therapy, 8, 10291036.</p><p></p><p>Sapari, S., Hidayah, N., Razak, A., Aishah, S., & Yook, L. (2020). A regenerable</p><p>screen-printed voltammetric Hg (II) ion sensor based on tris-thiourea organic</p><p>chelating ligand grafted graphene nanomaterial. Journal of Electroanalytical</p><p>Chemistry, 878, 114670.</p><p></p><p>Sappia, L., Felice, B., Sanchez, M. A., Marti, M., R, M., & Pividori, I. (2019).</p><p>Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in</p><p>vitro applications. Sensors & Actuators B: Chemical, 281(10), 221228.</p><p></p><p>Sarijo, S. H., Hussein, M. Z., Yahaya, A. H. J., & Zainal, Z. (2010). Effect of incoming</p><p>and outgoing exchangeable anions on the release kinetics of phenoxyherbicides</p><p>nanohybrids. Journal of Hazardous Materials, 182(13), 563569.</p><p></p><p>Sathisha, T. V, Swamy, B. E. K., Schell, M., & Eswarappa, B. (2014). Synthesis and</p><p>characterization of carbon nanoparticles and their modified carbon paste electrode</p><p>for the determination of dopamine. Journal of Electroanalytical Chemistry, 720</p><p>721, 18.</p><p></p><p>Scholz, F. (2010). Electroanalytical methods: Guide to experiments and applications</p><p>(2nd ed.). Berlin: Springer-Verlag.</p><p></p><p>Segner, H., Navas, J. M., Schfers, C., & Wenzel, A. (2003). Potencies of estrogenic</p><p>compounds in in vitro screening assays and in life cycle tests with zebrafish in</p><p>vivo. Ecotoxicology and Environmental Safety, 54(3), 315322.</p><p></p><p>Shah, N., Arain, M. B., & Soylak, M. (2020). Historical background: milestones in the</p><p>field of development of analytical instrumentation. In New Generation Green</p><p>Solvents for Separation and Preconcentration of Organic and Inorganic Species</p><p>(pp. 4573). Elsevier.</p><p></p><p>Shahmiri, M. R., Bahari, A., Karimi-maleh, H., Hosseinzadeh, R., & Mirnia, N. (2013).</p><p>EthynylferroceneNiO/MWCNT nanocomposite modified carbon paste electrode</p><p>as a novel voltammetric sensor for simultaneous determination of glutathione and</p><p>acetaminophen. Sensors & Actuators B: Chemical, 177, 7077.</p><p></p><p>Shahrokhian, S., & Asadian, E. (2010). Simultaneous voltammetric determination of</p><p>ascorbic acid , acetaminophen and isoniazid using thionine immobilized multiwalled</p><p>carbon nanotube modified carbon paste electrode. Electrochimica Acta, 55,</p><p>666672.</p><p></p><p>Sharif, S. N. M., Hashim, N., Isa, I. M., Ali, N. M., Bakar, S. A., Hussein, M. Z., et al.</p><p>(2018). Preparation and characterisation of novel paddy cultivation herbicide</p><p>nanocomposite from zinc/aluminium layered double hydroxide and quinclorac</p><p>anion. Materials Research Innovations, 23(5), 260265.</p><p></p><p>Sharif, S. N. M., Hashim, N., Md Isa, I., Mamat, M., Mohd Ali, N., Abu Bakar, S., et</p><p>al. (2020). The intercalation behaviour and physico-chemical characterisation of</p><p>novel intercalated nanocomposite from zinc/aluminium layered double hydroxides</p><p>and broadleaf herbicide clopyralid. Chemistry & Chemical Technology, 14(1), 38</p><p>46.</p><p></p><p>Sharma, A., Bhattarai, J. K., Nigudkar, S. S., Pistorio, S. G., Demchenko, A. V, & Stine,</p><p>K. J. (2016). Electrochemical impedance spectroscopy study of carbohydrateterminated</p><p>alkanethiol monolayers on nanoporous gold: Implications for pore</p><p>wetting. Journal of Electroanalytical Chemistry, 782, 174181.</p><p></p><p>Shetti, N. P., Nayak, D. S., Malode, S. J., Kakarla, R. R., Shukla, S. S., & Aminabhavi,</p><p>T. M. (2018). Sensors based on ruthenium-doped TiO2 nanoparticles loaded into</p><p>multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic</p><p>acid. Analytica Chimica Acta, 1051, 58-72.</p><p></p><p>Shiffman, S., Battista, D. R., Kelly, J. P., Malone, M. K., Weinstein, R. B., & Kaufman,</p><p>D. W. (2018). Exceeding the maximum daily dose of acetaminophen with use of</p><p>different single-ingredient OTC formulations. Journal of the American</p><p>Pharmacists Association, 58(5), 499-504.</p><p></p><p>Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis</p><p>(6th ed.). USA: Thomson Brooks/Cole.</p><p></p><p>Smyntyna, V., Golovanov, V., Kaeiulis, S., Mattogno, G., & Righini, G. (1995).</p><p>Influence of chemical composition on sensitivity and signal reproducibility of CdS</p><p>sensors of oxygen. Sensors & Actuator B: Chemical, 25, 628630.</p><p></p><p>Sparkman, O. D., Penton, Z. E., & Kitson, F. G. (2011). The Fundamentals of GC/MS.</p><p>In Gas Chromatography and Mass Spectrometry (pp. 213). Amsterdam:</p><p>Academic Press.</p><p></p><p>Srinivas, J., Mascarenhas, R. J., DSouza, O., Satpati, A. K., & Mekhalif, Z. (2017).</p><p>Electrocatalytic oxidation of bisphenol A at oxidized multi-walled carbon</p><p>nanotube modified carbon paste electrode. Analytical Chemistry Letters, 7(1), 52</p><p>64.</p><p></p><p>Staples, C. A., Dom, P. B., Klecka, G. M., Sandra, T. O., & Harris, L. R. (1998). A</p><p>review of the environmental fate, effects and exposures of bisphenol A.Chemosphere, 36(10), 21492173.</p><p></p><p>Steventon, G. B., Heafield, M. T. E., Waring, R. H., Williams, A. C., Sturman, S., &</p><p>Green, M. (1990). Metabolism of low-dose paracetamol in patients with chronic</p><p>neurological disease. Xenobiotica, 20, 117122.</p><p></p><p>Stradiotto, N. R., Yamanaka, H., & Zanoni, M. V. B. (2003). Electrochemical sensors:</p><p>A powerful tool in analytical chemistry. Journal of Brazilian Chemical Society,</p><p>14(2), 159173.</p><p></p><p>Su, W. Y., & Cheng, S. H. (2010). Electrochemical oxidation and sensitive</p><p>determination of acetaminophen in pharmaceuticals at poly(3,4-ethylenedioxythiophene)-</p><p>modified screen-printed electrodes. Electroanalysis, 22(6), 707</p><p>714.</p><p></p><p>Suni, I. I. (2008). Impedance methods for electrochemical sensors using nanomaterials.</p><p>Trends in Analytical Chemistry, 27(7), 604611.</p><p></p><p>Suroviec, A. H. (2013). Introduction to electrochemistry. Journal of Laboratory</p><p>Chemical Education, 1(3), 4548.</p><p></p><p>vancara, I., Vytras, K., Barek, J., & Zima, J. (2001). Carbon paste electrodes in</p><p>modern electroanalysis electroanalysis. Critical Reviews in Analytical Chemistry,</p><p>31(4), 311345.</p><p></p><p>Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste</p><p>electrodes in facts, numbers, and notes: A review on the occasion of the 50-years</p><p>jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis,</p><p>21(1), 728.</p><p></p><p>Syahida, N., Rais, M., Isa, I., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., et al. (2019).</p><p>Simultaneously determination of bisphenol A and uric acid by dichlorophenoxy)</p><p>propionate paste electrode. International Journal of Electrochemical Science, 14,</p><p>79117924.</p><p></p><p>Taei, M., Salavati, H., Hasanpour, F., Habibollahi, S., & Baghlani, H. (2016).</p><p>Simultaneous determination of ascorbic acid, acetaminophen and codeine based</p><p>on multi-walled carbon nanotubes modified magnetic nanoparticles paste</p><p>electrode. Materials Science & Engineering C, 69, 111.</p><p></p><p>Tanida, T., Warita, K., Ishihara, K., Fukui, S., Mitsuhashi, T., Sugawara, T., et al.</p><p>(2009). Fetal and neonatal exposure to three typical environmental chemicals with</p><p>different mechanisms of action: Mixed exposure to phenol, phthalate, and dioxin</p><p>cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei.</p><p>Toxicology Letters, 189, 4047.</p><p></p><p>Tehrani, R. M. A., & Ab Ghani, S. (2012). MWCNT-ruthenium oxide composite paste</p><p>electrode as non-enzymatic glucose sensor. Biosensors and Bioelectronics, 38(1),</p><p>278283.</p><p></p><p>Teixeira, M. A., Mageste, A. B., Dias, A., Virtuoso, L. S., & Siqueira, K. P. F. (2018).</p><p>Layered double hydroxides for remediation of industrial wastewater containing</p><p>manganese and fluoride. Journal of Cleaner Production, 171, 275284.</p><p></p><p>Telegdi, J., Shaban, A., & Vastag, G. (2018). Biocorrosion-Steel. In Encyclopedia of</p><p>Interfacial Chemistry (pp. 2842). Elsevier Inc.</p><p></p><p>Temerk, Y., & Ibrahim, H. (2015). A new sensor based on In doped CeO2 nanoparticles</p><p>modified glassy carbon paste electrode for sensitive determination of uric acid in</p><p>biological fluid. Sensors & Actuators B: Chemical. 224, 868-877.</p><p></p><p>Thayer, K., Doerge, D. R., Hunt, D., Schurman, S. H., Twaddle, N. C., Churchwell, M.</p><p>I., et al. (2018). Pharmacokinetics of bisphenol A in humans following a single</p><p>oral administration pharmacokinetics of bisphenol A in humans following a single</p><p>oral administration. Environment International, 83(6), 107115.</p><p></p><p>Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Removal of boron species by layered</p><p>double hydroxides: A review. Journal of Colloid and Interface Science, 402, 114</p><p>121.</p><p></p><p>Therias, S., & Mousty, C. (1995). Electrodes modified with synthetic anionic clays.</p><p>Applied Clay Science, 10, 147162.</p><p></p><p>Tian, J., Qu, J., Wan, L., Zhang, Q., & Gao, H. (2018). Boron removal using Li-Al-OH</p><p>layered double hydroxide prepared by one-step mechanochemical approach.</p><p>doi:10.20944/preprints201811.0477.v1.</p><p></p><p>Tiwari, J. N., Vij, V., Kemp, K. C., & Kim, K. S. (2015). Engineered carbonnanomaterial</p><p>based electrochemical sensors for biomolecules. American Chemical</p><p>Society, 10(1), 4680.</p><p></p><p>Tonelli, D., Scavetta, E., & Giorgetti, M. (2013). Layered-double-hydroxide-modified</p><p>electrodes: electroanalytical applications. Analytical and Bioanalytical Chemistry,</p><p>405(2), 603614.</p><p></p><p>Tsierkezos, N. G., & Ritter, U. (2012). Influence of concentration of supporting</p><p>electrolyte on electrochemistry of redox systems on multi-walled carbon</p><p>nanotubes. Physics and Chemistry of Liquids, 50(5), 661668.</p><p></p><p>Karabiberoglu, S. U. (2019). Sensitive voltammetric determination of bisphenol A</p><p>based on a glassy carbon electrode modified with copper oxide-zinc oxide</p><p>decorated on graphene oxide. Electroanalysis, 31(1), 91102.</p><p></p><p>Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007).</p><p>Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139</p><p>177.</p><p></p><p>Verma, D., Chauhan, D., Das Mukherjee, M., Ranjan, K. R., Yadav, A. K., & Solanki,</p><p>P. R. (2021). Development of MWCNT decorated with green synthesized AgNpsbased</p><p>electrochemical sensor for highly sensitive detection of BPA. Journal of</p><p>Applied Electrochemistry. doi: 10.1007/s10800-020-01511-3.</p><p></p><p>Vicente-mart, Y., Caravaca, M., & Soto-Meca, A. (2020). Determination of very low</p><p>concentration of bisphenol A in toys and baby pacifiers using dispersive liquid</p><p>liquid microextraction by in situ ionic liquid formation and high- performance</p><p>liquid chromatography. Pharmaceuticals, 13, 301313.</p><p></p><p>Vytras, K., vancara, I., & Metelka, R. (2009). Carbon paste electrodes in</p><p>electroanalytical chemistry. Journal of the Serbian Chemical Society, 74(10),</p><p>10211033.</p><p></p><p>Wang, B., Zhang, H., Evans, D. G., & Duan, X. (2005). Surface modification of layered</p><p>double hydroxides and incorporation of hydrophobic organic compounds.</p><p>Materials Chemistry and Physics, 92, 190196.</p><p></p><p>Wang, C., Liu, L., Xue, H., Hu, X., & Wang, G. (2013). Fabrication of nanoelectrode</p><p>ensembles formed via PAN-co-PAA self-assembly and selective voltammetric</p><p>detection of uric acid in biologic samples. Sensors and Actuators B: Chemical,</p><p>181, 194201.</p><p></p><p>Wang, J. (2000). Potentiometry. In Analytical Electrochemistry (2nd ed., Vol. 3, pp.</p><p>140170). Wiley-VCH.</p><p></p><p>Wang, J. (2006). Analytical Electrochemistry (3rd ed.). New York: Wiley-VCH.</p><p></p><p>Wang, J., Fang, X., Zhang, Y., Cui, X., Zhao, H., Li, X., & Li, Z. (2018). A simple and</p><p>rapid colorimetric probe for uric acid detection based on redox reaction of</p><p>3,3?,5,5?-tetramethylbenzidine with HAuCl4. Colloids and Surfaces A, 555, 565</p><p>571.</p><p></p><p>Wang, X., You, Z., Sha, H., Cheng, Y., Zhu, H., & Sun, W. (2014). Sensitive</p><p>electrochemical detection of dopamine with a DNA/graphene bi-layer modified</p><p>carbon ionic liquid electrode. Talanta, 128, 373378.</p><p></p><p>Wang, Y., Peng, W., Liu, L., Tang, M., Gao, F., & Li, M. (2011). Enhanced</p><p>conductivity of a glassy carbon electrode modified with a graphene-doped film of</p><p>layered double hydroxides for selectively sensing of dopamine. Microchimica</p><p>Acta, 173, 4146.</p><p></p><p>Wardani, N. I., Isa, I. M., Hashim, N., & Ghani, S. A. (2014). Zinc layered hydroxide-</p><p>2(3-chlorophenoxy)propionate modified multi-walled carbon nanotubes paste</p><p>electrode for the determination of nano-molar levels copper(II). Sensors and</p><p>Actuators B: Chemical, 198, 243248.</p><p></p><p>Welshons, W. V, Nagel, S. C., & Saal, F. S. (2006). Large effects from small exposures</p><p>. III . Endocrine mechanisms mediating effects of bisphenol A at levels of human</p><p>exposure. Endocrinology, 147(6), S56S69.</p><p></p><p>Westbrook, A., & Frank, M. (2018). Dopamine and proximity in motivation and</p><p>cognitive control. Current Opinion in Behavioral Sciences, 22, 2834.</p><p></p><p>Wijeratne, K. (2018). Conducting Polymer Electrodes for Thermogalvanic Cells.</p><p>Linkping University, Sweden.</p><p></p><p>Winiarski, J. P., Rampanelli, R., Bassani, J. C., Mezalira, D. Z., & Jost, C. L. (2020).</p><p>Multi-walled carbon nanotubes/nickel hydroxide composite applied as</p><p>electrochemical sensor for folic acid (vitamin B9) in food samples. Journal of</p><p>Food Composition and Analysis, 92, 103511.</p><p></p><p>Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Chemical Electrochemical</p><p>bisphenol A sensor based on coreshell multiwalled carbon nanotubes/graphene</p><p>oxide nanoribbons. Sensors & Actuators B: Chemical, 209, 275280.</p><p></p><p>Xu, Y., Liu, X., Ding, Y., Luo, L., Wang, Y., Zhang, Y., & Xu, Y. (2011). Preparation</p><p>and electrochemical investigation of a nano-structured material Ni2+/MgFe layered</p><p>double hydroxide as a glucose biosensor. Applied Clay Science, 52(3), 322327.</p><p></p><p>Xu, Y., Shan, Y., Cong, H., Shen, Y., & Yu, B. (2018). Advanced carbon-based</p><p>nanoplatforms combining drug delivery and thermal therapy for cancer treatment.</p><p>Current Pharmaceutical Design, 24(34), 4060-4076.</p><p></p><p>Xu, Z., Fan, J., Zheng, S., Ma, F., & Yin, D. (2009). On the adsorption of tetracycline</p><p>by calcined magnesium-aluminum hydrotalcites. Journal of Environmental</p><p>Quality, 38(3), 13021310.</p><p></p><p>Xu, Z., Wu, Q., Duan, Y., Yang, M., Ou, M., & Xu, X. (2017). Development of a novel</p><p>spectrophotometric method based on diazotization-coupling reaction for</p><p>determination of bisphenol A. Journal of the Brazilian Chemical Society, 28(8),</p><p>14751482.</p><p></p><p>Yan, Q., Zhi, N., Yang, L., Xu, G., Feng, Q., Zhang, Q., & Sun, S. (2020). A highly</p><p>sensitive uric acid electrochemical biosensor based on a nano-cube cuprous</p><p>oxide/ferrocene/uricase modified glassy carbon electrode. Scientific Reports,</p><p>10(1), 10607.</p><p></p><p>Yang, Y., Zhang, H., Huang, C., & Jia, N. (2016). MWCNTs-PEI composites-based</p><p>electrochemical sensor for sensitive detection of bisphenol A. Sensors & Actuators</p><p>B: Chemical, 235, 408413.</p><p></p><p>Yao, Y., Wu, H., & Ping, J. (2018). Simultaneous determination of Cd(II) and Pb(II)</p><p>ions in honey and milk samples using a single-walled carbon nanohorns modified</p><p>screen-printed electrochemical sensor. Food Chemistry, 274, 8-15.</p><p></p><p>Yin, H., Zhou, Y., Ai, S., Han, R., Tang, T. & Zhu, L. (2010). Electrochemical behavior</p><p>of bishpenol A at glassy carbon electrode modified with gold nanoparticles, silk</p><p>fibroin, and PAMAM dendrimers. Microchimica Acra, 170, 99-105.</p><p></p><p>Yin, H., Cui, L., Ai, S., Fan, H., & Zhu, L. (2010). Electrochemical determination of</p><p>bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon</p><p>electrode. Electrochimica Acta, 55(3), 603610.</p><p></p><p>Yin, H., Shang, K., Meng, X., & Ai, S. (2011). Voltammetric sensing of paracetamol,</p><p>dopamine and 4-aminophenol at a glassy carbon electrode coated with gold</p><p>nanoparticles and an organophillic layered double hydroxide. Microchimica Acta,</p><p>175, 3946.</p><p></p><p>Yin, H., Zhou, Y., Cui, L., Liu, X., Ai, S., & Zhu, L. (2011). Electrochemical oxidation</p><p>behavior of bisphenol A at surfactant/layered double hydroxide modified glassy</p><p>carbon electrode and its determination. Journal of Solid State Electrochemistry,</p><p>15(1), 167173.</p><p></p><p>Yomthiangthae, P., Kondo, T., Chailapakul, O., & Siangproh, W. (2020). The effects</p><p>of the supporting electrolyte on the simultaneous determination of vitamin B2,</p><p>vitamin B6, and vitamin C using a modification-free screen-printed carbon</p><p>electrode. New Journal of Chemistry, 44(29), 1260312612.</p><p></p><p>Yoon, E., Babar, A., Choudhary, M., Kutner, M., & Pyrsopoulos, N. (2016).</p><p>Acetaminophen-induced hepatotoxicity: A comprehensive update. Journal of</p><p>Clinical and Translational Hepatology, 4, 131142.</p><p></p><p>Zeng, S., Xu, X., Wang, S., Gong, Q., Liu, R., & Yu, Y. (2013). Sand flower layered</p><p>double hydroxides synthesized by co-precipitation for CO2 capture: Morphology</p><p>evolution mechanism , agitation effect and stability. Materials Chemistry and</p><p>Physics, 140(1), 159167.</p><p></p><p>Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A</p><p>based on ionic liquid functionalized Zn-Al layered double hydroxide modified</p><p>electrode. Materials Science and Engineering C, 64, 354361.</p><p></p><p>Zhan, T., Song, Y., Tan, Z., & Hou, W. (2017). Electrochemical bisphenol A sensor</p><p>based on exfoliated Ni2Al-layered double hydroxide nanosheets modified</p><p>electrode. Sensors and Actuators B: Chemical, 238, 962971.</p><p></p><p>Zhang, B., Huang, D., Xu, X., Alemu, G., Zhang, Y., Zhan, F., et al. (2013).</p><p>Simultaneous electrochemical determination of ascorbic acid, dopamine and uric</p><p>acid with helical carbon nanotubes. Electrochimica Acta, 91, 261266.</p><p></p><p>Zhang, L., & Lin, X. (2001). Covalent modification of glassy carbon electrode with</p><p>glutamic acid for simultaneous determination of uric acid and ascorbic acid.</p><p>Analyst, 126(3), 367370.</p><p></p><p>Zhang, S., Fu, Y., Sheng, Q., & Zheng, J. (2017). Nickel-cobalt double hydroxide</p><p>nanosheets wrapped amorphous Ni(OH)2 nanoboxes: Development of dopamine</p><p>sensor with enhanced electrochemical properties. New Journal of Chemistry,</p><p>41(21), 1307613084.</p><p></p><p>Zhang, S., Yan, Y., Wang, W., Gu, X., Li, H., Li, J., & Sun, J. (2017). Intercalation of</p><p>phosphotungstic acid into layered double hydroxides by reconstruction method</p><p>and its application in intumescent flame retardant poly (lactic acid) composites.</p><p>Polymer Degradation and Stability, 147, 142150.</p><p></p><p>Zhang, X., Cui, Y., Lv, Z., Li, M., Ma, S., Cui, Z., & Kong, Q. (2011). Carbon</p><p>nanotubes, conductive carbon black and graphite powder based paste electrodes.</p><p>International Journal of Electrochemical Science, 6, 60636073.</p><p></p><p>Zhao, Q., Gan, Z., & Zhuang, Q. (2002). Electrochemical sensors based on carbon</p><p>nanotubes. Electroanalysis, 14(23), 16091613.</p><p></p><p>Zhou, W., Wang, C., Liu, Y., Zhang, W., & Chen, Z. (2017). Layered double</p><p>hydroxides based ion exchange extraction for high sensitive analysis of nonsteroidal</p><p>anti-inflammatory drugs. Journal of Chromatography A, 1515, 2329.</p><p></p><p>Zhou, Y., Yan, H., Xie, Q., Huang, S., Liu, J., Li, Z., et al. (2013). Simultaneous</p><p>analysis of dopamine and homovanillic acid by high-performance liquid</p><p>chromatography with wall-jet/thin-layer electrochemical detection. Royal Society</p><p>of Chemistry, 138, 72467253.</p><p></p><p>Zhu, Z., Qu, L., Guo, Y., Zeng, Y., Sun, W., & Huang, X. (2010). Electrochemical</p><p>detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic</p><p>liquid electrode. Sensors and Actuators B: Chemical, 151(1), 146152.</p><p></p><p></p><p></p><p></p> |