Fabrication and characterization of graphene oxide-based electodes for water treatment systems application
<p>The aim of this study was to fabricate and characterize graphene oxide (GO) based electrodes for two types of home-developed water treatment system, namely electrodeposition (ED) and capacitive deionization (CDI) for copper ions (Cu2+) and methylene blue (MB) dye removal. Electroche...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2019
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=7384 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:7384 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
|
spellingShingle |
Alzalit, Khayri Zaid Z Fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
description |
<p>The aim of this study was to fabricate and characterize graphene oxide (GO) based electrodes for two types of home-developed water treatment system, namely electrodeposition (ED) and capacitive deionization (CDI) for copper ions (Cu2+) and methylene blue (MB) dye removal. Electrochemical exfoliation was utilized to synthesize GO using custom-made triple-tails (TC14) surfactant. Hydrazine hydrate was utilized as reduction agent to produce TC14-rGO. The TC14-GO and TC14-rGO were then coated via spray coating method on stainless steel (SS) which further utilized as electrodes in ED water treatment system. Meanwhile for CDI system, the TC14-GO sample was sprayed and immersed in activated carbon fiber cloth (ACFC) electrodes. The TC14-GO-based electrodes were characterized using electron microscopy, energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, UV-Vis spectroscopy and micro-Raman spectroscopy. The atomic absorption spectroscopy and UV-Vis spectroscopy were used to determine the amount of Cu2+ and MB dye removal. The finding shows that the removal efficiency of Cu2+ reaches 98% for ED water treatment system assisted with constant magnetic field (CMF) using TC14-GO-/SS cylindrical electrode within reaction time of 6 hours. Meanwhile, for CDI flow through electrodes water treatment system, the TC14-GO-ACFC electrodes produced via immersion method have successfully removed Cu2+ from 100 ppm to 1.8 ppm. The TC14-GO-ACFC immersion electrodes for CDI flow through electrodes had successfully removed MB dye at various concentration level of 25, 50, 75 and 100 ppm within 3, 4, 5 and 6 hours respectively during the electrosorption process. In conclusion, the TC14-GO is a suitable material to be utilized as GO-based electrode for high Cu2+ removal in both ED and CDI application. TC14-GO also enhanced MB dye removal in CDI water treatment system. The implications of this study were a novel, green, cheaper and eco-friendlier concept for the fabrication of TC14-GO based electrodes to be used in both ED and CDI water treatment system.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Alzalit, Khayri Zaid Z |
author_facet |
Alzalit, Khayri Zaid Z |
author_sort |
Alzalit, Khayri Zaid Z |
title |
Fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
title_short |
Fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
title_full |
Fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
title_fullStr |
Fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
title_full_unstemmed |
Fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
title_sort |
fabrication and characterization of graphene oxide-based electodes for water treatment systems application |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2019 |
url |
https://ir.upsi.edu.my/detailsg.php?det=7384 |
_version_ |
1747833388497108992 |
spelling |
oai:ir.upsi.edu.my:73842022-09-05 Fabrication and characterization of graphene oxide-based electodes for water treatment systems application 2019 Alzalit, Khayri Zaid Z <p>The aim of this study was to fabricate and characterize graphene oxide (GO) based electrodes for two types of home-developed water treatment system, namely electrodeposition (ED) and capacitive deionization (CDI) for copper ions (Cu2+) and methylene blue (MB) dye removal. Electrochemical exfoliation was utilized to synthesize GO using custom-made triple-tails (TC14) surfactant. Hydrazine hydrate was utilized as reduction agent to produce TC14-rGO. The TC14-GO and TC14-rGO were then coated via spray coating method on stainless steel (SS) which further utilized as electrodes in ED water treatment system. Meanwhile for CDI system, the TC14-GO sample was sprayed and immersed in activated carbon fiber cloth (ACFC) electrodes. The TC14-GO-based electrodes were characterized using electron microscopy, energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, UV-Vis spectroscopy and micro-Raman spectroscopy. The atomic absorption spectroscopy and UV-Vis spectroscopy were used to determine the amount of Cu2+ and MB dye removal. The finding shows that the removal efficiency of Cu2+ reaches 98% for ED water treatment system assisted with constant magnetic field (CMF) using TC14-GO-/SS cylindrical electrode within reaction time of 6 hours. Meanwhile, for CDI flow through electrodes water treatment system, the TC14-GO-ACFC electrodes produced via immersion method have successfully removed Cu2+ from 100 ppm to 1.8 ppm. The TC14-GO-ACFC immersion electrodes for CDI flow through electrodes had successfully removed MB dye at various concentration level of 25, 50, 75 and 100 ppm within 3, 4, 5 and 6 hours respectively during the electrosorption process. In conclusion, the TC14-GO is a suitable material to be utilized as GO-based electrode for high Cu2+ removal in both ED and CDI application. TC14-GO also enhanced MB dye removal in CDI water treatment system. The implications of this study were a novel, green, cheaper and eco-friendlier concept for the fabrication of TC14-GO based electrodes to be used in both ED and CDI water treatment system.</p> 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=7384 https://ir.upsi.edu.my/detailsg.php?det=7384 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Aaboubi, O., & Msellak, K. (2017). Magnetic field effects on the electrodeposition of CoNiMo alloys. Applied Surface Science, 396, 375383.</p><p></p><p>Abdelkader, A. M., Kinloch, I. A., & Dryfe, R. A. W. (2014). High-yield electro- oxidative preparation of graphene oxide. Chem. Commun., 50(61), 84028404.</p><p></p><p>Abdi, O., & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6(5), 13861399.</p><p></p><p>Agency, U. S. E. P., & King, W. M. L. (2018). considerations for desalination technologies.Chem Technol Biotechnology, 92(10), 2489-2493.</p><p></p><p>Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M., & Gascn, V. (2009). Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials, 163(1), 213221.</p><p></p><p>Akpor, O. B., & Muchie, M. (2010). Remediation of heavy metals in drinking water and wastewater treatment systems : Processes and applications. International Journal, 5(12), 18071817.</p><p></p><p>Alanyalioglu, M., Segura, J. J., Or-Sol, J., & Casa-Pastor, N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon, 50(1), 142152.</p><p></p><p>Ali, A., Quist-Jensen, C. A., Drioli, E., & Macedonio, F. (2018). Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. Desalination, 434, 161168.</p><p></p><p>Alwediyani, H., Almasoudi, A., Abdulrahman, A., Kenkar, N., Alsaidi, S., Khalofa, H., & Bjafar, F. (2014). The Change in Physical Properties of Magnetic Water, Applied Science. Umm Al Qura University Makkah Kingdom of Saudi Arabia 4 8.</p><p></p><p>Amaral Junior, M. A., Matsushima, J. T., Rezende, M. C., Gonalves, E. S., Marcuzzo, J. S., & Baldan, M. R. (2017). Production and Characterization of Activated Carbon Fiber from Textile PAN Fiber. Journal of Aerospace Technology and Management, 9(4), 423430.</p><p></p><p>Ambrosi, A., & Pumera, M. (2016). Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications. Chemistry - A European Journal, 22(1), 153159.</p><p></p><p>Amietszajew, T., Sridhar, S., & Bhagat, R. (2016). Metal Recovery by Electrodeposition from a Molten Salt Two-Phase Cell System. Journal of The Electrochemical Society, 163(9), D515D521.</p><p></p><p>Ammam, M. (2012). RSC Advances Electrophoretic deposition under modulated electric fields. RSC Advances, 20(2), 76337646.</p><p></p><p>Angelakis, A. N., & Snyder, S. A. (2015). Wastewater Treatment and Reuse: Past, Present, and Future. water, 48874895.</p><p></p><p>Aoudj, S., Khelifa, A., & Drouiche, N. (2017). Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation electroflotation. Chemosphere, 180, 379387.</p><p></p><p>Arar, ., Yksel, ., Kabay, N., & Yksel, M. (2011). Removal of Cu 2 + ions by a micro- fl ow electrodeionization ( EDI ) system. Desalination, 277(13), 296300.</p><p></p><p>Aus, N. P. (2006). Vibrational spectroscopy and density functional theory calculations on biological molecules. Universitt Wrzburg.</p><p></p><p>Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: Synthesis and applications. Materials Today, materialstody, 15(3), 8697.</p><p></p><p>Ayangbenro, A. S., & Babalola, O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14( 94). 1-16.</p><p></p><p>Azizi, S., Kamika, I., & Tekere, M. (2016). Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS ONE, 11(5), 113.</p><p></p><p>Aguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 26(14), 22192251.</p><p></p><p>Bai, D. K., Ying, Q. H., Wang, N., & Lin, J. H. (2016). Copper removal from electroplating wastewater by coprecipitation of copper-based supramolecular materials: Preparation and application study. Journal of Chemistry, 5281561, 17.</p><p></p><p>Baran, W., Adamek, E., Jajko, M., & Sobczak, A. (2018). Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere, 194, 381389.</p><p></p><p>Battaile, C. C., & Srolovitz, D. J. (2002). K Inetic M Onte C Arlo S Imulation of C Hemical V Apor D Eposition. Annual Review of Materials Research, 32, 297319.</p><p></p><p>Bayram, E., & Ayranci, E. (2012). Electrosorption based waste water treatment system using activated carbon cloth electrode: Electrosorption of benzoic acid from a flow-through electrolytic cell. Separation and Purification Technology, 86, 113 118.</p><p></p><p>Bazrafshan, E., Moein, H., Mostafapour, F. K., & Nakhaie, S. (2013). Application of Electrocoagulation Process for Dairy Wastewater Treatment. Journal of Chemistry, 39, 18.</p><p></p><p>Bharath, G., Alhseinat, E., Ponpandian, N., Khan, M. A., Raza, M., Ahmed, F., & Alsharaeh, E. H. (2017). Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Separation and Purification Technology. 188, 206-218.</p><p></p><p>Bhatluri, K. K., Manna, M. S., Ghoshal, A. K., & Saha, P. (2017). Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition. Electrochimica Acta, 229,1-7.</p><p></p><p>Biesheuvel, P. M., Hamelers, H. V. M., & Suss, M. E. (2016). Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge. COLCOM, 9, 15.</p><p></p><p>Blegur, E. J., & Endarko. (2017). Study the effect of active carbon modified using HNO3 for carbon electrodes in capacitive deionization system, International Conference on Engineering, Science and Nanotechnology, 1788, 1-7.</p><p></p><p>Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., & Cen, K. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific Reports, 4, 18.</p><p></p><p>Bobade, V., & Eshtiagi, N. (2015). Heavy Metals Removal from Wastewater by Adsorption Process : A Review. APCChE Congress Incorporating Chemeca RMIT University. 4(1). 41-48.</p><p></p><p>Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater review. Ecotoxicology and Environmental Safety, 148, 702712.</p><p></p><p>Bykov, I. (2008). Characterization of Natural and Technical Lignins using FTIR Spectroscopy. Construction, 43.</p><p></p><p>Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 27822799.</p><p></p><p>Chandrasekaran, R., Koh, M., Yamauchi, A., & Ishikawa, M. (2009). Electrochemical Study on Aqueous Magnesium Nitrate Electrolyte System for EDLC Applications. Electrochemistry, 77(1), 5155.</p><p></p><p>Chang, B. Y. S., Huang, N. M., Anamt, M. N., Marlinda, A. R., Norazriena, Y., Muhamad, M. R., Chia, C. H. (2012). Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. International Journal of Nanomedicine, 7, 33793387.</p><p></p><p>Chang, Q., Zhang, M., & Wang, J. (2009). Removal of Cu 2+ and turbidity from wastewater by mercaptoacetyl chitosan. Journal of Hazardous Materials.169, 621625.</p><p></p><p>Chaplin, B. P. (2018). Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment. Electrochemical Water and Wastewater Treatment. Environ. Sci, 17, 800831.</p><p></p><p>Chemicals, I. (2013). Physical Characterization : Surface Area and Porosity. Intertek Chemicals and Pharmaceuticals. 170613, 1-7</p><p></p><p>Chen, C., Wang, R., Oliveira, R. G., & Hu, J. (2009). Adsorption models and structural characterization for activated carbon fibers. Journal of Shanghai Jiaotong University (Science), 14(1), 3539.</p><p></p><p>Chen, D., Zhang, H., Yang, K., & Wang, H. (2016). Functionalization of 4- aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. Journal of Hazardous Materials, 310, 179187.</p><p></p><p>Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11-41.</p><p></p><p>Chen, G., Qiao, C., Xu, J., Yao, J., Chen, G., Qiao, C., Yao, J. (2014). Synthesis and Characterization of Reduced Graphene Oxide / Gelatin Composite Films, 38(4), 484490.</p><p></p><p>Chen, M. M., Wei, D., Chu, W., Hou, L. P., & Tong, D. G. (2017). Novel mesoporous amorphous B-N-O-H nanofoam as an electrode for capacitive dye removal from water. Journal of Materials Chemistry A, 5(40), 2140021413.</p><p></p><p>Chen, R., Zhao, T., Tian, T., Cao, S., Coxon, P. R., Xi, K., & Coxon, P. R. (2016). Graphene-wrapped sulfur / metal organic framework-derived microporous carbon composite for lithium sulfur batteries Graphene-wrapped sulfur / metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL MATERIALS. 2(12), 124-109.</p><p></p><p>Chen, T., & Dai, L. (2013). Carbon nanomaterials for high-performance supercapacitors. Materials Today, 16(78), 272280.</p><p></p><p>Chen, T., Priambodo, R., Huang, R., & Huang, Y. (2013). The Effective Electrolytic Recovery of Dilute Copper from Industrial Wastewater. Jouranal of Waste Management, 164780, 1-7.</p><p></p><p>Chen, X., & Chen, B. (2016). Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets. Environ. Sci. Techno, 50(16), 8568-8577.</p><p></p><p>Chen, Y., Chen, L., Bai, H., & Li, L. (2013). Graphene oxidechitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A, 1(6), 19922001.</p><p></p><p>iplak, Z., Yildiz, N., & alimli, A. (2015). Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fullerenes, Nanotubes and Carbon Nanostructures, 23(4), 361370.</p><p></p><p>Code, L. (2015). Analysis of Influential Factors on Deionization Capacity and Rate in Capacitive Deionization. SEOUL NATIONAL UNVERSITY.</p><p></p><p>Cohen, I., Avraham, E., Noked, M., So, A., & Aurbach, D. (2011). Enhanced Charge Efficiency in Capacitive Deionization Achieved by Surface-Treated Electrodes and by Means of a Third Electrode. J. Phys. Chem. C. 115(40), 1985619863.</p><p></p><p>Cong, H.-P., Chen, J.-F., & Yu, S.-H. (2014). Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev., 43(21), 7295 7325.</p><p></p><p>Connell, A., Holliman, P. J., Jones, E. W., Furnell, L., Kershaw, C., Davies, M. L., Cooke, G. (2015). Multiple linker half-squarylium dyes for dye-sensitized solar cells; Are two linkers better than one?. Journal of Materials Chemistry A, 3(6), 28832894.</p><p></p><p>Cui, L., Wang, Y., Gao, L., Hu, L., Yan, L., Wei, Q., & Du, B. (2015). EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 281(1), 110.</p><p></p><p>De, S., & Lutkenhaus, J. L. (2018). Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide-poly(vinyl alcohol) coatings. Green Chemistry, 20(2), 506514.</p><p></p><p>de Heer W. A. (2002). Carbon NanotubesOThe Route Toward Applications. Science, 297(5582), 787.</p><p></p><p>Debbichi, L., Marco de Lucas, M. C., Pierson, J. F., & Krger, P. (2012). Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy. The Journal of Physical Chemistry C, 116(18), 10232 10237.</p><p></p><p>Deng, B., Hou, J., Zhu, H., Liu, S., Liu, E., Shi, Y., & Peng, Q. (2017). The normal- auxeticity mechanical phase transition in graphene. 2D Materials, 4(2), 13125 125.</p><p></p><p>Deng, Y., Handoko, A. D., Du, Y., Xi, S., & Yeo, B. S. (2016). In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIIIOxides as Catalytically Active Species. ACS Catalysis, 6(4), 24732481.</p><p></p><p>Dhonge, B. P., Ray, S. S., & Mwakikunga, B. (2017). Electronic to protonic conduction switching in Cu 2 O nanostructured porous films: the effect of humidity exposure. RSC Adv., 7(35), 2170321712.</p><p></p><p>Dimitrijevic, S. B., Dimitrijevic, S. P., & Vukovic, M. D. (2013). Modern Water Treatment By Electrochemical Oxidation -a Review. International Research/Expert Conference. 17(1), 125-128.</p><p></p><p>Dots, Q., & Ozonation, U. (2012). Supporting Information Influence of pH on the Fluorescence Properties of Graphene. Journal of Materials Chemistry, 22(48), 24959-25506.</p><p></p><p>Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). Graphite oxide. Chemical Society Reviews, 39(1), 228240.</p><p></p><p>Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 3(8), 491495.</p><p></p><p>Dykstra, J. E., Keesman, K. J., Biesheuvel, P. M., & Wal, A. Van Der. (2017). Theory of pH changes in water desalination by capacitive deionization. Water Research, 1(119), 178186.</p><p></p><p>Dykstra, J. E., Zhao, R., Biesheuvel, P. M., & Wal, a Van Der. (2016). Resistance identi fi cation and rational process design in Capacitive Deionization. Water Research, 88, 358370.</p><p></p><p>Elmorsi, T. M. (2011a). Equilibrium Isotherms and Kinetic Studies of Removal of Methylene Blue Dye by Adsorption onto Miswak Leaves as a Natural Adsorbent. Journal of Environmental Protection, 2(6), 817827.</p><p></p><p>Elmorsi, T. M. (2011b). Equilibrium Isotherms and Kinetic Studies of Removal of Methylene Blue Dye by Adsorption onto Miswak Leaves as a Natural Adsorbent. Journal of Environmental Protection, 2(6), 817827.</p><p></p><p>Eric Paul Leimkuehler. (2010). Applications of Activated Carbon. University of Missouri.</p><p></p><p>Energy, A., June, E. S., Suss, M., & Santiago, J. G. (2012). Capacitive desalination with flow-through electrodes Energy. Energy and Environmental Science, 12(11), 9137-9674.</p><p></p><p>Eza, T. S. M., Ahmad, W. Y. W., Ahmad, M. R., Omar, K., & Ahmad, M. N. (2014). Effectiveness of activated carbon produced from coconut and oil palm shells as anti-odour on textile fabrics. Indian Journal of fibre and Textile Research, 39, 190195.</p><p></p><p>Fakhrul-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(23), 530-551.</p><p></p><p>Fan, W., Zhang, C., Tjiu, W. W., & Liu, T. (2013). Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer- by-layer assembly approaches. Journal of Materials Research, 28(4), 611619.</p><p></p><p>Fan, X., Chen, X., & Dai, L. (2015). Current Opinion in Colloid & Interface Science 3D graphene based materials for energy storage. Current Opinion in Colloid & Interface Science, 20(56), 429438.</p><p></p><p>Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., & Poco, J. F. (1995). Capacitive deionization with carbon aerogel electrodes: carbonate, sulfate, and phosphate. international Society for the Advancement of Materials Process Engineers Technical Conference. 114.</p><p></p><p>Feng, Y., Yang, L., Liu, J., & Logan, B. E. (2016a). Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research and Technology, 2(5), 800831.</p><p></p><p>Feng, Y., Yang, L., Liu, J., & Logan, B. E. (2016b). Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci.: Water Res. Technol., 2(5), 800831.</p><p></p><p>Fernndez-luqueo, F., Lpez-valdez, F., Gamero-melo, P., Luna-, S., Aguilera- gonzlez, E. N., Martnez, A. I, lvarez-, M. A. (2013). Heavy metal pollution in drinking water - a global risk for human health. African Journal of Environmental Science and Technology. 7(7), 567584.</p><p></p><p>Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite : Disorder , electron phonon coupling , doping and nonadiabatic effects. Solid State Communications, 143(1-2), 4757.</p><p></p><p>Florica. (2011). PhD thesis abstract Electrochemical methods for recovery of copper from waste waters and solid wastes. University ClujNapoca.</p><p></p><p>Fogden, J. (2009). Access to Safe Drinking Water and Its Impact on Global Economic Growth. A Report Prepared for HSBC, 1-69.</p><p></p><p>Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters : A review. Journal of Environmental Management, 92(3), 407418.</p><p></p><p>Fu, F., & Wang, Q. (2014). Removal of Heavy Metal Ions from Wastewaters : A Review. Journal of Environmental Management, 92(3), 407418.</p><p></p><p>Galinato, M. G. I., Whaley, C. M., & Lehnert, N. (2011). Vibrational Analysis of the Model Complex (-edt)[Fe(CO)3 ]2 and Comparison to Iron-only Hydrogenase: The Activation Scale of Hydrogenase Model Systems. Inorg Chem, 49(7), 3201 3215.</p><p></p><p>Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656) 1-11.</p><p></p><p>Gerel, . (2016). Removal of textile dye from aqueous solution by electrochemical method. Separation Science and Technology, 51(4), 711717.</p><p></p><p>Girish, C. R., Singh, S. K., & Shenoy, S. (2017). Removal of suspended solids from dairy wastewater using flocculation. International Journal of Mechanical Engineering and Technology, 8(11), 99105</p><p></p><p>Giurlani, W., Zangari, G., Gambinossi, F., Passaponti, M., Salvietti, E., Di Benedetto, F., Innocenti, M. (2018). Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings, 8(8), 1-260.</p><p></p><p>Grobert, N. (2007). Carbon nanotubes importance of clean CNT material for the success of future applications. materialtoday, 10(1), 2835.</p><p></p><p>Gunatilake, S. K. (2015). Methods of Removing Heavy Metals from Industrial Wastewater, Journal of Multidisciplinary Engineering Science Studies (JMESS) 1(1), 1218.</p><p></p><p>Guo, H., Wang, X., Qian, Q., Wang, F., & Xia, X. (2009). ARTICLE A Green Approach to the Synthesis of. ACS Nano, 3(9), 26532659.</p><p></p><p>Gupta, B., Kumar, N., Panda, K., Kanan, V., Joshi, S., & Visoly-Fisher, I. (2017). Role of oxygen functional groups in reduced graphene oxide for lubrication. Scientific Reports, 7, 114.</p><p></p><p>Hammami, A., Charcosset, C., & Ben Amar, R. R. (2017). Performances of Continuous Adsorption-Ultrafiltration Hybrid Process for AO7 Dye Removal from Aqueous Solution and Real Textile Wastewater Treatment. Journal of Membrane Science & Technology, 7(1), 18.</p><p></p><p>Hamra, A. A. B., Lim, H. N., Chee, W. K., & Huang, N. M. (2016). Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor. Applied Surface Science, 360, 213223.</p><p></p><p>Han, L., Karthikeyan, K. G., & Gregory, K. B. (2015). Energy Consumption and Recovery in Capacitive Deionization Using Nanoporous Activated Carbon Electrodes Energy Consumption and Recovery in Capacitive Deionization Using Nanoporous Activated Carbon Electrodes. Journal of The Electrochemical Society, 162(12), E282-E288.</p><p></p><p>Hashem, S., Anijdan, M., Sabzi, M., Zadeh, M. R., Farzam, M., Researchers, Y., & Branch, A. (2018). The Effect of Electroless Bath Parameters and Heat Treatment on the Properties of Ni-P and Ni-P-Cu Composite Coatings. Materials and Experimental Procedure, 21(2), 1516-1439.</p><p></p><p>Hensel, J. K., Carpenter, A. P., Ciszewski, R. K., Schabes, B. K., Kittredge, C. T., Moore, F. G., & Richmond, G. L. (2017). Molecular characterization of water and surfactant AOT at nanoemulsion surfaces. Proceedings of the National Academy of Sciences, 114(51) 3351-13356.</p><p></p><p>Hidrovo, C., Demirer, O. N., Naylor, R. M., Perez, C. A. R., Wilkes, E., & Hidrovo, C. (2013). Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water with transient cycles and brackish water. Desalination, 340(2), 130138.</p><p></p><p>Hollamby, M. J., Trickett, K., Mohamed, A., Cummings, S., Tabor, R. F., Myakonkaya, O., Eastoe, J. (2009). Tri-chain hydrocarbon surfactants as designed micellar modifiers for supercritical CO2. Angewandte Chemie - International Edition, 48(27), 49934995.</p><p></p><p>Hou, C. H., Huang, C. Y., & Hu, C. Y. (2013). Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology, 10(4), 753760.</p><p></p><p>Hu, C. (2008). Fluid coke derived activated carbon as electrode material for electrochemical fluid coke derived activated carbon as electrode material for electrochemical double layer capacitor. chemical engineering, University of Toronto.</p><p></p><p>Hu, C., Liu, F., Lan, H., Liu, H., & Qu, J. (2015). Journal of Colloid and Interface Science Preparation of a manganese dioxide / carbon fiber electrode for electrosorptive removal of copper ions from water. Journal of Colloid And Interface Science, 446(15) 359-365.</p><p></p><p>Huang, C. C., & He, J. C. (2013). Electrosorptive removal of copper ions from wastewater by using ordered mesoporous carbon electrodes. Chemical Engineering Journal, 221(1), 469475.</p><p></p><p>Huang, C., & Su, Y. (2010). Removal of copper ions from wastewater by adsorption / electrosorption on modified activated carbon cloths. Journal of Hazardous Materials, 175(1-3), 477483.</p><p></p><p>Huang, P., Cheng, H., & Lin, S. (2015). Adsorption of Carbon Dioxide onto Activated Carbon Prepared from Coconut Shells. Journal of Chemistry, 2015, 1-10.</p><p></p><p>Huang, P. Y., Ruiz-Vargas, C. S., Van Der Zande, A. M., Whitney, W. S., Levendorf, M. P., Kevek, J. W., & Muller, D. A. (2011). Grains and grain boundaries in single- layer graphene atomic patchwork quilts. Nature, 469, 389392.</p><p></p><p>Huang, S. Y., Fan, C. S., & Hou, C. H. (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 278, 815.</p><p></p><p>Huang, Z., Lu, L., Cai, Z., & Ren, Z. J. (2016). Individual and competitive removal of heavy metals using capacitive deionization. Journal of Hazardous Materials, 302, 323331.</p><p></p><p>Huh, J. W., Jeon, H. J., & Ahn, C. W. (2017). Flexible transparent electrodes made of core-shell-structured carbon/metal hybrid nanofiber mesh films fabricated via electrospinning and electroplating. Current Applied Physics, 17(11), 14011408.</p><p></p><p>Hui, T. S., & Zaini, M. A. A. (2016). Potassium hydroxide activation of activated carbon: a commentary. Carbon Letters, 16(4), 275280.</p><p></p><p>Inokuchi, Y., Matsushima, R., Kobayashi, Y., & Ebata, T. (2009). Ion core structure in (N2O)n+(n=2-8) studied by infrared photodissociation spectroscopy. Journal of Chemical Physics,131(4), 16.</p><p></p><p>Jenelapriscy, J., & Jesvinshobini, S. (2017). Heavy Metal Pollution in Wetlands around Coimbatore. International Journal of ChemTech Research , 10(10), 119128.</p><p></p><p>Jia, B., & Zhang, W. (2016). Preparation and Application of Electrodes in Capacitive Deionization (CDI). Nanoscale Research Letters, 11(1),1- 64.</p><p></p><p>Jimnez, S., Mic, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186208.</p><p></p><p>Johra, F. T., Lee, J. W., & Jung, W. G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 28832887.</p><p></p><p>Kang, C., Cha, E., Patel, M., Wu, H., & Choi, W. (2016). Three-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries. Journal of Carbon Research, 2(4), 1-26.</p><p></p><p>Karastogianni, S., Girousi, S., & Sotiropoulos, S. (2015). pH: Principles and Measurement. Encyclopedia of Food and Health (1st ed.). Elsevier Ltd,4, 333-338.</p><p></p><p>Kaur, M., Kaur, H., & Kukkar, D. (2018). Synthesis and characterization of graphene oxide using modified Hummers method. AIP Conference Proceedings, 1953(1), 14.</p><p></p><p>Khalid, B., Meng, Q., Akram, R., & Cao, B. (2016). Effects of KOH activation on surface area, porosity and desalination performance of coconut carbon electrodes. Desalination and Water Treatment. 57(5), 21952202.</p><p></p><p>Khaled Al Akeel ETC. (2013). Empirical investigation of water pollution control through use of phragmites. Brunel University.</p><p></p><p>Khattab, I. A., Shaffei, M. F., Shaaban, N. A., Hussein, H. S., & Abd El-Rehim, S. S. (2013). Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part ?. Egyptian Journal of Petroleum, 22(1), 199203.</p><p></p><p>Khazaei, M., Nasseri, S., Ganjali, M. R., Khoobi, M., & Nabizadeh, R. (2016). Response surface modeling of lead ( ? ? ) removal by graphene oxide-Fe 3 O 4 nanocomposite using central composite design. Journal of Environmental Health Science and Engineering, 14(2), 114.</p><p></p><p>Kim, C., Srimuk, P., Lee, J., Fleischmann, S., Aslan, M., & Presser, V. (2017). Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 122, 329335.</p><p></p><p>Kim, J., Yi, Y., Peck, D. H., Yoon, S. H., Jung, D. H., & Park, H. S. (2019). Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environmental Science: Nano, 6(3), 916 924.</p><p></p><p>Kim, S. (2015). Removal of heavy metal ions from pharma-effluents using graphene- oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry, 30, 14-19.</p><p></p><p>Kiran, N. U., Dey, S., Singh, B. P., & Besra, L. (2017). Graphene Coating on Copper by Electrophoretic Deposition for Corrosion Prevention. Coatings, 7(12), 214.</p><p></p><p>Kolodziejczyk, K., Miekos, E., Zielinski, M., Jaksender, M., Szczukocki, D., Czarny, K., & Krawczyk, B. (2018). Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions. Journal of Solid State Electrochemistry, 22(6),16291647.</p><p></p><p>Koparal, A. S., Yavuz, Y., & Ogutveren, U. B. (2002). Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures. Water Environment Research, 74(6), 521525.</p><p></p><p>Kornboonraksa, T., Lee, H. S., Lee, S. H., & Chiemchaisri, C. (2009). Application of chemical precipitation and membrane bioreactor hybrid process for piggery wastewater treatment. Bioresource Technology, 100(6), 19631968.</p><p></p><p>Kose, C., & Genc, A. (n.d.). Comparison of separation processes for the treatment of emulsified oils from water. Water Resources Management, 196, 505512.</p><p></p><p>Koza, J., Uhlemann, M., Gebert, A., & Schultz, L. (2008). The effect of magnetic fields on the electrodeposition of iron. Journal of Solid State Electrochemistry, 12(2), 181192.</p><p></p><p>Krause, a., Uhlemann, M., Gebert, a., & Schultz, L. (2004). The effect of magnetic fields on the electrodeposition of cobalt. Electrochimica Acta, 49(24), 41274134.</p><p></p><p>Krishnakumar, V., & Xavier, R. J. (2004). Vibrational analysis of 1,4- diaminoanthraquinone and 1,5-dichloroanthraquinone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(8), 17991809.</p><p></p><p>Kumar, S., Pande, S., & Verma, P. (2015). Factor Effecting Electro-Deposition Process. International Journal of Current Engineering and Technology, 5(2), 700703.</p><p></p><p>Kumar, P. S., Ramakrishnan, K., Kirupha, S. D., & Sivanesan, S. (2010). Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazilian Journal of Chemical Engineering, 27(2), 347355.</p><p></p><p>Le, N. L., & Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7(1), 128.</p><p></p><p>Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385388.</p><p></p><p>Lee, J. H., Bae, W. S., & Choi, J. H. (2010). Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258(13), 159163.</p><p></p><p>Lee, T., Ooi, C., Othman, R., & Yeoh, F. (2014). Activated carbon fiber - the hybrid of carbon fiber and activated carbon. 118 Rev. Adv. Mater. Sci,36, 118136.</p><p></p><p>Li, F., Jiang, X., Zhao, J., & Zhang, S. (2015). Graphene oxide : A promising nanomaterial for energy and environmental applications. Nano Energy, 16, 488 515.</p><p></p><p>Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., & Sun, Z. (2011). A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 653(12), 4044.</p><p></p><p>Li, H., Wang, H., Liu, Q., Tan, Y., Jiang, N., & Lin, Y. (2016). Evaporation process for treating high-salinity industrial wastewater at low temperatures and ambient pressure. Desalination and Water Treatment, 57(56), 2704827060.</p><p></p><p>Li, H., Zaviska, F., Liang, S., Li, J., He, L., & Yang, H. Y. (2014). A high charge e ffi ciency electrode by self- assembling sulphonated reduced graphene oxide onto carbon fi bre : towards enhanced capacitive. Journal of Materials Chemistry, 7(10) 3484-3491.</p><p></p><p>Li, M., Chen, Y., Huang, Z., & Kang, F. (2014). Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization. Journal of Nanomaterials, 2014,16.</p><p></p><p>Li, X., Li, H., Xu, X., Guo, N., Yuan, L., & Yu, H. (2017). Preparation of a reduced graphene oxide @ stainless steel net electrode and its application of electrochemical removal Pb(II). Journal of the Electrochemical Society, 164(4), 7177.</p><p></p><p>Liang, J. (2014). Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 195196.</p><p></p><p>Lim, S., Lee, M., Kim, S.-W., Yoon, S.-C., Lee, G., & Lee, Y. J. (2014). Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia. Atmospheric Chemistry and Physics, 14(15), 77817793.</p><p></p><p>Lin, M. Y., Hourng, L. W., & Kuo, C. W. (2012). The effect of magnetic force on hydrogen production efficiency in water electrolysis. International Journal of Hydrogen Energy, 37(2), 13111320.</p><p></p><p>Lin, J. C. Te, Wu, C. Y., Chu, Y. L., & Huang, W. J. (2018). Effects of high turbidity seawater on removal of boron and transparent exopolymer particles by chemical oxo-precipitation. Journal of the Taiwan Institute of Chemical Engineers, 94, 109- 118.</p><p></p><p>Liu, J., Liu, L., Wu, X., Zhang, X., & Li, T. (2015). Environmentally friendly synthesis of graphenesilver composites with surface-enhanced Raman scattering and antibacterial activity via reduction with l -ascorbic acid/water vapor. New J. Chem., 39(7), 52725281.</p><p></p><p>Liu, J., Yu, M., Zhou, C., Yang, S., Ning, X., & Zheng, J. (2013). Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. Journal of the American Chemical Society, 135(13), 49784981.</p><p></p><p>Liu, P., Wang, H., Yan, T., Zhang, J., Shi, L., & Zhang, D. (2016). Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 4(14), 53035313.</p><p></p><p>Liu, P., Yan, T., Shi, L., Park, H. S., Chen, X., Zhao, Z., & Zhang, D. (2017). Graphene- based materials for capacitive deionization. Journal of Materials Chemistry A, 5(27), 1390713943.</p><p></p><p>Liu, S., Wang, H., Chai, L., & Li, M. (2016). Effects of single- and multi-organic acid ligands on adsorption of copper by Fe3O4/graphene oxide-supported DCTA. Journal of Colloid and Interface Science, 478, 288295.</p><p></p><p>Liu, W., & Adanur, S. (2014). Desulfurization Properties of Activated Carbon Fibers. Journal of Engineered Fibers and Fabrics, 9(2), 70-75.</p><p></p><p>Liu, X. Y., Huang, M., Ma, H. L., Zhang, Z. Q., Gao, J. M., Zhu, Y. L., & Guo, X. Y.(2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 71887196.</p><p></p><p>Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High-Concentration, Surfactant- Stabilized Graphene Dispersions. ACS Nano, 4(6), 31553162.</p><p></p><p>Lou, H. H. (2007). Electroplating. Encyclopedia of Chemical Processing, and Design, 65(2), 1-10.</p><p></p><p>Lu, W., Hartman, R., Qu, L., & Dai, L. (2011). Nanocomposite Electrodes for High- Performance Supercapacitors. The Journal of Physical Chemistry Letters, 2(6), 655660.</p><p></p><p>Lui, T., & Andre, G. (2016). Heavy metal removal from simulated wastewater using electrochemical technology : optimization of copper electrodeposition in a membraneless fluidized bed electrode. Clean Technologies and Environmental Policy, 19(2), 403415.</p><p></p><p>Luo, J., Cote, L. J., Tung, V. C., Tan, A. T. L., Goins, P. E., Wu, J., & Huang, J. (2010). Graphene oxide nanocolloids. Journal of the American Chemical Society, 132(50), 1766717669.</p><p></p><p>Ma, C. Y., Huang, S. C., Chou, P. H., Den, W., & Hou, C. H. (2016). Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere, 146, 113120.</p><p></p><p>Ma, J., Ping, D., & Dong, X. (2017). Recent developments of graphene oxide-based membranes: A review. Membranes, 7(52). 5-29.</p><p></p><p>Margenot, A. J., Davis, C., & States, U. (2017). IR Spectroscopy , Soil Analysis Applications. Elsevier Ltd. 2, 448-454.</p><p></p><p>Mbonyiryivuze, A., Mwakikunga, B., Dhlamini, S. M., & Maaza, M. (2015). Fourier Transform Infrared Spectroscopy for Sepia Melanin. Physics and Materials Chemistry, 3(2), 2529.</p><p></p><p>Mechanisms, M., National, S., Sobti, R., Bhimrao, B., Univer, A., & View, M. T. B. (2000). Rec effect of certain textile dyes in Bacillus subtilis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 465(1-2), 2738.</p><p></p><p>Melezhyk, A. V., Kotov, V. A., & Tkachev, A. G. (2016). Optical Properties and Aggregation of Graphene Nanoplatelets. Journal of Nanoscience and Nanotechnology, 16(1), 10671075.</p><p></p><p>Mendoza, S., Bustos, E., Manrquez, J., & Godnez, L. A. (2015). Voltammetric Techniques. ChemTexts,1(7), 124.</p><p></p><p>Merikhi, M., Nabiyouni, G., & Ghanbari, B. (2015). Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu / Cu Nano layers Prepared by Electrodeposition Technique : Investigation of Magneto-hydrodynamic Effect. JNS NANOSTRUCTURES, 5, 409414.</p><p></p><p>Mi, X., Huang, G., Xie, W., Wang, W., Liu, Y., & Gao, J. (2012). Preparation of graphene oxide aerogel and its adsorption for Cu 2+ ions. Carbon, 50(13), 4856 4864.</p><p></p><p>Miclescu, A., & Wiklund, L. (2010). Methylene blue an old drug with new indications. Jurnalul Romn de Anestezie Terapie intensiv. 17(1), 3541.</p><p></p><p>Min, B. H., Choi, J. H., & Jung, K. Y. (2018). Improvement of capacitive deionization performance via using a Tiron-grafted TiO2nanoparticle layer on porous carbon electrode. Korean Journal of Chemical Engineering, 35(1), 272282.</p><p></p><p>Mishra, S. K., Tripathi, S. N., Choudhary, V., & Gupta, B. D. (2014). SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors and Actuators, B: Chemical, 199, 190200.</p><p></p><p>Mitchell, L., Gonzalez-santiago, B., Mowat, J. P. S., Gunn, M. E., Williamson, P., Acerbi, N., Wright, P. A. (2013). Remarkable Lewis Acid Catalytic Performance of the Scandium Trimesate Metal Organic Framework MIL-100(Sc) for C-C and C=N Bond-forming Reactions. Royal Society of Chemistry, 100, 120.</p><p></p><p>Mitchison, G., & Crick, F. (2017). Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Proceedings of the National Academy of Sciences, 79(11), 36613665.</p><p></p><p>Mohamed, A., Anas, A. K., Abu Bakar, S., Aziz, A. A., Sagisaka, M., Brown, P., & Isa,I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 30133023.</p><p></p><p>Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J. (2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 230, 5469.</p><p></p><p>Mohan, N., Balasubramanian, N., & Basha, C. a. (2007). Electrochemical oxidation of textile wastewater and its reuse. J Hazard Mater, 147(12), 644651.</p><p></p><p>Molina-Miras, A., Snchez-Mirn, A., Garca-Camacho, F., & Molina-Grima, E. (2018). CFD-aided optimization of a laboratory-scale centrifugation for a shear- sensitive insect cell line. Food and Bioproducts Processing, 107, 113120.</p><p></p><p>Moore, B., Asadi, E., & Lewis, G. (2017). Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants. Advances in Materials Science and Engineering, 2017, 1-9.</p><p></p><p>Moosa, G. M., Hussain Khulaef, jabbar, Chaloob Khraibt, A., Raheem Shandi, N., & Al Braich, M. S. (2015). Effect of Magnetic Water on Physical Properties of Different Kind of Water, and Studying Its Ability to Dissolving Kidney Stone. Journal of Natural Sciences Research Www, 5(18), 2225921.</p><p></p><p>Moralln, E. (2016). Design of Activated Carbon / Activated Carbon Carbon Asymmetric Capacitors, frontiers in Materials, 3, 112.</p><p></p><p>Mossad, M., & Zou, L. (2011). Effects of operational conditions on the electrosorption efficiencies of capacitive deionization. Chemeca, 1-11.</p><p></p><p>Nainamalai, M., Palani, M., Soundarajan, B., & Allwin, A. E. (2018). Decolorization of synthetic dye wastewater using packed bed electro-adsorption column. Chemical Engineering and Processing, 130(June), 160168.</p><p></p><p>Nair, R. R., Joshi, R. K., & Geim, A. K. (2015). Water Purification. Bibby Scientific, 521, 518521.</p><p></p><p>Nakayama, Y., & Andelman, D. (2015). Differential capacitance of the electric double layer : The interplay between ion finite size and dielectric decrement, Chem. Phys. 142, 44706, 112.</p><p></p><p>Nambatingar, N., Clement, Y., Merle, A., Mahamat, T. N., & Lanteri, P. (2017). Heavy metal pollution of Chari River water during the crossing of NDjamena (Chad). Toxics, 5(4), 1-12.</p><p></p><p>Nasa. (2015). NASA Technology Roadmaps TA 10: Nanotechnology. National Acronautic and space Administration, 187.</p><p></p><p>Nishiyabu, R., Ushikubo, S., Kamiya, Y., & Kubo, Y. (2014). A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water. Journal of Materials Chemistry A, 2(38), 1584615852.</p><p></p><p>Noked, M., Soffer, A., & Arubach, D. (2011). The electrochemistry of activated carbonaceous materials: Past, present, and future. Journal of Solid State Electrochemistry, 15(78), 15631578.</p><p></p><p>Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V. Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666669.</p><p></p><p>Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197200.</p><p></p><p>Nugrahenny, A. T. U., Kim, J., Kim, S.-K., Peck, D.-H., Yoon, S.-H., & Jung, D.-H. (2014). Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Letters, 15(1), 3844.</p><p></p><p>Nurhafizah. (2017). Synthesis of graphene oxide using electrochemical exfoliation method for electrode materials application.Universiti Pendidikan Suutan Idris, 1- 414.</p><p></p><p>Oda, H., & Nakagawa, Y. (2003). Removal of ionic substances from dilute solution using activated carbon electrodes. Carbon, 41(5), 10371047.</p><p></p><p>Oh, H. J., Lee, J. H., Ahn, H. J., Jeong, Y., Kim, Y. J., & Chi, C. S. (2006). Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 515(1), 220225.</p><p></p><p>Ojha, K., Anjaneyulu, O., & Ganguli, A. K. (2014). SPECIAL SECTION : CARBON TECHNOLOGY Graphene-based hybrid materials : synthetic approaches and properties. Current Science, 107(3), 397418.</p><p></p><p>Olumurewa, K. O., Olofinjana, B., Fasakin, O., & Eleruja, M. A. (2017). Characterization of High Yield Graphene Oxide Synthesized by Simplified Hummers Method, Scientific Reserch Publishing, 6(4), 8598.</p><p></p><p>Oncel, M. S., Muhcu, A., Demirbas, E., & Kobya, M. (2013). A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. Journal of Environmental Chemical Engineering, 1(4), 989995.</p><p></p><p>Ooi, C. H., Cheah, W. K., Sim, Y. L., Pung, S. Y., & Yeoh, F. Y. (2017). Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption. Journal of Environmental Management, 197, 199205.</p><p></p><p>Orescanin, V., Kollar, R., Mikelic, I. L., & Nad, K. (2013). Electroplating wastewater treatment by the combined electrochemical and ozonation methods. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(11), 14501455.</p><p></p><p>Ostafiychuk, B. K., Budzulyak, I. M., Rachiy, B. I., Vashchynsky, V. M., Mandzyuk,V. I., Lisovsky, R. P., & Shyyko, L. O. (2015). Thermochemically activated carbon as an electrode material for supercapacitors. Nanoscale Research Letters, 10(1), 1-65.</p><p></p><p>Pacia, M. Z., Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates : A review Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Raman and infrared spectroscopy of carbohydrates . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317335.</p><p></p><p>Padil, V. V. T., & Cernk, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8, 889898.</p><p></p><p>Padmaja, K., Cherukuri, J., & Reddy, M. A. (2014). Conventional to Cutting Edge Technologies in Drinking Water Purification. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 93759385.</p><p></p><p>Palacio, F., Ramos, J., & Castro, C. (2006). Molecular Crystals and Liquid Crystals Science and Technology . Gordon and Breach Scienc, 346, 3741.</p><p></p><p>Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y., & Sun, Z. (2009). Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes. Desalination, 244(13), 139143.</p><p></p><p>Pan, L., Wang, Z., Yang, Q., & Huang, R. (2018). Efficient Removal of Lead , Copper and Cadmium Ions from Water by a Porous Calcium Alginate / Graphene Oxide Composite Aerogel. nanomaterials Article, 8, 957.</p><p></p><p>Pandikumar, A., Soon How, G. T., See, T. P., Omar, F. S., Jayabal, S., Kamali, K. Z., Huang, N. M. (2014). Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv., 4(108), 6329663323.</p><p></p><p>Pap, S., olevic Knudsen, T., Radonic, J., Maletic, S., Igic, S. M., & Turk Sekulic, M. (2017). Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. Journal of Cleaner Production, 162, 958972.</p><p></p><p>Park, E. J., Hong, S., & Park, D. W. (2010). Preparation of conductive PTFE nanocomposite containing multiwalled carbon nanotube via latex heterocoagulation approach. Colloid Polym Sci, 288(47), 4753.</p><p></p><p>Parmar, M., & Thakur, L. S. (2013). Heavy metal Cu , Ni and Zn : Toxicity , health hazards and their removal techniques by low cost adsorbents : a short overview. International Journal of Plant, Animal and Environmental Sciences, 3(3), 143 157.</p><p></p><p>Parvin, M. (2015). ADSORPTION OF DYES ON ACTIVATED. United Arab Emirates University.</p><p></p><p>Patel, P. S., Bandre, N., Saraf, A., & Ruparelia, J. P. (2013). Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Procedia Engineering, 51, 430435.</p><p></p><p>Pavithraa, S., Rajan, R., Gorai, P., Das, A., Sekhar, B. N. R., Pradeep, T., & Sivaraman,B. (2010). Qualitative observation of reversible phase change in astrochemical ethanethiol ices using infrared spectroscopy. ScienceDirect, 178(5), 166-170.</p><p></p><p>Peiris, T. A. N. (2014). Microwave-assisted processing of solid materials for sustainable energy related electronic and optoelectronic applications. Loughborough University. 1-211.</p><p></p><p>Peng, Q., Liu, L., Luo, Y., Zhang, Y., Tan, W., Liu, F., Qiu, G. (2016). Cadmium Removal from Aqueous Solution by Deionization Supercapacitor with Birnessite Electrode Cadmium Removal from Aqueous Solution by Deionization Supercapacitor with Birnessite Electrode. American Chemical Society, 8 (50), 3440534413.</p><p></p><p>Peng, W., Li, H., Liu, Y., & Song, S. (2016). Comparison of Pb(II) adsorption onto graphene oxide prepared from natural graphites: Diagramming the Pb(II) adsorption sites. Applied Surface Science, 364, 620627.</p><p></p><p>Peng, W., Li, H., Liu, Y., & Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 230, 496504.</p><p></p><p>Peng, Z., Zhang, D., Shi, L., Yan, T., Yuan, S., Li, H., & Gao, R. (2011). Comparative Electroadsorption Study of Mesoporous Carbon Electrodes with Various Pore Structures. Applied Materials and Interfaces, 1706817076.</p><p></p><p>Perkin Elmer Coorporation. (1996). Analytical Methods for Atomic Absorption Spectroscopy. Analytical Methods, 1-310.</p><p></p><p>Perumbilavil, S., Sankar, P., Priya Rose, T., & Philip, R. (2015). White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400-700 nm region. Applied Physics Letters, 107(5), 1-5.</p><p></p><p>Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Reactive adsorption of ammonia on Cu-based MOF/graphene composites. Langmuir, 26(19), 1530215309.</p><p></p><p>Pieiro-Prado, I., Salinas-Torres, D., Ruiz-Rosas, R., Moralln, E., & Cazorla-Amors,D. (2016). Design of Activated Carbon/Activated Carbon Asymmetric Capacitors. Frontiers in Materials, 3, 112.</p><p></p><p>Pirkarami, A., & Olya, M. E. (2017). Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. Journal of Saudi Chemical Society, 21, S179S186.</p><p></p><p>Polymorph, C. (2012). Study of Carbon Dioxide Adsorption on a Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph. Universidad de Este, 1-55.</p><p></p><p>Pongpiachan, S., Thumanu, K., Phatthalung, W. N., Tipmanee, D., Kanchai, P., Feldens, P., & Schwarzer, K. (2013). Using fourier transform infrared (FTIR) to characterize tsunami deposits in near-shore and coastal waters of Thailand. Science of Tsunami Hazards, 32(1), 3957.</p><p></p><p>Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013a). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 13881442.</p><p></p><p>Porada, S., Zhao, R., Van Der Wal, a., Presser, V., & Biesheuvel, P. M. (2013b). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 13881442.</p><p></p><p>Porada, S., Zhao, R., Wal, A. Van Der, Presser, V., & Biesheuvel, P. M. (2013). Progress in Materials Science Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 13881442.</p><p></p><p>Qu, Y., Campbell, P. G., Livermore, L., & Hemmatifar, A. (2018). Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System. Phys. Chem, 122, 1, 240-249.</p><p></p><p>Quan, X., Fu, Z., Yuan, L., Zhong, M., Mi, R., Yang, X., & Wang, C. (2017). Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. RSC Advances, 7(57), 3587535882.</p><p></p><p>Rahman, M. M., & Jeon, I. C. (2007). Electrochemical behavior of SWCNT-TPLF electrode compared to SWCNT-coated GCE and GE electrodes. Croatica Chemica Acta, 80(1), 6774.</p><p></p><p>Ramesha, G. K., Vijaya Kumara, A., Muralidhara, H. B., & Sampath, S. (2011). Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 361(1), 270277.</p><p></p><p>Rana-Madaria, P., Nagarajan, M., Rajagopal, C., & Garg, B. S. (2005). Removal of Chromium from Aqueous Solutions by Treatment with Carbon Aerogel Electrodes Using Response Surface Methodology. Ind. Eng. Chem. Res, 44(17), 65496559.</p><p></p><p>Rangel-Vazquez, N. A., & Leal-Garcia, T. (2010). Spectroscopy Analysis of Chemical Modification of Cellulose Fibers. Journal of the Mexican Chemical Society, 54(4), 192197.</p><p></p><p>Rao, R., Tishler, D., Katoch, J., & Ishigami, M. (2011). Multiphonon Raman scattering in graphene. Physical Review B - Condensed Matter and Materials Physics, 84(11), 1-15.</p><p></p><p>Rashad, A. M. (2017). Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials. Construction and Building Materials, 153, 81 101.</p><p></p><p>Retter, E. A., & Schilp, R. (1994). Solid-bowl centrifuges for wastewater sludge treatment. Filtration and Separation, 31(4), 387-391.</p><p></p><p>Ricordel, C., Darchen, A., & Hadjiev, D. (2010). Electrocoagulation electroflotation as a surface water treatment for industrial uses. Separation and Purification Technology, 74(3), 342347.</p><p></p><p>Roh, J.-S. (2008). Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy. Carbon Letters, 9(2), 127130.</p><p></p><p>Roy, D. C., Biswas, S. K., Saha, A. K., Sikdar, B., Rahman, M., Roy, A. K., & Tang, S.-S. (2018). Biodegradation of Crystal Violet dye by bacteria isolated from textile industry effluents. PeerJ-Life and Environment, 6,(50). 1-15.</p><p></p><p>Ryess, G & Vogt, F. (1948). Hochstlamellarer Kohlenstoff aus Graphitoxyhydroxyd.Monatshefte fur Chemie/Chemical Monthly, 78(3), 222-242.</p><p></p><p>Ruotolo, L. A. M., & Gubulin, J. C. (2009). Optimization of Cr(VI) electroreduction from synthetic industrial wastewater using reticulated vitreous carbon electrodes modified with conducting polymers. Chemical Engineering Journal, 149(13), 334339.</p><p></p><p>Rutherford, M. J., Jacobsen, S. D., Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H., & Saal, A. E. (2013). Degassing of reduced carbon from planetary basalts. Saal PNAS, 110(20), 8010-8013.</p><p></p><p>Ryoo, M., & Seo, G. (2003). Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research, 37, 15271534.</p><p></p><p>Sahu, S. C., Samantara, A. K., Seth, M., Parwaiz, S., Singh, B. P., Rath, P. C., & Jena,B. K. (2013). A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochemistry Communications, 32, 2226.</p><p></p><p>Sai Pavan, A. S., & Ramanan, S. R. (2016). A study on corrosion resistant graphene films on low alloy steel. Applied Nanoscience, 6(8), 11751181.</p><p></p><p>Sathyamoorthi, S., Suryanarayanan, V., & Velayutham, D. (2014). Electrochemical exfoliation and in situ carboxylic functionalization of graphite in non-fluoro ionic liquid for supercapacitor application. Journal of Solid State Electrochemistry, 18(10), 27892796.</p><p></p><p>Schaeffel, F., Artal, P., Optica, L. De, & Murcia, U. De. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by- product minimisation. Journal of Environmental Management. 110, 276-298.</p><p></p><p>Scheibe, A. S., & Souza, S. M. A. G. U. De. (2018). Textile wastewater treatment using low-cost adsorbent aiming the water reuse in dyeing process. Journal of Environmental Chemical Engineering. 6, 2705-2712.</p><p></p><p>Schirmer, R. H., Adler, H., Pickhardt, M., & Mandelkow, E. (2011). Lest we forget you methylene blue. Neurobiology of Aging, 32(12), 2325.e7-2325.e16</p><p></p><p>Schwarzacher, W. (2006). Electrodeposition: A Technology for the Future. The Electrochemical Society Interface, 15(1), 3235.</p><p></p><p>Senoussi, H., & Bouhidel, K. E. (2018). Feasibility and optimization of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters. Journal of Cleaner Production, 205, 721-727</p><p></p><p>Sewvandi, G., & Adikary, S. (2011). Removal of Heavy Metals From Wastewater Using electrocoagulation. Helsinki Metropolia University of Applied Sciences, 4(10), 1-39.</p><p></p><p>Sharma, N., Sharma, V., Jain, Y., Kumari, M., Gupta, R., Sharma, S. K., & Sachdev,K. (2017). Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromolecular Symposia, 376(1), 1-5.</p><p></p><p>Shen, L., Jin, Z., Wang, D., Wang, Y., & Lu, Y. (2015). Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel. Chemosphere, 190, 201210.</p><p></p><p>Sherlala, A. I. A., Raman, A. A., & Bello, M. M. (2017). Adsorption of arsenic from aqueous solution using magnetic graphene oxide. IOP Conference Series. Materials Science and Engineering 210, 1-8.</p><p></p><p>Shi, K., & Zhitomirsky, I. (2015). Influence of chemical structure of dyes on capacitive dye removal from solutions. Electrochimica Acta, 174, 588595.</p><p></p><p>Shi, W., Li, H., Cao, X., Leong, Z. Y., Zhang, J., Chen, T., Yang, H. Y. (2016).Ultrahigh performance of novel capacitive deionization Electrodes based on a three-dimensional graphene architecture with nanopores. Scientific Reports, 6, 1- 9.</p><p></p><p>Silva, L. C. O., Silva, G. G., Ajayan, P. M., & Soares, B. G. (2015). Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis. Journal of Materials Science, 50, 64076419.</p><p></p><p>Singh, K., & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9), 807878.</p><p></p><p>Singh, S., Srivastava, V. C., & Mall, I. D. (2013). Mechanism of dye degradation during electrochemical treatment. Journal of Physical Chemistry, 117(29), 1522915240.</p><p></p><p>Skinner, B., Chen, T., Loth, M. S., & Shklovskii, B. I. (2011). Theory of volumetric capacitance of an electric double layer supercapacitor. Journal of Molecular Liquids, 228, 236-242.</p><p></p><p>Syed Shahabuddin, Norazilawati Muhamad Sarih, Muhammad Afzal Kamboh, Hamid Rashidi Nodeh, and Sharifah Mohamad, A. (2016). Synthesis of Polyaniline- Coated Graphene Oxide @ SrTiO 3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution. MDPI, 8(305), 1-19.</p><p></p><p>Song, G., Yang, Y., Fu, Q., & Pan, C. (2017). Preparation of Cu-Graphene Composite Thin Foils via DC Electro-Deposition and Its Optimal Conditions for Highest Properties. Journal of The Electrochemical Society, 164(9), D652D659.</p><p></p><p>Sorsamki, L., Nappa, M., Sorsamki, L., & Nappa, M. (2015). Design and selection of separation processes. Research Report VTT, 1-68.</p><p></p><p>Spyros, K., & Physics, C. (2016). Statistical and Mechanical properties of graphene using Monte Carlo simulations. University of Patras.</p><p></p><p>Stanjek, H., & Husler, W. (2004). Introduction To Powder/ Polycrystalline Diffraction. Hyperfine Interactions, 154, 107119.</p><p></p><p>Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 15581565.</p><p></p><p>Steurer, P., Wissert, R., Thomann, R., & Mlhaupt, R. (2009). Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromolecular Rapid Communications, 30(45), 316327.</p><p></p><p>Subramani, A., & Jacangelo, J. G. (2015). Emerging desalination technologies for water treatment. Water Research. 75,164-187</p><p></p><p>Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207210.</p><p></p><p>Suresh, S., Karthikeyan, S., & Jayamoorthy, K. (2016). Advanced Materials and Devices FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. Journal of Science: Advanced Materials and Devices, 1(3), 343-350.</p><p></p><p>Suriani, A. B., Fatiatun, Mohamed, A., Hashim, N., Rosmi, M. S., Abdul Khalil, H. P.S. (2018). Reduced graphene oxide/platinum hybrid counter electrode assisted by custom-made triple-tail surfactant and zinc oxide/titanium dioxide bilayer nanocomposite photoanode for enhancement of DSSCs photovoltaic performance. Optik, 161, 7083.</p><p></p><p>Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Mamat, M. H., Malek, M. F., Ahmad,M. K., & Huang, N. M. (2017). Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells. Optik, 139, 291298.</p><p></p><p>Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide / natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials and Design, 99, 174-181.</p><p></p><p>Suriani, A. B., M.D. Nurhafizah, A. Mohamed, I. Zainol and A.K. Masrom (2015). A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Materials Letters,161, 665-668.</p><p></p><p>Suriani, A. B., & Zaid, K. (2017). The structural properties of graphene oxide and reduced. Sainmatika 14(2), 5964.</p><p></p><p>Suss, M. E., Baumann, T. F., Bourcier, W. L., Spadaccini, C. M., Rose, K. a., Santiago,J. G., & Stadermann, M. (2012). Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 5(11), 1-9.</p><p></p><p>Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it. Energy Environ. Sci., 8(8), 22962319.</p><p></p><p>Syama, S., & Mohanan, P. V. (2019). Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. Nano-Micro Letters, 11(6), 1-31.</p><p></p><p>Syed Shahabuddin, Norazilawati Muhamad Sarih, Muhammad Afzal Kamboh, Hamid</p><p></p><p>Rashidi Nodeh and Sharifah Mohamad . (2016). Synthesis of Polyaniline-Coated Graphene Oxide @ SrTiO 3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution. MDPI, 8(305), 1-19.</p><p></p><p>Szpykowicz, F. Zilio-Grandi, S. N. Kaul and S. Rigoni-Sten. (1998). Electrochemical Treatment of Copper Cyanide Wastewaters using Stainless Steel Electrodes. Water Science and Technology, 38(6), 261-268.</p><p></p><p>Takagi, Y., Yamazaki, S., Nakatsuji, K., & Hirayama, H. (2017). Size, shape, and number density of deposits in the graphene solution liquid droplet method. Materials Today Communications, 13, 6571.</p><p></p><p>Tang, B., Guoxin, H., & Gao, H. (2010). Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews, 45(5), 369407.</p><p></p><p>Tavolaro, A., Fiallos, D. C., Gmez, C. V., Usca, G. T., & Cid, D. (2015). Removal of acridine orange from water by graphene oxide Removal of Acridine Orange from Water by Graphene Oxide. AIP Proceedings, 38(1), 1-45.</p><p></p><p>Tay, M., Myint, Z., Al-harthi, S. H., & Dutta, J. (2014). Brackish water desalination by capacitive deionization using zinc oxide micro / nanostructures grafted on activated carbon cloth electrodes. DES, 344, 236242.</p><p></p><p>Taylor, P., Huang, G., Chen, T., Hsu, S., & Huang, Y. (2013). Desalination and Water Treatment Capacitive deionization ( CDI ) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 52(4-6), 759-765.</p><p></p><p>Thamilselvan, A., Govindan, K., Nesaraj, A. S., Maheswari, S. U., Oren, Y., Noel, M., & James, E. J. (2018). Investigation on the effect of organic dye molecules on capacitive deionization of sodium sulfate salt solution using activated carbon cloth electrodes. Electrochimica Acta, 279, 2433.</p><p></p><p>Thamilselvan, A., Nesaraj, A. S., & Noel, M. (2016). Review on carbon-based electrode materials for application in capacitive deionization process. International Journal of Environmental Science and Technology, 13(12), 29612976.</p><p></p><p>Thamilselvan, A., Nesaraj, A. S., Noel, M., & James, E. J. (2015). Effect of Chemically Treated / Untreated Carbon Cloth: Potential Use as Electrode Materials in the Capacitive Deionization Process of Desalination of Aqueous Salt Solution. Journal of Electrochemical Science and Technology, 6(4), 139145.</p><p></p><p>Thao, L. T. S., Dang, T. T. T., Khanitchaidecha, W., Channei, D., & Nakaruk, A. (2017). Photocatalytic degradation of organic dye under UV-A irradiation using TiO2-vetiver multifunctional nano particles. Materials, 10(2), 112.</p><p></p><p>Thomas, B. N., George, S. C., & Shell, C. O. (2015). Production of Activated Carbon from Natural Sources. iMedPub Journals, 1, 15.</p><p></p><p>Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F.,Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(910), 10511069.</p><p></p><p>Tonelli, D., Scavetta, E., & Gualandi, I. (2019). Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors (Switzerland), 19(5).</p><p></p><p>Torres-Sanchez, A. L., Lopez-Cervera, S. J., de la Rosa, C., Maldonado-Vega, M., Maldonado-Santoyo, M., & Peralta-Hernandez, J. M. (2014). Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater. International Journal of Electrochemical Science, 9(11), 61036112.</p><p></p><p>Tran, H. N., Huang, F., Lee, C., & Chao, H. (2017). Activated carbon derived from spherical hydrochar functionalized with triethylenetetramine : synthesis , characterizations , and adsorption application. Green Process Synth, 6(6), 1-7.</p><p></p><p>Tsuda, T., Uemura, Y., Chen, C.-Y., Hashimoto, Y., Kokubo, I., Sutani, K., Kuwabata,S. (2017). Graphene-Coated Activated Carbon Fiber Cloth Positive Electrodes for Aluminum Rechargeable Batteries with a Chloroaluminate Room-Temperature Ionic Liquid. Journal of The Electrochemical Society, 164(12), A2468A2473.</p><p></p><p>Tuhania, P., Singh, P. K., Bhattacharya, B., & Dhapola, P. S. (2018). PVDF-HFP and 1-ethyl-3-methylimidazolium thiocyanate doped polymer electrolyte for efficient supercapacitors. Journals Permissions nav. 30(8), 1-7.</p><p></p><p>Un, U. T., & Ocal, S. E. (2015). Removal of Heavy Metals (Cd, Cu, Ni) by Electrocoagulation. International Journal of Environmental Science and Development, 6(6), 425429.</p><p></p><p>Union, I., Pure, O. F., Chemistry, A., Division, H. H., Section, C. C., Toxicology, C.O. N., & Duffus, J. H. (2002). HEAVY METALS A MEANINGLESSTERM . IUPAC Technical Report, 74(5), 793807.</p><p></p><p>Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation / fl occulation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154168.</p><p></p><p>Verma, R., & Dwivedi, P. (2013). Heavy metal water pollution- A case study. Recent Research in Science and Technology, 5(5), 9899.</p><p></p><p>Vignesh, S., Udayabhaskar, R., Arjunan, V., Gokul, M. S., Ashok, M., Kalkura, S. N., & James, R. A. (2014). Antimicrobial activity of biological green synthesized silver nanoparticles, 23(6), 1-6.</p><p></p><p>Voznyakovskii, A. A. (2014). IR Spectra of Detonation Nanodiamonds Modified During the Synthesis. Journal of Superhard Materials, 36(5), 344357.</p><p></p><p>Wall, M. (2012). Raman Spectroscopy Optimizes Graphene Characterization.Advanced Materials & Processes, 35-38.</p><p></p><p>Wang, C., & Yao, J. (2010). Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. International Journal of Photoenergy, 643182, 1-6.</p><p></p><p>Wang, G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., & Qiu, J. (2012). Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta, 69(1), 6570.</p><p></p><p>Wang, J., & Chen, C. (2015). The current status of heavy metal pollution and treatment technology development in China. Environmental Technology Reviews, 4(1), 39 53.</p><p></p><p>Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environmental Science & Technology, 48, 48174825.</p><p></p><p>Wang, P., Xu, Z., Wu, Z., Chen, H., Yin, W., Zhang, S., Lin, S. (2015). efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 16, 310 319.</p><p></p><p>Wang, Q., Gao, D., Gao, C., Wei, Q., Cai, Y., Xu, J., Xu, Y. (2012). Removal of a cationic dye by adsorption/photodegradation using electrospun PAN/O-MMT composite nanofibrous membranes coated with TiO2. International Journal of Photoenergy, 680419, 8.</p><p></p><p>Wang, S., Sun, H., Ang, H. M., & Tad, M. O. (2013). Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal, 226, 336347.</p><p></p><p>Wang, Y., Wei, H., & Li, Z. (2018). Effect of magnetic field on the physical properties of water. Results in Physics, 8, 262267.</p><p></p><p>Weng, M., Zhou, Z., & Zhang, Q. (2013). Electrochemical degradation of typical dyeing wastewater in aqueous solution: Performance and mechanism. International Journal of Electrochemical Science, 8(1), 290296.</p><p></p><p>Wimalasiri, Y., & Zou, L. (2013). Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon, 59, 464471.</p><p></p><p>Wong, C. P. P., Lai, C. W., Lee, K. M., & Abd Hamid, S. B. (2015). Advanced chemical reduction of reduced graphene oxide and its photocatalytic activity in degrading reactive black 5. Materials, 8(10), 71187128.</p><p></p><p>World health organisation. (2017). Guidelines for drinking-water quality. World Health Organization, 4(1), 631-639.</p><p></p><p>Wu, L., Qu, P., Zhou, R., Wang, B., & Liao, S. (2015). Green synthesis of reduced graphene oxide and its reinforcing effect on natural rubber composites. High Performance Polymers, 27(4), 486496.</p><p></p><p>Wu, W., Yang, Y., Zhou, H., Ye, T., Huang, Z., Liu, R., & Kuang, Y. (2012). Highly Efficient Removal of Cu(II) from Aqueous Solution by Using Graphene Oxide. Water, Air, & Soil Pollution, 224(1), 1372.</p><p></p><p>Wu, W., Zhang, C., & Hou, S. (2017). Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. Journal of Materials Science, 52(18), 10649 10660.</p><p></p><p>Xie, Y., Ren, L., Zhu, X., Gou, X., & Chen, S. (2018). Physical and chemical treatments for removal of perchlorate from waterA review. Process Safety and Environmental Protection, 116, 180-198.</p><p></p><p>Xiong, D., Li, X., Shan, H., Zhao, Y., Dong, L., Xu, H., & Zhang, X. (2015). Electrochimica Acta Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries. Electrochimica Acta, 174, 762769.</p><p></p><p>Xiu-lian, R. E. N., Qi-feng, W. E. I., Zhe, L. I. U., & Jun, L. I. U. (2012).Electrodeposition conditions of metallic nickel in electrolytic membrane reactor.Transactions of Nonferrous Metals Society of China, 22(2), 467475.</p><p></p><p>Xu, X., Pan, L., Liu, Y., Lu, T., Sun, Z., & Chua, D. H. C. (2015). Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports, 5, 8458.</p><p></p><p>Yan, H., Tao, X., Yang, Z., Li, K., Yang, H., Li, A., & Cheng, R. (2014). Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Journal of Hazardous Materials, 268, 191198.</p><p></p><p>Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 3-39.</p><p></p><p>Yang, S. T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., & Cao, A. (2010). Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science, 351(1), 122127.</p><p></p><p>Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., & Wang, H. (2011). Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 359(1), 2429.</p><p></p><p>Yang, Y., Lu, F., Zhou, Z., Song, W., Chen, Q., & Ji, X. (2013). Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties. Electrochimica Acta, 113, 916.</p><p></p><p>Yang, Y., Wang, Z., Zhou, R., Guo, H., & Li, X. (2016). Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Materials Letters, 184, 6568.</p><p></p><p>Yang, Z. Y., Jin, L. J., Lu, G. Q., Xiao, Q. Q., Zhang, Y. X., Jing, L., & Sun, K. N.</p><p>(2014). Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Advanced Functional Materials, 24(25), 39173925.</p><p></p><p>Yang, B. H., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(424), 1-39.</p><p></p><p>Yao, Q., Shi, Z., Liu, Q., Gu, Z., & Ning, R. (2018). The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption. Environmental Science and Pollution Research, 25(4), 33133319.</p><p></p><p>Yin, H., Qiu, P., Qian, Y., Kong, Z., Zheng, X., Tang, Z., & Guo, H. (2019). Textile Wastewater Treatment for Water Reuse: A Case Study. Processes, 7(1), 34.</p><p></p><p>Yu, B., Xu, J., Liu, J. H., Yang, S. T., Luo, J., Zhou, Q., & Liu, Y. (2013). Adsorption behavior of copper ions on graphene oxide-chitosan aerogel. Journal of Environmental Chemical Engineering, 1(4), 10441050.</p><p></p><p>Zaid, K., & Suriani, A. B. (2017). A review on electrode materials used in capacitive deionization processes for water treatment applications. Sci.Int, 29(1), 285289.</p><p></p><p>Zare-Dorabei, R., Ferdowsi, S. M., Barzin, A., & Tadjarodi, A. (2016). Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2-dipyridylamine: Central composite design optimization. Ultrasonics Sonochemistry, 32, 265276.</p><p></p><p>Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696-14704.</p><p></p><p>Zhan, Y., Pan, L., Nie, C., Li, H., & Sun, Z. (2011). Carbon nanotube-chitosan composite electrodes for electrochemical removal of Cu(II) ions. Journal of Alloys and Compounds, 509(18), 56675671.</p><p></p><p>Zhang, C., Su, J., Zhu, H., Xiong, J., Liu, X., Li, D., & Li, Y. (2017). The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Advances, 7(54), 3418234191.</p><p></p><p>Zhang, Q., Qin, Z., Luo, Q., Wu, Z., Liu, L., Shen, B., & Hu, W. (2017). Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co-deposition technique. Scientific Reports, 7(1), 1 12.</p><p></p><p>Zhang, J., & Fulfillment, I. P. (2017). experimentatal investigation of combined heat and power capacitive deionization system. Georgia Institute of Technology.</p><p></p><p>Zhao, C., Zhang, L., Ge, R., Zhang, A., Zhang, C., & Chen, X. (2019). Chemosphere</p><p></p><p>Zhaoyang Liu, (2017). Graphene based Electrode Materials for Printable , High Power and Photo - Switchable Micro - Supercapacitors. Johannes Gutenberg University of Mainz. 1-155. Treatment of low-level Cu ( II ) wastewater and regeneration through a novel capacitive deionization-electrodeionization ( CDI-EDI ) technology. Chemosphere, 217, 763772.</p><p></p><p>Zhao, R., Soestbergen, M. Van, Rijnaarts, H. H. M., Wal, A. Van Der, Bazant, M. Z., & Biesheuvel, P. M. (2012). Time-dependent ion selectivity in capacitive charging of porous electrodes. J Colloid Interface Sci, 384, 3844.</p><p></p><p>Zhao, X., Jia, B., Sun, Q., Jiao, G., Liu, L., & She, D. (2018). Removal of Cr 6 ions from water by electrosorption on modified activated carbon fibre felt. R. Soc. open sci. 5(9), 1-13.</p><p></p><p>Zhao, Y., Liu, D., Yang, X., Tang, H., Xing, B., Cui, F., & Shan, S. (2018). Theoretical insight into the adsorption of aromatic compounds on graphene oxide. Environmental Science: Nano, 5(10), 23572367.</p><p></p><p>Zhao, Z., Wang, X., Qiu, J., Lin, J., & Xu, D. (2014). Three-Dimensional Graphene- Based Hydrogel / Aerogel Materials. Rev. Adv. Mater. Sci, 36(2), 137151.</p><p></p><p>Zhen, Z., & Zhu, H. (2018). Structure and Properties of Graphene. Graphene Elsevier Inc.1-12.</p><p></p><p>Zheng-Hong Huang, Z. Y. K. I. (2016). Carbon Electrodes for Capacitive Deionization.Journal of Materials Chemistry A, 7(2), 448-469.</p><p></p><p>Zheng, X., Zhang, P., Tao, S., Wang, L., Zhang, S., Pang, N., & Pan, M. (2017). Enhancement of magnetic and microstructural properties in Fe-Cr-Co-Mo-V-Zr- Y permanent magnetic alloy. Journal of Magnetism and Magnetic Materials. 484, 88-94.</p><p></p><p>Zhou, G., Li, W., Wang, Z., Wang, X., Li, S., & Zhang, D. (2015). Electrosorption for organic pollutants removal and desalination by graphite and activated carbon fiber composite electrodes. International Journal of Environmental Science and Technology, 12(12), 37353744.</p><p></p><p>Zhu, J., Sadu, R., Wei, S., Chen, D. H., Haldolaarachchige, N., Luo, Z., & Guo, Z. (2012). toward Arsenic Removal. ECS Journal of Solid State Science and Technology,1(1), M5M9.</p><p></p><p>Zieli, M., Miekos, E., Szczukocki, D., Dalkowski, R., Leniart, A., Krawczyk, B., & Juszczak, R. (2015). Effects of Constant Magnetic Field on Electrodep osition of Co- W-Cu Allo y. Int. J. Electrochem. Sci. 10, 41464154.</p><p></p><p>Zielinski, M. (2013). Influence of Constant Magnetic Field on the Electrodeposition of Cobalt and Cobalt Alloys. Int. J. Electrochem. Sci, 8, 1219212204.</p><p></p><p>Zoolfakar, A. S. (2013). Tuning and Engineering of ZnO and Cu x O for Sensor , Solar Cells and Memory Devices Tuning and Engineering of ZnO and Cu x O for Sensor, Solar Cells and Memory Devices. RMIT University.</p> |