Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent
<p>Conversion of agricultural waste products into biochar is regarded as one of several recycling and disposal options. The study aimed to use biochar from jackfruit waste as an agent for heavy metals removal. Jackfruit waste was selected in this study due to its abundance in Malaysia....
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2020
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=8570 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:8570 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
|
spellingShingle |
Abid, Mohammed Kadhem Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent |
description |
<p>Conversion of agricultural waste products into biochar is regarded as one of several recycling and disposal options. The study aimed to use biochar from jackfruit waste as an agent for heavy metals removal. Jackfruit waste was selected in this study due to its abundance in Malaysia. The jackfruit waste was thermally activated by phosphoric acid at 500 oC. Analytical techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), surface area measurement (BET method), Raman spectroscopy, energy dispersive X-ray (EDX), and fourier transform infrared (FTIR) spectroscopy were used to characterize the synthesized biochars. The physicochemical characteristics of the synthesized biochars were examined using different conditions to determine their usefulness for heavy metals adsorption. The surface morphology of biochars revealed the distributions of numerous cavities, cracks and small pits over the surface with pore size ranged from 3.25 3.78 nm. The biochars were mainly macroporous with BET surface area of 3.64 m2/g (biochar peel) and 4.25 m2/g (biochar seed). The produced biochars displayed low cation exchange capacity (CEC) of 5.640.47 meq /g and 6.36 0.05 meq /g with a bulk density of 0.7 0.1 kg/cm3 and 0.60.1 kg/cm3. The best conditions for the removal of heavy metals were 0.1g biochar loading, 100 mg/L metal ions concentration and at pH 7. The adsorption process was spontaneously endothermal for the peel while exothermal for the seed. The experimental data fit well with the Langmuir isotherm model and the pseudo-second order kinetics. The maximum adsorption capacity of metal ions was in the sequence of Fe =4.40 mg/g < Pb=10.1 mg/g < Cu= 17.5 mg/g < Cd =20.0 mg/g < Mn =76.9 mg/g for peel and Fe =1.80 mg/g < Cd =52.6 mg/g < Mn =69.9 mg/g < Pb=76.9 mg/g < Cu= 116.7 mg/g for seed at pH 7. In conclusion, biochars synthesized from jackfruit wastes show the Langmuir isotherm and the pseudo-second order are the best-fitting modelsfor heavy metals removal especially Cu (II) ions in wastewater. In implication, biochar from jackfruit waste may serve as an environmentally friendly heavy metals removal for the wastewater industry.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Abid, Mohammed Kadhem |
author_facet |
Abid, Mohammed Kadhem |
author_sort |
Abid, Mohammed Kadhem |
title |
Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent |
title_short |
Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent |
title_full |
Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent |
title_fullStr |
Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent |
title_full_unstemmed |
Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent |
title_sort |
potential use of biochar from jackfruit waste (artocarpus heterophyllus lam) as heavy metal removal agent |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2020 |
url |
https://ir.upsi.edu.my/detailsg.php?det=8570 |
_version_ |
1776104539136458752 |
spelling |
oai:ir.upsi.edu.my:85702023-01-04 Potential use of biochar from jackfruit waste (Artocarpus heterophyllus lam) as heavy metal removal agent 2020 Abid, Mohammed Kadhem <p>Conversion of agricultural waste products into biochar is regarded as one of several recycling and disposal options. The study aimed to use biochar from jackfruit waste as an agent for heavy metals removal. Jackfruit waste was selected in this study due to its abundance in Malaysia. The jackfruit waste was thermally activated by phosphoric acid at 500 oC. Analytical techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), surface area measurement (BET method), Raman spectroscopy, energy dispersive X-ray (EDX), and fourier transform infrared (FTIR) spectroscopy were used to characterize the synthesized biochars. The physicochemical characteristics of the synthesized biochars were examined using different conditions to determine their usefulness for heavy metals adsorption. The surface morphology of biochars revealed the distributions of numerous cavities, cracks and small pits over the surface with pore size ranged from 3.25 3.78 nm. The biochars were mainly macroporous with BET surface area of 3.64 m2/g (biochar peel) and 4.25 m2/g (biochar seed). The produced biochars displayed low cation exchange capacity (CEC) of 5.640.47 meq /g and 6.36 0.05 meq /g with a bulk density of 0.7 0.1 kg/cm3 and 0.60.1 kg/cm3. The best conditions for the removal of heavy metals were 0.1g biochar loading, 100 mg/L metal ions concentration and at pH 7. The adsorption process was spontaneously endothermal for the peel while exothermal for the seed. The experimental data fit well with the Langmuir isotherm model and the pseudo-second order kinetics. The maximum adsorption capacity of metal ions was in the sequence of Fe =4.40 mg/g < Pb=10.1 mg/g < Cu= 17.5 mg/g < Cd =20.0 mg/g < Mn =76.9 mg/g for peel and Fe =1.80 mg/g < Cd =52.6 mg/g < Mn =69.9 mg/g < Pb=76.9 mg/g < Cu= 116.7 mg/g for seed at pH 7. In conclusion, biochars synthesized from jackfruit wastes show the Langmuir isotherm and the pseudo-second order are the best-fitting modelsfor heavy metals removal especially Cu (II) ions in wastewater. In implication, biochar from jackfruit waste may serve as an environmentally friendly heavy metals removal for the wastewater industry.</p> 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=8570 https://ir.upsi.edu.my/detailsg.php?det=8570 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>A.Mohammad-Khah & R. Ansari, (2009).Activated Charcoal: Preparation, Characterization and Applications: A Review Article. International Journal of Chem Tech Research ,1(4) 859-864.</p><p>Abbaszadeh, S., Wan Alwi, S. R., Webb, C., Ghasemi, N., & Muhamad, I. I. (2016). Treatment of Lead-Contaminated Water Using Activated Carbon Adsorbent from Locally Available Papaya Peel Biowaste. Journal of Cleaner Production, 118, 210222.</p><p>Abdelouahab-Reddam, Z., Wahby, A., Mail, R. E., Silvestre-Albero, J., Rodrguez-Reinoso, F., & Seplveda-Escribano, A. (2014). Activated Carbons Impregnated with Na2S And H2SO4: Texture, Surface Chemistry and Application to Mercury Removal from Aqueous Solutions. Adsorption Science & Technology, 32(2-3), 101-115.</p><p>Abdul, G., Zhu, X., & Chen, B. (2017). Structural Characteristics of Biochar-Graphene Nanosheet Composites and Their Adsorption Performance for Phthalic Acid Esters. Chemical Engineering Journal, 319, 9-20.</p><p>Acharya, J., Sahu, J. N., Mohanty, C. R., & Meikap, B. C. (2009). Removal of Lead (II) From Wastewater by Activated Carbon Developed from Tamarind Wood by Zinc Chloride Activation. Chemical Engineering Journal, 149(1-3), 249-262.</p><p>Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., & Ok, Y. S. (2014). Biochar as A Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere, 99, 19-33.</p><p>Ahmedna, M., Johns, M. M., Clarke, S. J., Marshall, W. E., & Rao, R. M. (1997). Potential of Agricultural by -Product-Based Activated Carbons for Use in Raw Sugar Decolourisation, Journal of the Science of Food and Agriculture, 75(1), 117-124.</p><p>Akhtar, A., & Sarmah, A. K. (2018). Novel Biochar-Concrete Composites: Manufacturing, Characterization and Evaluation of The Mechanical Properties. Science of the total environment, 616, 408-416.</p><p>Ali, I., & Aboul-Enein, H. Y. (2006). Instrumental methods in metal ion speciation. CRC Press.</p><p>Ali, I., & Jain, C. K. (2005). Wastewater Treatment and Recycling Technologies. Water Encyclopedia, 1, 808-814.</p><p>Ali,I.,Aboul-Enein,H.Y., Gupta, V. K., & Chromatography, N. (2009). Pharmaceutical and Environmental Analyses. John Wiley, Hoboken, NJ.</p><p>Alluri, H. K., Ronda, S. R., Settalluri, V. S., Bondili, J. S., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An Eco-Friendly Alternative for Heavy Metal Removal. African journal of Biotechnology, 6(25) 2924-2931.</p><p>Anisuzzaman, S. M., Joseph, C. G., Daud, W. M. A. B. W., Krishnaiah, D., & Yee, H. S. (2015). Preparation and Characterization of Activated Carbon from Typha Orientalis Leaves. International Journal of Industrial Chemistry, 6(1), 9-21.</p><p>Ansari, R., & Fahim, N. K. (2007). Application of Polypyrrole Coated on Wood Sawdust for Removal of Cr (VI) Ion from Aqueous Solutions. Reactive and Functional Polymers, 67(4), 367-374.</p><p>Arn, D., Antelo, J., Fiol, S., & Macas, F. (2016). Influence of Feedstock on The Copper Removal Capacity of Waste-Derived Biochars. Bioresource technology, 212, 199-206.</p><p>Arivoli, S., & Henkuzhali, M. (2008). Kinetic, Mechanistic, Thermodynamic and Equilibrium Studies on The Adsorption of Rhodamine B by Acid Activated Low Cost Carbon. Journal of Chemistry, 5(2), 187-200.</p><p>Arshadi, M., Amiri, M. J., & Mousavi, S. (2014). Kinetic, Equilibrium and Thermodynamic Investigations of Ni (II), Cd (II), Cu (II) And Co (II) Adsorption on Barley Straw Ash. Water Resources and Industry, 6, 1-17.</p><p>Ayangbenro, A. S., & Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International journal of environmental research and public health, 14(1),46- 94.</p><p>Azouaou, N., Sadaoui, Z., Djaafri, A., & Mokaddem, H. (2010). Adsorption of Cadmium from Aqueous Solution onto Untreated Coffee Grounds: Equilibrium, Kinetics and Thermodynamics. Journal of hazardous materials, 184(1-3), 126-134.</p><p>Babel, S., & Kurniawan, T. A. (2003). Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. Journal of hazardous materials, 97(1-3), 219-243.</p><p>Barakat, M. A. (2011). New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian journal of chemistry, 4(4), 361-377.</p><p>Barcel, D. (Ed.). (2005). Emerging Organic Pollutants in Waste Waters and Sludge. Springer Science & Business Media,106(5),1-5.</p><p>Barros Jnior, L. M., Macedo, G. R., Duarte, M. M. L., Silva, E. P., & Lobato, A. K. C. L. (2003). Biosorption of Cadmium Using the Fungus Aspergillus Niger. Brazilian Journal of Chemical Engineering, 20(3), 229-239.</p><p>Barroso-Bogeat, A., Alexandre-Franco, M., Fernndez-Gonzlez, C., Macas-Garca, A., & Gomez-Serrano, V. (2014). Electrical Conductivity of Activated CarbonMetal Oxide Nanocomposites Under Compression: A Comparison Study. Physical Chemistry Chemical Physics, 16(45), 25161-25175.</p><p>Basu, A., Mustafiz, S., Islam, M.R., Bjorndalen, N., Rahaman, M.S., Chaalal, O. (2006), A Comprehensive Approach for Modeling Sorption of Lead and Cobalt Ions through Fish Scales as an Adsorbent, Chemical Engineering Communications ,193, 580605.</p><p>Bernard, E., Jimoh, A., & Odigure, J. O. (2013). Heavy Metals Removal from Industrial Wastewater by Activated Carbon Prepared from Coconut Shell. Research Journal of Chemical Sciences, 3(8), 39.</p><p>Bouchelkia, N., Mouni, L., Belkhiri, L., Bouzaza, A., Bollinger, J. C., Madani, K., & Dahmoune, F. (2016). Removal of Lead (II) From Water Using Activated Carbon Developed from Jujube Stones, A Low-Cost Sorbent. Separation Science and Technology, 51(10), 1645-1653.</p><p>Brewer, Catherine Elizabeth. "Biochar characterization and engineering." (2012).</p><p>Brown, P. A., Brown, J. M., & Allen, S. J. (2001). The Application of Kudzu as A Medium for The Adsorption of Heavy Metals from Dilute Aqueous Wastestreams. Bioresource technology, 78(2), 195-201.</p><p>Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar. Bioresource technology, 107, 419-428.</p><p>Carbon, A., Mesopore, A., Macropore, A., Pore, A., Number, I., Area, S., Level, A. (2010). Activated Carbon | Properties of GAC.</p><p>Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and Utilization of Biochar: A Review. Journal of Industrial and Engineering Chemistry, 40, 1-15.</p><p>Chakravarty, P., Sarma, N. S., & Sarma, H. P. (2010). Removal of Lead (II) From Aqueous Solution Using Heartwood of Areca Catechu Powder. Desalination, 256(1-3), 16-21.</p><p>Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., & Ren, L. (2014). Influence of Pyrolysis Temperature on Characteristics and Heavy Metal Adsorptive Performance of Biochar Derived from Municipal Sewage Sludge. Bioresource technology, 164, 47-54.</p><p>Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of Copper and Zinc by Biochars Produced from Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Bioresource technology, 102(19), 8877-8884.</p><p>Cheraghi, E., Ameri, E., & Moheb, A. (2015). Adsorption of Cadmium Ions from Aqueous Solutions Using Sesame as A Low-Cost Biosorbent: Kinetics and Equilibrium Studies. International journal of environmental science and technology, 12(8), 2579-2592.</p><p>Cruz, C. C., Da Costa, A. C. A., Henriques, C. A., & Luna, A. S. (2004). Kinetic Modeling and Equilibrium Studies During Cadmium Biosorption by Dead Sargassum Sp. Biomass. Bioresource technology, 91(3), 249-257.</p><p>Cui, L., Chen, T., Yin, C., Yan, J., Ippolito, J. A., & Hussain, Q. (2019). Mechanism of adsorption of cadmium and lead ions by iron-activated biochar. BioResources, 14(1), 842857.</p><p>Daifullah, A. A. M., Girgis, B. S., & Gad, H. M. H. (2004). A Study of The Factors Affecting the Removal of Humic Acid by Activated Carbon Prepared from Biomass Material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235(1-3), 1-10.</p><p>Damia, B., (2005): Ed. Emerging Organic Pollutants in Waste Waters and Sludge; Springer: New York.</p><p>De Souza, J. V. T. M., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2012). Removal of Pb (II) from Aqueous Solution With Orange Sub-Products Chemically Modified As Biosorbent. BioResources, 7(2), 23002318.</p><p>DeForest, D. K., Brix, K. V., & Adams, W. J. (2007). Assessing Metal Bioaccumulation in Aquatic Environments: The Inverse Relationship Between Bioaccumulation Factors, Trophic Transfer Factors and Exposure Concentration. Aquatic toxicology, 84(2), 236-246.</p><p>Dietert, R. R., & Piepenbrink, M. S. (2006). Lead and Immune Function. Critical reviews in toxicology, 36(4), 359-385.</p><p>Dimple Lakherwal. (2014). Adsorption of heavy metals: a review. International journal of environmental research and development, 4(1), 41-48.</p><p>Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., ... & Cai, X. (2016). Competitive Removal of Cd (II) and Pb (II) by Biochars Produced from Water Hyacinths: Performance and Mechanism. Rsc Advances, 6(7), 5223-5232.</p><p>Dixit, R., Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., & Paul, D. (2015). Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, 7(2), 2189-2212.</p><p>Du.us, J. H. (2002): Heavy Metals A Meaningless Term (IUPAC Technical Report). Journal of Pure Applied and Chemistry, 74, 793-472.</p><p>El Hassouni, H., Abdellaoui, D., El Hani, S., & Bengueddour, R. (2014). Biosorption of Cadmium (II) and Copper (II) from Aqueous Solution Using Red Alga (Osmundea Pinnatifida) Biomass. J. Mater. Environ. Sci, 5(4), 967-974.</p><p>El-Shafey, E. I. (2005). Behaviour of reductionsorption of chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water, air, and soil pollution, 163(1-4), 81-102.</p><p>El-Wakil, A. M., & Awad, F. S. (2014). Removal of Lead from Aqueous Solution on Activated Carbon and Modified Activated Carbon Prepared from Dried Water Hyacinth Plant. J Anal Bioanal Tech, 5(2), 1-14.</p><p>Fadaei, A., & Sadeghi, M. (2014). Evaluation and Assessment of Drinking Water Quality in Shahrekord, Iran. Resources and Environment, 4(3 ) 168-172.</p><p>Fahmi, A. H., Samsuri, A. W., Jol, H., & Singh, D. (2018). Bioavailability and Leaching of Cd and Pb From Contaminated Soil Amended with Different Sizes of Biochar. Royal Society open science, 5(11), -14.</p><p>Fahmi, A. H., Samsuri, A. W., Jol, H., & Singh, D. (2018). Physical Modification of Biochar to Expose the Inner Pores and Their Functional Groups to Enhance Lead Adsorption. RSC advances, 8(67), 38270-38280. Farghali, A. A., Bahgat, M., Allah, A. E., & Khedr, M. H. (2013). Adsorption of Pb (II) Ions from Aqueous Solutions Using Copper Oxide Nanostructures. Beni-Suef University. Journal of Basic and Applied Sciences, 2(2), 61-71. Filipe, H., Rodrigues, A. M., & Godina, R. (2018). Evaluation of the Physical , Chemical and Thermal Properties of Portuguese Maritime Pine Biomass. Sustainability, 10(2877), 115. Foo, K. Y., & Hameed, B. H. (2012). Potential of Jackfruit Peel as Precursor for Activated Carbon Prepared by Microwave Induced Naoh Activation. Bioresource technology, 112, 143-150.</p><p>Fu, F., Wang, Q., (2011). Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 92 (3), 407418.</p><p>Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Transactions of the ASABE, 51(6), 2061-2069. Gerlach, H., & Schmidt, H. P. (2012). Biochar in Poultry Farming. Ithaka Journal, 2012, 262-264. Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000). Black Carbon in Density Fractions of Anthropogenic Soils of The Brazilian Amazon Region. Organic Geochemistry, 31(7-8), 669-678.</p><p>Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The'Terra Preta'phenomenon: A Model for Sustainable Agriculture in The Humid Tropics. Naturwissenschaften, 88(1), 37-41.</p><p>Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating Physical and Chemical Properties of Highly Weathered Soils in The Tropics with CharcoalA Review. Biology and fertility of soils, 35(4), 219-230.</p><p>Gomathy, M., & Sabarinathan, K. G. (2010). Microbial Mechanisms of Heavy Metal Tolerance-A Review. Agricultural Reviews, 31(2),14-5.</p><p>Goswami, A., & Purkait, M. K. (2014). Removal of Fluoride from Drinking Water Using Nano Magnetite Aggregated Schwertmannite. Journal of Water Process Engineering, 1, 91-100.</p><p>Gottipati Ramakrishna & Mishra Susmita, (2012), Application of Response Surface Methodology for Optimization of Cr(Iii) and Cr(Vi) Adsorption on Commercial Activated Carbons, Research Journal of Chemical Sciences, 2(2), 40-48.</p><p>Gueu, S., Yao, B., Adouby, K., & Ado, G. (2006). Heavy Metals Removal in Aqueous Solution by Activated Carbons Prepared from Coconut Shell and Seed Shell of The Palm Tree. J. Appl. Sci, 6(13), 2789-2793. Gupta VK, Carrott PJM., Ribeiro Carrott MML, & Suhas. (2009). Low-Cost Adsorbents: Growing Approach to Wastewater TreatmentA Review. Critical Reviews in Environmental Science and Technology, 39(10), 783842.</p><p>Gupta, S., & Kua, H. W. (2017). Factors Determining the Potential of Biochar as A Carbon Capturing and Sequestering Construction Material: Critical Review. Journal of Materials in Civil Engineering, 29(9), 04017086.</p><p>Gupta, V. K., & Nayak, A. (2012). Cadmium Removal and Recovery from Aqueous Solutions by Novel Adsorbents Prepared from Orange Peel and Fe2O3 Nanoparticles. Chemical Engineering Journal, 180, 81-90.</p><p>Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Chromium Removal by Combining the Magnetic Properties of Iron Oxide with Adsorption Properties of Carbon Nanotubes. Water research, 45(6), 2207-2212.</p><p>Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Synthesis and Characterization of Alumina-Coated Carbon Nanotubes and Their Application for Lead Removal. Journal of hazardous materials, 185(1), 17-23.</p><p>Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. (2017). Biochar-Based Water Treatment Systems as A Potential Low-Cost and Sustainable Technology for Clean Water Provision. Journal of environmental management, 197, 732-749.</p><p>Ho, Y. S., & McKay, G. (1999). Pseudo-Second Order Model for Sorption Processes. Process biochemistry, 34(5), 451-465.</p><p>Hongyu Wang, Bin Gao b, Shenseng Wang, June Fang, Yingwen Xue, & Kai Yang, (2015): Removal of Pb(II), Cu(II), and Cd(II) from Aqueous Solutions by Bio-Char Derived from Kmno4 Treated Hickory Wood; J. Bio-resource Technology 197, 356362.</p><p>Hosono, T., Su, C. C., Delinom, R., Umezawa, Y., Toyota, T., Kaneko, S., & Taniguchi, M. (2011). Decline in Heavy Metal Contamination in Marine Sediments in Jakarta Bay, Indonesia Due to Increasing Environmental Regulations. Estuarine, Coastal and Shelf Science, 92(2), 297-306.</p><p>Huang, Y. (2016). Electrical and Thermal Properties of Activated Carbon Fibers. in Activated carbon. fiber and textiles 12(8). 181-192.</p><p>Hu-Chun Tao., Zhang, H. R., Li, J. B., & Ding, W. Y. (2015). Biomass Based Activated Carbon Obtained from Sludge and Sugarcane Bagasse for Removing Lead Ion from Wastewater. Bioresource technology, 192, 611-617. Huggins, T., Wang, H., Kearns, J., Jenkins, P., & Ren, Z. J. (2014). Biochar as A Sustainable Electrode Material for Electricity Production in Microbial Fuel Cells. Bioresource technology, 157, 114-119.</p><p>Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., & Siddique, K. H. (2017). Biochar for Crop Production: Potential Benefits and Risks. Journal of Soils and Sediments, 17(3), 685-716.</p><p>IBI (2015), Institute of Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil biochar Stand, Version 2 161.</p><p>Ibrahim M. Lokman., Rashid, U., & Taufiq-Yap, Y. H. (2015). Microwave-Assisted Methyl Ester Production from Palm Fatty Acid Distillate over a Heterogeneous Carbon-Based Solid Acid Catalyst. Chemical Engineering & Technology, 38(10), 1837-1844.</p><p>Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Parikh, S. J., Mukome, F. N., & Tsang, D. C. (2017). Advances and Future Directions of Biochar Characterization Methods and Applications. Critical reviews in environmental science and technology, 47(23), 2275-2330.</p><p>Ihsanullah, Abbas A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications. Separation and Purification Technology, 157, 141-161.</p><p>Imran Ali (2012). New Generation Adsorbents for Water Treatment. Chemical reviews, 112(10), 5073-5091.</p><p>Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, Toxicity and Speciation Techniques. Water research, 34(17), 4304-4312.</p><p>Jamieson, T., Sager, E., & Guguen, C. (2014).Chemosphere Characterization of Biochar-Derived Dissolved Organic Matter Using UV Visible Absorption and Excitation Emission Fluorescence Spectroscopies. Chemosphere, 103, 197204.</p><p>Jarvis, K. E., Gray, A. L., Houk, R. S., Jarvis, I., McLaren, J. W., & Williams, J. G. (1992). Handbook of Inductively Coupled Plasma Mass Spectrometry (pp. 129-134). Glasgow: Blackie.</p><p>Jin, H., Wang, X., Gu, Z., & Polin, J. (2013). Carbon Materials from High Ash Biochar for Supercapacitor and Improvement of Capacitance with HNO3 Surface Oxidation. Journal of Power Sources, 236, 285-292. Joseph, S., Doug, P. O. W., Dawson, K., Mitchell, D. R., Rawal, A., Taherymoosavi, S., & Ben, P. A. C. E. (2015). Feeding Biochar to Cows: An Innovative Solution for Improving Soil Fertility and Farm Productivity. Pedosphere, 25(5), 666-679.</p><p>Khan, M. I., Min, T. K., Azizli, K., Sufian, S., Ullah, H., & Man, Z. (2015). Effective Removal of Methylene Blue from Water Using Phosphoric Acid Based Geopolymers: Synthesis, Characterizations and Adsorption Studies. RSC Advances, 5(75), 6141061420.</p><p>Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., &Dong, R. (2015). Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry. Science of the Total Environment, 505, 102-112.</p><p>Khler, A., Hellweg, S., Escher, B. I., & Hungerbhler, K. (2006). Organic Pollutant Removal Versus Toxicity Reduction in Industrial Wastewater Treatment: The Example of Wastewater from Fluorescent Whitening Agent Production. Environmental Science & Technology, 40(10), 3395-3401.</p><p>Koki, I. B., Low, K. H., Juahir, H., Abdul Zali, M., Azid, A., & Zain, S. M. (2018). Consumption of Water from Ex-Mining Ponds in Klang Valley and Melaka, Malaysia: A Health Risk Study. Chemosphere, 195, 641652.</p><p>Kilic, M., Kirbiyik, C., epeliogullar, ., & Ptn, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283, 856-862.</p><p>Kolodynska, D., Krukowska, J. A., & Thomas, P. (2017). Comparison of Sorption and Desorption Studies of Heavy Metal Ions from Biochar and Commercial Active Carbon. Chemical Engineering Journal, 307, 353-363.</p><p>Kosolsaksakul, P., Oliver, I. W., & Graham, M. C. (2018). Evaluating Cadmium Bioavailability in Contaminated Rice Paddy Soils and Assessing Potential for Contaminant Immobilisation with Biochar. Journal of Environmental Management, 215, 4956.</p><p>Krishna, S., Yadanaparthi, R., Graybill, D., & Wandruszka, R. Von. (2009). Adsorbents for The Removal of Arsenic , Cadmium , and Lead from Contaminated Waters, Journal of Hazardous Materials 171, 115.</p><p>Kumar, P. S., Ramakrishnan, K., Kirupha, S. D., & Sivanesan, S. (2010). Thermodynamic and Kinetic Studies of Cadmium Adsorption from Aqueous Solution onto Rice Husk. Brazilian Journal of Chemical Engineering, 27(2), 347-355.</p><p>Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., & Jo, H. Y. (2010). Removal of Divalent Heavy Metals (Cd, Cu, Pb, And Zn) And Arsenic (III) From Aqueous Solutions Using Scoria: Kinetics and Equilibria of Sorption. Journal of Hazardous Materials, 174(1-3), 307-313.</p><p>Laws, E. A (2000). Aquatic Pollution: an Introductory Text, 3rd ed.; John Wiley & Sons: New York. Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for Environmental Management: science, technology and implementation. Routledge.</p><p>Lehmann, J., &Joseph, S. (2009). Biochar for Environmental Management: an Introduction, in: Lehmann, J. and Joseph, S. (Eds.), Biochar for Environmental Management: Science and technology (pp. 19). London.</p><p>Lian, F., & Xing, B. (2017). Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environmental science & technology, 51(23), 13517-13532.</p><p>Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere, 178, 466-478.</p><p>Liu, J., Xiao, H., Lei, F., Zhu, Q., Qin, K., Zhang, X. W., ... & Ma, J. (2005). Highly pathogenic H5N1 influenza virus infection in migratory birds. Science, 309(5738), 1206-1206.</p><p>Lokman, I. M., Rashid, U., & Taufiq-Yap, Y. H. (2016). Meso-and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arabian Journal of Chemistry, 9(2), 179-189.</p><p>M. Ajmal., Rao, R. A. K., Anwar, S., Ahmad, J., & Ahmad, R. (2003). Adsorption Studies on Rice Husk: Removal and Recovery of Cd (II) From Wastewater. Bioresource technology, 86(2), 147-149.</p><p>M. Nasiruddin Khan., & Wahab, M. F. (2007). Characterization of Chemically Modified Corncobs and Its Application in The Removal of Metal Ions from Aqueous Solution. Journal of hazardous materials, 141(1), 237-244.</p><p>Mansir, Nasar, Siow Teo Hwa, Ibrahim M Lokman, & Yun Hin Taufiq-yap. (2017). Synthesis and Application of Waste Egg Shell Derived Cao Supported W-Mo Mixed Oxide Catalysts for Fame Production from Waste Cooking Oil: Effect of Stoichiometry. Energy Conversion and Management, 151, 216-226.</p><p>Maria Alice Prado Cechinel., & de Souza, A. A. U. (2014). Study of Lead (II) Adsorption onto Activated Carbon Originating from Cow Bone. Journal of Cleaner Production, 65, 342-349.</p><p>Matschullat, J. (2000). Arsenic in The GeosphereA Review. Science of The Total Environment, 249(1-3), 297-312.</p><p>Mayakaduwa, S. S., Kumarathilaka, P., Herath, I., Ahmad, M., Al-Wabel, M., Ok, Y. S., & Vithanage, M. (2016). Equilibrium and Kinetic Mechanisms of Woody Biochar on Aqueous Glyphosate Removal. Chemosphere, 144, 2516-2521.</p><p>Mckay, G. (1995). Use of Adsorbents for the Removal of Pollutants from Wastewater. CRC press.</p><p>Mehrabi, N., Soleimani, M., Yeganeh, M. M., & Sharififard, H. (2015). Parameter Optimization for Nitrate Removal from Water Using Activated Carbon and Composite of Activated Carbon and Fe2O3 Nanoparticles. RSC Adv., 5(64), 5147051482.</p><p>Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A., & Fabregat, A. (2012). Towards Advanced Aqueous Dye Removal Processes: A Short Review on The Versatile Role of Activated Carbon. Journal of environmental management, 102, 148-164.</p><p>Milan Momcilovic., Purenovic, M., Bojic, A., Zarubica, A., & Randelovic, M. (2011). Removal of Lead (II) Ions from Aqueous Solutions by Adsorption onto Pine Cone Activated Carbon. Desalination, 276(1-3), 53-59.</p><p>Ministry of Agricultural and Agro-Based Industry Malaysia (MAAIM), (2011). Available from: http://www.moa.gov.my/c/document_library/ Accessed on 10 August 2011.</p><p>MM. Al-Subu. (2002). The Interaction Effects of Cypress (Cupressus Sempervirens), Cinchona (Eucalyptus Longifolia) and Pine (Pinushalepensis) Leaves on Their Efficiencies for Lead Removal from Aqueous Solutions. Advances in Environmental Research, 6(4), 569-576.</p><p>Mohan, D., & Pittman Jr, C. U. (2007). Arsenic Removal from Water/Wastewater Using AdsorbentsA Critical Review. Journal of hazardous materials, 142(1-2), 1-53.</p><p>Mohammadnezhad, G., Soltani, R., Abad, S., and Dinari, M. (2017). "A novel porous nanocomposite of aminated silica MCM-41 and nylon-6: Isotherm, kinetic, and thermodynamic studies on adsorption of Cu(II) and Cd(II)," Journal of Applied Polymer Science 134(40), 45383.</p><p>Mom, M., Purenovi, M., Boji, A., Zarubica, A., & Ran, M. (2011). Removal Of Lead (II ) Ions from Aqueous Solutions by Adsorption onto Pine Cone Activated Carbon. Desalination, 276(1-3), 5359.</p><p>Mouni. LA, Belkhiri LB., Zouggaghe, F. ., & Tafer, M. . (2013). Removal of Pb (II) from aqueous solution by adsorption using activated carbon developed from Apricot stone: equilibrium and kinetic. Desalination and Water Treatment, 52(December 2014), 64126419.</p><p>Murat Erdem., Ucar, S., Karagz, S., & Tay, T. (2013). Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. The Scientific World Journal, 22(5),1-8.</p><p>Nikolas Hagemann, Kurt Spokas, Hans-Peter Schmidt, Ralf Kgi, Marc Anton Bhler, &Thomas D. Bucheli; (2018): Activated Carbon, Biochar and Charcoal: Linkage and Synergies Across Pyrogenic Carbons Abcs: Review. Water, 10(2), 182, 1-19.</p><p>OToole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C., Kern, J., & Srocke, F. (2016). Current and Future Applications for Biochar. Biochar in European Soils and Agriculture. Science and Practice. Oxon: Routledge, 253-280.</p><p>Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International journal of environmental research and public health, 14(12), 1-26.</p><p>Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017). Environmental Application of Biochar: Current Status and Perspectives. Bioresource Technology, 246, 110-122.</p><p>Onukak, I., Mohammed-Dabo, I., Ameh, A., Okoduwa, S., & Fasanya, O. (2017). Production and Characterization of Biomass Briquettes from Tannery Solid Waste. Recycling, 2(4), 1-19.</p><p>Oyetade, O. A., Nyamori, V. O., Martincigh, B. S., & Jonnalagadda, S. B. (2016). Nitrogen-functionalised carbon nanotubes as a novel adsorbent for the removal of Cu (II) from aqueous solution. RSC advances, 6(4), 2731-2745.</p><p>ren, A. H., & Kaya, A. (2006). Factors Affecting Adsorption Characteristics of Zn2+ on Two Natural Zeolites. Journal of Hazardous Materials, 131(1-3), 59-65.</p><p>Pam, A. A., Abdullah, A. H., Tan, Y. P., & Zainal, Z. (2018). Batch and fixed bed adsorption of Pb (II) from aqueous solution using EDTA modified activated carbon derived from palm kernel shell. BioResources, 13(1), 1235-1250.</p><p>Patrulea, V., Negrulescu, a, Mincea, M., Pitulice, L., Spiridon, O., & Ostafe, V. (2013). Optimization of The Removal of Copper (II) Ions from Aqueous Solution on Chitosan and Cross-Linked Chitosan Beads. Bioresource, 8(1), 11471165.</p><p>Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ Using Dried Marine Green Macroalga Caulerpa Lentillifera. Bioresource technology, 97(18), 2321-2329.</p><p>Perveen, F., Asghar, U., & Usmani, T. H. (2007). Evaluation of Water Quality of Different Colleges of Karachi City. Journal of the Chemical Society of Pakistan, 29(5), 458-462.</p><p>Ponnusamy Senthil Kumar., Saravanan, A., Kumar, K. A., Yashwanth, R., & Visvesh, S. (2016). Removal of Toxic Zinc from Water/Wastewater Using Eucalyptus Seeds Activated Carbon: Non-Linear Regression Analysis. IET nanobiotechnology, 10(4), 244-253.</p><p>Prasanna Kumar.Y., King, P., & Prasad, V. S. R. K. (2007). Adsorption of Zinc from Aqueous Solution Using Marine Green AlgaeUlva Fasciata Sp. Chemical Engineering Journal, 129(1-3), 161-166.</p><p>Qadeer, R. (2004). Pollutants in Drinking Water: Their Sources, Harmful Effects and Removal Procedures. Journal of the Chemical Society of Pakistan, 26(3), 293-327.</p><p>Qiao, X., Huang, W., & Bian, Y. (2014). Effective Removal of Cadmium Ions from A Simulated Gastrointestinal Fluid by Lentinus Edodes. International journal of environmental research and public health, 11(12), 12486-12498.</p><p>Quinlivan, Li, L., P. A., & Knappe, D. R. (2005). Predicting Adsorption Isotherms for Aqueous Organic Micropollutants from Activated Carbon and Pollutant Properties. Environmental science & technology, 39(9), 3393-3400.</p><p>Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K. R., Chang, J. Y., Lee, S. S., & Ok, Y. S. (2015) .The Role of Biochar, Natural Iron Oxides, and Nanomaterials as Soil Amendments for Immobilizing Metals in Shooting Range Soil. Environ. Geochem. Health, 37, 931942.</p><p>Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., &Lehmann, J. (2012).Corn Growth And Nitrogen Nutrition After Additions of Biochars with Varying Properties to A Temperate Soil. Biology and Fertility of Soils, 48(3), 271-284.</p><p>Rao, R. A. K., & Kashifuddin, M. (2016). Adsorption Studies of Cd (II) On Ball Clay: Comparison with Other Natural Clays. Arabian Journal of Chemistry, 9, S1233-S1241.</p><p>Ravichandran, P., Sugumaran, P., Seshadri, S., & Basta, A. H. (2018). Optimizing The Route for Production of Activated Carbon from Casuarina Equisetifolia Fruit Waste. Royal Society Open Science, 5(7),3-51.</p><p>Roane, T.M. & Pepper, I.L. (2000). Microorganisms and Metal Pollution, in Environmental Microbiology, Edited by Maier R. M. Pepper I. L. and Gerba. B C (Academic Press, London, NW1 7BY.UK), 55, p403-423.</p><p>Rosli, N. A., Zawawi, M. H., Bustami, R. A., Hipni, F., & Kamruddin, M. A. (2015). Adsorption of Lead Using Jackfruit Peel Activated Carbon. In Applied Mechanics and Materials (Vol. 773, pp. 1079-1084).</p><p>Rudzinski, W., & Plazinski, W. (2009). The Applicability of The Pseudo-Second Order Equation to Represent The Kinetics of Adsorption at Solid/Solution Interfaces: A Theoretical Analysis Based on The Statistical Rate Theory. Adsorption, 15(2), 181192.</p><p>Ruilian, Y. U., Xing, Y., Yuanhui, Z., Gongren, H. U., & Xianglin, T. U. (2008). Heavy metal pollution in intertidal sediments from Quanzhou Bay, China. Journal of Environmental Sciences, 20(6), 664-669.</p><p>Saadat, S., Raei, E., & Talebbeydokhti, N. (2018). Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: Comparative study of various modifying cations and RSM based optimization of pyrolysis parameters. Journal of environmental management, 225, 75-83.</p><p>Sadaka, S., Sharara, M., Ashworth, A., Keyser, P., Allen, F., & Wright, A. (2014). Characterization of Biochar from Switchgrass Carbonization. Energies, 7(2), 548-567.</p><p>Sadeghi, S., Harchegani, M. K., & Younesi, H. (2012). Suspended Sediment Concentration and Particle Size Distribution, and Their Relationship with Heavy Metal Content. Journal of Earth System Science, 121(1), 63-71.</p><p>Sagar P. Patel., Thomas, M., Patel, A. V., & Patel, J. V. (2016). Study of KOH Impregnated Jackfruit Leaf Based Carbon as Adsorbent for Treatment of Wastewater Contaminated with Nickel. International Journal of Recent Trends in Engineering & Research (IJRTER)2(7), 219-29. Saikaew, W., Kaewsarn, P., & Saikaew, W. (2009). Pomelo peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions. World academy of science, engineering and technology, 56, 287-291.</p><p>Salmani, M. H., Ehrampoush, M. H., Sheikhalishahi, S., & Dehvari, M. (2012). Removing Copper from Contaminated Water Using Activated Carbon Sorbent by Continuous Flow. Journal of Community Health Research, 1(1), 11-18.</p><p>Sarfraz, R., Li, S., Yang, W., Zhou, B., & Xing, S. (2019). Assessment of Physicochemical and Nutritional Characteristics of Waste Mushroom Substrate Biochar Under VariousPyrolysisTemperaturesand Times. Sustainability, 11(277), 1-4.</p><p>Satapathy, D., & Natarajan, G. S. (2006). Potassium Bromate Modification of The Granular Activated Carbon and Its Effect on Nickel Adsorption. Adsorption, 12(2), 147-154.</p><p>Schmidt, H. P., & Wilson, K. (2012). 55 Uses of Biochar. Ithaka Journal, 1, 286-289.</p><p>Science, E., & Chiou, C. T. (2017). Compositions and Sorptive Properties of Crop Residue-Derived Chars Compositions and Sorptive Properties of Crop Residue-Derived Chars, Environmental science & technology, 38(17), 4649-4655.</p><p>Selvi, K., Pattabhi, S., & Kadirvelu, K. (2001). Removal of Cr (VI) from Aqueous Solution by Adsorption onto Activated Carbon. Bioresource technology, 80(1), 87-89. Shaheen, S. M., Niazi, N. K., Hassan, N. E., Bibi, I., Wang, H., Tsang, D. C., ... & Rinklebe, J. (2018). Wood-Based Biochar for The Removal of Potentially Toxic Elements in Water and Wastewater: A Critical Review. International Materials Reviews, 64(4), 216-247.</p><p>Shajaratun Nur, Z. A., Y. H. Taufiq-Yap, M. F. Rabiah Nizah, Siow Hwa Teo, O. N. Syazwani, &Aminul Islam. (2014). Production of Biodiesel from Palm Oil Using Modified Malaysian Natural Dolomites. Energy Conversion and Management 78, 73844.</p><p>Shar, A. H., Kazi, Y. F., Zardari, M., & Soomro, I. H. (2008). Enumeration of Total and Fecal Coliform Bacteria in Drinking Water of Khairpur Sindh. Pak J Med Res, 47(1).</p><p>Shimodaira, N., & Masui, A. (2002). Raman spectroscopic Investigations of Activated Carbon Materials. Journal of Applied Physics, 92(2), 902-909.</p><p>Shin, W. (2017). Adsorption Characteristics of Phenol And Heavy Metals on Biochar from Hizikia Fusiformis. environmental earth sciences, 76,63-21.</p><p>Silas D. Sailaja G.& H.Rao, (2017): Use of Palm Kernel Cake As Low Cost Biosorbent for The Removal of Cadmium from Aqueous Solution Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11 (9), 38-50. Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health Risk Assessment of Heavy Metals Via Dietary Intake of Foodstuffs from The Wastewater Irrigated Site of a Dry Tropical Area of India. Food and Chemical Toxicology, 48(2), 611-619.</p><p>Singh, K. K., & Hasan, S. H. (2005). Removal of copper from wastewater using rice polish (rice bran). Journal of the Indian Chemical Society, 82(4), 374-375.</p><p>Singh, K. K., Rupainwar, D. C., & Hasan, S. H. (2005). Lowcost bio-sorbent'maize bran'for the removal of cadmium from wastewater. Journal of the Indian Chemical Society, 82(4), 342-346.</p><p>Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate Statistical Techniques for The Evaluation of Spatial and Temporal Variations in Water Quality of Gomti River (India)A Case Study. Water research, 38(18), 3980-3992.</p><p>Sisu, C., Iordanescu, R., Stanciu, V., Stefanescu, I., Vlaicu, A. M., & Grecu, V. V. (2016). Raman Spectroscopy Studies of Some Carbon Molecular Sieves. Digest Journal of Nanomaterials and Biostructures, 11(2), 435442.</p><p>Smiciklas,I., Dimovic, S., Pleca, I., & Mitric, M. (2006). Removal of Co2+ From Aqueous Solutions by Hydroxyapatite. Water research, 40(12), 2267-2274. Smith, P. (2016). Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Global change biology, 22(3), 1315-1324.</p><p>Sohaimi, K. S. A., Ngadi, N., Mat, H., Inuwa, I. M., & Wong, S. (2017). Synthesis, Characterization and Application of Textile Sludge Biochars for Oil Removal. Journal of environmental chemical engineering, 5(2), 1415-1422.</p><p>Sohi, S. P. (2012). Carbon Storage with Benefits. Science, 338(6110), 1034-1035.</p><p>Song, X., Liu, H., Cheng, L., & Qu, Y. (2010). Surface Modification of Coconut-Based Activated Carbon by Liquid-Phase Oxidation and Its Effects on Lead Ion Adsorption. Desalination, 255(1-3), 78-83.</p><p>Spindler, K. (2013): The Man in the Ice; Hachette UK: London, UK.</p><p>Srinivas, G. R., & Nageswara, G. R. (2010). Study of Groundwater Quality in Greater Visakhapatnam City, Andhra Pradesh (India). Journal of environmental science & engineering, 52(2), 137-146.</p><p>Srivastava, N., Harit, G., & Srivastava, R. (2009). A Study of Physico-Chemical Characteristics of Lakes Around Jaipur, India. Journal of Environmental Biology, 30(5), 8-89.</p><p>Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., & Mishra, I. M. (2006). Adsorptive Removal of Phenol by Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics. Colloids and Surfaces a: physicochemical and engineering aspects, 272(1-2), 89-104.</p><p>Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., ... & Yang, L. (2014). Effects of Feedstock Type, Production Method, And Pyrolysis Temperature on Biochar and Hydrochar Properties. Chemical Engineering Journal, 240, 574-578.</p><p>Tang, C., Shu, Y., Zhang, R., Li, X., Song, J., Li, B., ... & Ou, D. (2017). Comparison of The Removal and Adsorption Mechanisms of Cadmium and Lead from Aqueous Solution by Activated Carbons Prepared from Typha Angustifolia And Salix Matsudana. RSC advances, 7(26), 16092-16103.</p><p>Tariq J, Ashraf M & Afzal M. (1996). Pollution status of The Indus River, Pakistan, Through Heavy Metal and Macronutrient Contents of Fish, Sediment and Water. Water Research 30(6): 13371344.</p><p>Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and The Environment. In Molecular, clinical and environmental toxicology (pp. 133-164).</p><p>Thitame P.V &Sanjeev R.S. (2017). Removal of Lead (II) from Synthetic Solution and Industry Wastewater Using Almond Shell Activated Carbon. EEnvironmental Progress & Sustainable Energy, 1(2), 482489.</p><p>Thomas, R. (2008). (Practical guide to ICP-MS: a tutorial for beginners) (Second ed.). Florida: CRC Press, Boca Raton.</p><p>Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of Gases, with Special Reference to The Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.</p><p>Tuo Zhao ,YingYao a,b, Danrong Li, Feng Wu, Cunzhong Zhang, & Bin Gao (2018). Facile Low-Temperature One-Step Synthesis of Pomelo Peel Biochar Under Air Atmosphere and Its Adsorption Behaviors for Ag(I) And Pb(II), J. Science of the Total Environment 640, 7379. Turk, M., Stojanovi, Z., Bo, N., Radoni, J., & Tatjana, . (2018). Efficient Removal of Priority , Hazardous Priority and Emerging Pollutants with Prunus Armeniaca Functionalized Biochar from Aqueous Wastes : Experimental optimization and modeling, Science of the Total Environment, 613, 736-750.</p><p>Tuzen, M., & Pekiner, O. Z. (2015). Ultrasound-Assisted Ionic Liquid Dispersive LiquidLiquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometric for Selenium Speciation in Foods and Beverages. Food chemistry, 188, 619-624.</p><p>Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of Pyrolysis Temperature on Biochar Property and Function as A Heavy Metal Sorbent in Soil. Journal of agricultural and food chemistry, 59(6), 2501-2510.</p><p>Ulmanu, M., Maran, E., Fernndez, Y., Castrilln, L., Anger, I., & Dumitriu, D. (2003). Removal of Copper and Cadmium Ions from Diluted Aqueous Solutions by Low Cost and Waste Material Adsorbents. Water, air, and soil pollution, 142(1-4), 357-373.</p><p>Unless, R., Act, P., Rose, W., If, T., & Rose, W. (2016). Phosphate And Ammonium Sorption Capacity of Biochar and Hydrochar from Different Wastes Chemosphere, 145, 518-527.</p><p>Vega, M., Pardo, R., Barrado, E., & Debn, L. (1998). Assessment of Seasonal and Polluting Effects on The Quality of River Water by Exploratory Data Analysis. Water research, 32(12), 3581-3592.</p><p>Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S. E., & Ok, Y. S. (2014). Sorption and Transport of Sulfamethazine in Agricultural Soils Amended with Invasive-Plant-Derived Biochar. Journal of environmental management, 141, 95-103.</p><p>W. Contributors, Thermogravimetric analysis, Wikipedia, Free Encycl. (2016).</p><p>Wan, S., He, F., Wu, J., Wan, W., Gu, Y., & Gao, B. (2016). Rapid and Highly Selective Removal of Lead from Water Using Graphene Oxide-Hydrated Manganese Oxide Nanocomposites. Journal of hazardous materials, 314, 32-40.</p><p>Wang, C., Yang, X., Ng, W., Shu, B., Wong, E., Hun, G., & Wang, C. (2018). Characterization and Eco Toxicological Investigation of Biochar Produced Via Slow Pyrolysis : Effect f Feedstock Composition and Pyrolysis Conditions. Journal of Hazardous Materials, 365(2019), 178185.</p><p>Wang, J.; & Shraim, A. (2003). A Global Health Problem Caused by Arsenic from Natural Sources. Chemosphere, 52(9), 1353-1359.</p><p>Wang, S., Ang, H. M., & Tad, M. O. (2008). Novel Applications of Red Mud as Coagulant, Adsorbent and Catalyst for Environmentally Benign Processes. Chemosphere, 72(11), 1621-1635.</p><p>Wang, X., Liu, Z., Ying, Z., Huo, M., & Yang, W. (2018). Adsorption of Trace Estrogens in Ultrapure and Wastewater Treatment Plant Effluent by Magnetic Graphene Oxide. International journal of environmental research and public health, 15(7), 1454.</p><p>Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H. H., Guo, W., ... & Xing, B. (2015). Investigating the Mechanisms of Biochars Removal of Lead from Solution. Bioresource technology, 177, 308-317.</p><p>Welz, B., & Sperling, M. (2008). Atomic absorption spectrometry. John Wiley & Sons.</p><p>Weng, C. H., & Huang, C. P. (2004). Adsorption Characteristics of Zn (II) From Dilute Aqueous Solution by Fly Ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1-3), 137-143.</p><p>Werner, C., Schmidt, H. P., Gerten, D., Lucht, W., & Kammann, C. (2018). Biogeochemical Potential of Biomass Pyrolysis Systems for Limiting Global Warming to 1.5 C. Environmental Research Letters, 13(4), 044036.</p><p>Wilson, K., Yang, H., Seo, C. W., & Marshall, W. E. (2006). Select Metal Adsorption by Activated Carbon Made from Peanut Shells. Bioresource technology, 97(18), 2266-2270.</p><p>Windholz, M., Budavari, S., Stroumtsos, L. Y., & Fertig, M. N. (1976). The Merck indexes. An encyclopedia of chemicals and drugs (No. 9th edition). Merck & Co.</p><p>Wong, Y. C., Tan, Y. P., Taufiq-Yap, Y. H., Ramli, I., & Tee, H. S. (2015). Biodiesel Production Via Transesterification of Palm Oil by Using CaoCeo2 Mixed Oxide Catalysts. Fuel, 162, 288-293.</p><p>Woolf, D., Lehmann, J., & Lee, D. R. (2016). Optimal Bioenergy Power Generation for Climate Change Mitigation with or Without Carbon Sequestration. Nature communications, 21(8), 1-11.</p><p>World Health Organization. (1996). Trace Elements in Human Nutrition and Health. World Health Organization.</p><p>World Health Organization: Geneva, (1993): Guidelines for Drinking-Water Quality, 2nd ed.; Vol. 1.</p><p>Wuana, R. A., & Okieimen, F. E. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Isrn Ecology, 2011,84-92.</p><p>Xu, X., Cao, X., Zhao, L., & Sun, T. (2014). Comparison of Sewage Sludge-And Pig Manure-Derived Biochars for Hydrogen Sulfide Removal. Chemosphere, 111, 296-303.</p><p>Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for The Removal of Arsenic, Cadmium, And Lead from Contaminated Waters. Journal of Hazardous Materials, 171(1-3), 1-15.</p><p>Yang, Y., Meehan, B., Shah, K., Surapaneni, A., Hughes, J., Fouch, L., & Paz-Ferreiro, J. (2018). Physicochemical Properties of Biochars Produced from Biosolids In Victoria, Australia. International journal of environmental research and public health, 15(7), 14-59.</p><p>Yi, Z., Yao, J., Chen, H., Wang, F., Liu, X., & Xu, J. (2016). Equilibrium and Kinetic Studies on Adsorption of Pb(II) by Activated Palm Kernel Husk Carbon. Desalination and Water Treatment, 57(16), 72457253.</p><p>Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W. H., ... & Chang, J. S. (2017). Recent Developments on Algal Biochar Production and Characterization. Bioresource technology, 246, 2-11.</p><p>Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The Forms of Alkalis in The Biochar Produced from Crop Residues at Different Temperatures. Bioresource technology, 102(3), 3488-3497.</p><p>Zama, E. F., Zhu, Y. G., Reid, B. J., & Sun, G. X. (2017). The Role of Biochar Properties in Influencing the Sorption and Desorption of Pb (II), Cd (II) And As (III) in Aqueous Solution. Journal of cleaner production, 148, 127-136.</p><p>Zare-Dorabei, R., Ferdowsi, S. M., Barzin, A., & Tadjarodi, A. (2016). Highly Efficient Simultaneous Ultrasonic-Assisted Adsorption of Pb (II), Cd (II), Ni (II) And Cu (II) Ions from Aqueous Solutions by Graphene Oxide Modified with 2, 2'-Dipyridylamine: Central Composite Design Optimization. Ultrasonics sonochemistry, 32, 265-276.</p><p>Zhang, F. S., Nriagu, J. O., & Itoh, H. (2005). Mercury Removal from Water Using Activated Carbons Derived from Organic Sewage Sludge. Water research, 39(2-3), 389-395.</p><p>Zhang, F., Cheng, S., Pant, D., Van Bogaert, G., & Logan, B. E. (2009). Power Generation Using an Activated Carbon and Metal Mesh Cathode in A Microbial Fuel Cell. Electrochemistry Communications, 11(11), 2177-2179.</p><p>Zhang, L., Zhang, G., Wang, S., Peng, J., & Cui, W. (2017). Sulfoethyl Functionalized Silica Nanoparticle as An Adsorbent to Selectively Adsorb Silver Ions from Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers, 71, 330-337.</p><p>Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. (2008). Activated Carbon Cloth as Anode for Sulfate Removal in A Microbial Fuel Cell. Environmental science & technology, 42(13), 4971-4976.</p><p>Zhao, J., Liu, J., Li, N., Wang, W., Nan, J., Zhao, Z., & Cui, F. (2016). Highly Efficient Removal of Bivalent Heavy Metals from Aqueous Systems by Magnetic Porous Fe3O4-Mno2: Adsorption Behavior and Process Study. Chemical Engineering Journal, 304, 737-746.</p><p>Zhao, T., Yao, Y., Li, D., Wu, F., Zhang, C., & Gao, B. (2018). Facile Low-Temperature One-Step Synthesis of Pomelo Peel Biochar Under Air Atmosphere and Its Adsorption Behaviors for Ag (I) And Pb (II). Science of the Total Environment, 640, 73-79.</p><p>Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293.</p><p>Zhigang Xie,Wei Guan, Fangying Ji, Zhongrong Song, &Yanling Zhao (2014): Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology, Journal of Chemistry 6(23), 1- 9.</p><p>Zhou, G., Liu, C., Tang, Y., Luo, S., Zeng, Z., Liu, Y., ... & Chu, L. (2015). Sponge-Like Polysiloxane-Graphene Oxide Gel as A Highly Efficient and Renewable Adsorbent for Lead and Cadmium Metals Removal from Wastewater. Chemical Engineering Journal, 280, 275-282.</p><p>Zhu, C., Luan, Z., Wang, Y., & Shan, X. (2007). Removal of Cadmium from Aqueous Solutions by Adsorption on Granular Red Mud (GRM). Separation and Purification Technology, 57(1), 161-169.</p><p>Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health Risk from Heavy Metals Via Consumption of Food Crops in The Vicinity of Dabaoshan Mine, South China. Science of the total environment, 407(5), 1551-1561.</p><p>Zheng, D., Shi, M., 2017. Multiple environmental policies and pollution haven hypothesis: evidence from China's polluting industries. J. Clean. Prod. 141, 295e304.</p> |