Statistical downscaling of projecting rainfall amount based on SVC-RVM model

<p>The objective of this study is to evaluate and compare the proposed statistical</p><p>downscaling model in Kelantan and Terengganu states. The study also investigates</p><p>the most accurate imputation methods in handling the m...

Full description

Saved in:
Bibliographic Details
Main Author: Nurul Ainina Filza Sulaiman
Format: thesis
Language:eng
Published: 2022
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=8788
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:8788
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QA Mathematics
spellingShingle QA Mathematics
Nurul Ainina Filza Sulaiman
Statistical downscaling of projecting rainfall amount based on SVC-RVM model
description <p>The objective of this study is to evaluate and compare the proposed statistical</p><p>downscaling model in Kelantan and Terengganu states. The study also investigates</p><p>the most accurate imputation methods in handling the missing atmospheric data and</p><p>the important predictors for a statistical downscaling method by reducing the</p><p>dimensionality data. The data used in this study include atmospheric data (predictors)</p><p>and daily rainfall data (predictand) from 1998 until 2007. As part of its methodology,</p><p>this study had used an imputation method for handling missing data. Then, Principal</p><p>Component Analysis (PCA) was applied to rectify the issue of high-dimensional data</p><p>and select predictors for a two-phase model. The two-phase machine learning</p><p>techniques were introduced as a precise statistical downscaling method in Kelantan and</p><p>Terengganu states. The first phase is a classification using the Support Vector</p><p>Classification (SVC) that determines dry and wet days. Subsequently, a regression</p><p>estimates the amount of rainfall based on the frequency of wet days using the Support</p><p>Vector Regression (SVR), Artificial Neural Network (ANN), and Relevant Vector</p><p>Machine (RVM). The proposed model was analysed by using the performance</p><p>measures that are Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency</p><p>(NSE). The result of imputation methods shows Random Forest (RF) is having the</p><p>lowest RMSE value and the highest NSE value. The analysis of PCA results indicates</p><p>two selected Principal Components cut-off eigenvalues at 1.6 and 70.29% cumulative</p><p>percentage of the total variance. In the conclusion of this study, the comparison of</p><p>results from the SVC and RVM hybridizations reveals that the hybrid reproduces the</p><p>most reasonable daily rainfall projection and supports the high rainfall extremes,</p><p>making it a perfect candidate for rainfall prediction research. The implication of this</p><p>study is to establish the relationship between predictand variables and predictors in</p><p>order to improve predicting accuracy in climate change projections by using a</p><p>hybridization model.</p>
format thesis
qualification_name
qualification_level Master's degree
author Nurul Ainina Filza Sulaiman
author_facet Nurul Ainina Filza Sulaiman
author_sort Nurul Ainina Filza Sulaiman
title Statistical downscaling of projecting rainfall amount based on SVC-RVM model
title_short Statistical downscaling of projecting rainfall amount based on SVC-RVM model
title_full Statistical downscaling of projecting rainfall amount based on SVC-RVM model
title_fullStr Statistical downscaling of projecting rainfall amount based on SVC-RVM model
title_full_unstemmed Statistical downscaling of projecting rainfall amount based on SVC-RVM model
title_sort statistical downscaling of projecting rainfall amount based on svc-rvm model
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2022
url https://ir.upsi.edu.my/detailsg.php?det=8788
_version_ 1776104566550429696
spelling oai:ir.upsi.edu.my:87882023-03-17 Statistical downscaling of projecting rainfall amount based on SVC-RVM model 2022 Nurul Ainina Filza Sulaiman QA Mathematics <p>The objective of this study is to evaluate and compare the proposed statistical</p><p>downscaling model in Kelantan and Terengganu states. The study also investigates</p><p>the most accurate imputation methods in handling the missing atmospheric data and</p><p>the important predictors for a statistical downscaling method by reducing the</p><p>dimensionality data. The data used in this study include atmospheric data (predictors)</p><p>and daily rainfall data (predictand) from 1998 until 2007. As part of its methodology,</p><p>this study had used an imputation method for handling missing data. Then, Principal</p><p>Component Analysis (PCA) was applied to rectify the issue of high-dimensional data</p><p>and select predictors for a two-phase model. The two-phase machine learning</p><p>techniques were introduced as a precise statistical downscaling method in Kelantan and</p><p>Terengganu states. The first phase is a classification using the Support Vector</p><p>Classification (SVC) that determines dry and wet days. Subsequently, a regression</p><p>estimates the amount of rainfall based on the frequency of wet days using the Support</p><p>Vector Regression (SVR), Artificial Neural Network (ANN), and Relevant Vector</p><p>Machine (RVM). The proposed model was analysed by using the performance</p><p>measures that are Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency</p><p>(NSE). The result of imputation methods shows Random Forest (RF) is having the</p><p>lowest RMSE value and the highest NSE value. The analysis of PCA results indicates</p><p>two selected Principal Components cut-off eigenvalues at 1.6 and 70.29% cumulative</p><p>percentage of the total variance. In the conclusion of this study, the comparison of</p><p>results from the SVC and RVM hybridizations reveals that the hybrid reproduces the</p><p>most reasonable daily rainfall projection and supports the high rainfall extremes,</p><p>making it a perfect candidate for rainfall prediction research. The implication of this</p><p>study is to establish the relationship between predictand variables and predictors in</p><p>order to improve predicting accuracy in climate change projections by using a</p><p>hybridization model.</p> 2022 thesis https://ir.upsi.edu.my/detailsg.php?det=8788 https://ir.upsi.edu.my/detailsg.php?det=8788 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abbott, D. (1999). Combining models to improve classifier accuracy and robustness.</p><p>Proceedings of Second International Conference on , January 1999, 17.</p><p></p><p>Abdel-Kader, H., Salam, M. A.-E., & ... (2021). Hybrid Machine Learning Model for</p><p>Rainfall Forecasting. Journal of Intelligent , 1(1), 512.</p><p>https://doi.org/10.5281/zenodo.3376685</p><p></p><p>Acua, E., & Rodriguez, C. (2004). The Treatment of Missing Values and its Effect</p><p>on Classifier Accuracy. Classification, Clustering, and Data Mining</p><p>Applications. https://doi.org/10.1007/978-3-642-17103-1_60</p><p></p><p>Advani, V. (2021). What is Machine Learning? How Machine Learning Works and</p><p>future of it? Great Learning. https://www.mygreatlearning.com/blog/what-ismachine-</p><p>learning/</p><p></p><p>Agrawal, A. (2019). Highlights the advantages and disadvantages of machine</p><p>learning. Cyber Infrastructure, CIS. https://www.cisin.com/coffeebreak/</p><p>Enterprise/highlights-the-advantages-and-disadvantages-of-machinelearning.</p><p>html</p><p></p><p>Ahmadkhani, S., & Adibi, P. (2016). Face recognition using supervised probabilistic</p><p>principal component analysis mixture model in dimensionality reduction without</p><p>loss framework. IET Computer Vision, 10(3), 193201.</p><p>https://doi.org/10.1049/iet-cvi.2014.0434</p><p></p><p>Aksornsingchai, P., & Srinilta, C. (2011). Statistical downscaling for rainfall and</p><p>temperature prediction in Thailand. IMECS 2011 - International</p><p>MultiConference of Engineers and Computer Scientists 2011, 1(January 1948),</p><p>356361.</p><p></p><p>Albon, C. (2017). SVC Parameters When Using RBF Kernel. GitHub.</p><p>https://chrisalbon.com/machine_learning/support_vector_machines/svc_paramet</p><p>ers_using_rbf_kernel/</p><p></p><p>Ali, A. H., & Abdullah, M. Z. (2020). An efficient model for data classification based</p><p>on SVM grid parameter optimization and PSO feature weight selection.</p><p>International Journal of Integrated Engineering, 12(1), 112.</p><p>https://doi.org/10.30880/ijie.2020.12.01.001</p><p></p><p>Aljuaid, T., & Sasi, S. (2017). Proper imputation techniques for missing values in data</p><p>sets. Proceedings of the 2016 International Conference on Data Science and</p><p>Engineering, ICDSE 2016. https://doi.org/10.1109/ICDSE.2016.7823957</p><p></p><p>Alsaber, A. R., Pan, J., & Al-Hurban, A. (2021). Handling complex missing data</p><p>using random forest approach for an air quality monitoring dataset: A case study</p><p>of kuwait environmental data (2012 to 2018). International Journal of</p><p>Environmental Research and Public Health, 18(3), 126.</p><p>https://doi.org/10.3390/ijerph18031333</p><p></p><p>Amirabadizadeh, M., Ghazali, A. H., Huang, Y. F., & Wayayok, A. (2016).</p><p>Downscaling daily precipitation and temperatures over the Langat River Basin in</p><p>Malaysia : A comparison of two statistical downscaling approaches.</p><p>International Journal of Water Resources and Environmental Engineering,</p><p>8(December), 120136. https://doi.org/10.5897/IJWREE2016.0585</p><p></p><p>Anandhi, A., Srinivas, V. V., NAnjundiah, R. S., & Kumar, D. N. (2008).</p><p>Downscaling precipitation to river basin in India for IPCC SRES scenarions</p><p>using support vector machine. International Journal of Climatology, 28(March</p><p>2008), 401420. https://doi.org/10.1002/joc</p><p></p><p>Andridge, R. R., & Little, R. J. A. (2010). A review of hot deck imputation for survey</p><p>non-response. International Statistical Review, 78(1), 4064.</p><p>https://doi.org/10.1111/j.1751-5823.2010.00103.x</p><p></p><p>Angra, S., & Ahuja, S. (2017). Machine learning and its applications: A review.</p><p>Proceedings of the 2017 International Conference On Big Data Analytics and</p><p>Computational Intelligence, ICBDACI 2017, April 2020, 5760.</p><p>https://doi.org/10.1109/ICBDACI.2017.8070809</p><p></p><p>Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., & Ridella, S. (2012). The K in Kfold</p><p>Cross Validation. European Symposium on Artificial Neural Networks-</p><p>ESANN 2012 Proceedings, April.</p><p></p><p>Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for</p><p>Error Rate Estimate in Support Vector Machines. Vessels Fuel Consumption</p><p>Forecast and Trim Optimisation: a Data Analytics Perspective View project KFold</p><p>Cross Validation for Error Rate Estimate in Support Vector Machines.</p><p>Proc. DMIN Int. Conf. Data Mining, January.</p><p>https://www.researchgate.net/publication/220704948</p><p></p><p>Anguita, D., Ridella, S., Rivieccio, F., & Zunino, R. (2003). Hyperparameter design</p><p>criteria for support vector classifiers. Neurocomputing, 55(12), 109134.</p><p>https://doi.org/10.1016/S0925-2312(03)00430-2</p><p></p><p>Arifin, F., Robbani, H., Annisa, T., & MaArof, N. N. M. I. (2019). Variations in the</p><p>Number of Layers and the Number of Neurons in Artificial Neural Networks:</p><p>Case Study of Pattern Recognition. Journal of Physics: Conference Series,</p><p>1413(1). https://doi.org/10.1088/1742-6596/1413/1/012016</p><p></p><p>ASCE. (2000). Artificial Neural Network in Hydrology I: Preliminary Concepts. In</p><p>Journal of Hydrologic Engineering (Vol. 5, Issue 2).</p><p></p><p>Assent, I. (2012). Clustering high dimensional data. Wiley Interdisciplinary Reviews:</p><p>Data Mining and Knowledge Discovery, 2(4), 340350.</p><p>https://doi.org/10.1002/widm.1062</p><p></p><p>Ayesha, S., Hanif, M. K., & Talib, R. (2020). Overview and comparative study of</p><p>dimensionality reduction techniques for high dimensional data. Information</p><p>Fusion, 59(May 2019), 4458. https://doi.org/10.1016/j.inffus.2020.01.005</p><p></p><p>Azid, A., Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A. S. M., Hasnam,</p><p>C. N. C., Aziz, N. A. A., Azaman, F., Latif, M. T., Zainuddin, S. F. M., Osman,</p><p>M. R., & Yamin, M. (2014). Prediction of the level of air pollution using</p><p>principal component analysis and artificial neural network techniques: A case</p><p>study in Malaysia. Water, Air, and Soil Pollution, 225(8).</p><p>https://doi.org/10.1007/s11270-014-2063-1</p><p></p><p>Baghanam, A. H., Eslahi, M., Sheikhbabaei, A., & Seifi, A. J. (2020). Assessing the</p><p>impact of climate change over the northwest of Iran: an overview of statistical</p><p>downscaling methods. Theoretical and Applied Climatology, 141(34), 1135</p><p>1150. https://doi.org/10.1007/s00704-020-03271-8</p><p></p><p>Bahari, N. I. S., Ahmad, A., & Aboobaider, B. M. (2014). Application of support</p><p>vector machine for classification of multispectral data. IOP Conference Series:</p><p>Earth and Environmental Science, 20(1). https://doi.org/10.1088/1755-</p><p>1315/20/1/012038</p><p></p><p>Bala, R., & Kumar, D. (2017). Classification Using ANN: A Review. International</p><p>Journal of Computational Intelligence Research, 13(7), 18111820.</p><p>http://www.ripublication.com</p><p></p><p>Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data</p><p>analyses. Journal of School Psychology, 48(1), 537.</p><p>https://doi.org/10.1016/j.jsp.2009.10.001</p><p></p><p>Barnard, J., & Meng, X.-L. (1999). Applications of multiple imputation in medical</p><p>studies: from AIDS to NHANES. Statistical Methods in Medical Research, 8(1),</p><p>1736. https://doi.org/10.1177/096228029900800103</p><p></p><p>Batista, G., & Monard, M. (2002). A Study of K -Nearest Neighbour as an Imputation</p><p>Method. Argentine Symposium on Artificial Intelligence, October.</p><p></p><p>Beaudoin, A., Bernier, P. Y., Guindon, L., Villemaire, P., Guo, X. J., Stinson, G.,</p><p>Bergeron, T., Magnussen, S., & Hall, R. J. (2014). Mapping attributes of</p><p>Canadas forests at moderate resolution through kNN and MODIS imagery.</p><p>Canadian Journal of Forest Research, 44(5), 521532.</p><p>https://doi.org/10.1139/cjfr-2013-0401</p><p></p><p>Bell, W., Brockwell, P. J., & Davis, R. A. (2009). Time Series: Theory and Methods.</p><p>In Journal of the American Statistical Association (Vol. 84, Issue 405).</p><p>https://doi.org/10.2307/2289896</p><p></p><p>Benestad, R., & Benestad, R. (2016). Downscaling Climate Information. In Oxford</p><p>Research Encyclopedia of Climate Science (Issue June).</p><p>https://doi.org/10.1093/acrefore/9780190228620.013.27</p><p></p><p>Bengio, Y., & Grandvalet, Y. (2004). No Unbiased Estimator of the Variance of KFold</p><p>Cross Validation. Journal of Machine Learning Research, 5, 10891105.</p><p>https://doi.org/10.1016/S0006-291X(03)00224-9</p><p></p><p>Bennett, D. A. (2001). How can I deal with missing data in my study? Australian and</p><p>New Zealand Journal of Public Health, 25(5), 464469.</p><p>https://doi.org/10.1111/j.1467-842X.2001.tb00294.x</p><p></p><p>Beretta, L., & Santaniello, A. (2016). Nearest neighbor imputation algorithms: A</p><p>critical evaluation. BMC Medical Informatics and Decision Making, 16(74).</p><p>https://doi.org/10.1186/s12911-016-0318-z</p><p></p><p>Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of crossvalidation</p><p>for evaluating autoregressive time series prediction. Computational</p><p>Statistics and Data Analysis, 120, 7083.</p><p>https://doi.org/10.1016/j.csda.2017.11.003</p><p></p><p>Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and</p><p>Computational Biology: ABC of Bioinformatics, 13(April), 542545.</p><p>https://doi.org/10.1016/B978-0-12-809633-8.20349-X</p><p></p><p>Berzofsky, M., Biemer, P., & Kalsbeek, W. (2008). A Brief History of Classification</p><p>Error Models. Proceeding of Joint Statistical Modeetings, 36673673.</p><p></p><p>Bethere, L., Sennikovs, J., & Bethers, U. (2017). Climate indices for the Baltic states</p><p>from principal component analysis. Earth System Dynamics, 8(4), 951962.</p><p>https://doi.org/10.5194/esd-8-951-2017</p><p></p><p>Bhattacharya, A. (2014). Curse of Dimensionality. Fundamentals of Database</p><p>Indexing and Searching, 141148. https://doi.org/10.1201/b17767-13</p><p></p><p>Bhattacharya, D., Nisha, M. G., & Pillai, G. N. (2015). Relevance vector-machinebased</p><p>solar cell model. International Journal of Sustainable Energy, 34(10),</p><p>685692. https://doi.org/10.1080/14786451.2014.885030</p><p></p><p>Bhavsar, H., & Ganatra, A. (2012). A Comparative Study of Training Algorithms for</p><p>Supervised Machine Learning. International Journal of Soft Computing and</p><p>Engineering, 2(4), 7481.</p><p></p><p>Bing, Q., Gong, B., Yang, Z., Shang, Q., & Zhou, X. (2015). Short-Term Traffic Flow</p><p>Local Prediction Based on Combined Kernel Function Relevance Vector</p><p>Machine Model. Mathematical Problems in Engineering, 2015.</p><p>https://doi.org/10.1155/2015/154703</p><p></p><p>Bhner, J., & Bechtel, B. (2017). GIS in Climatology and Meteorology. In</p><p>Comprehensive Geographic Information Systems (Vol. 3).</p><p>https://doi.org/10.1016/B978-0-12-409548-9.09633-0</p><p></p><p>Boisberranger, J. du, Bossche, J. Van den, & Estve, L. (2017). RBF SVM</p><p>parameters. Scikit-Learn Developers. https://scikitlearn.</p><p>org/stable/about.html#authors</p><p></p><p>Borra, S., & Di Ciaccio, A. (2010). Measuring the prediction error. A comparison of</p><p>cross-validation, bootstrap and covariance penalty methods. Computational</p><p>Statistics and Data Analysis, 54(12), 29762989.</p><p>https://doi.org/10.1016/j.csda.2010.03.004</p><p></p><p>Breiman, L. (2001). Random Forests. Machine Language, 45(1), 532.</p><p>https://doi.org/10.14569/ijacsa.2016.070603</p><p></p><p>Breiman, L., Cutler, A., Liaw, A., & Wiener, M. (2018). Package randomForest.</p><p>CRAN. https://doi.org/10.1023/A</p><p></p><p>Brence, J. R., & Brown, D. E. (2006). Improving the Robust Random Forest</p><p>Regression Algorithm. In Systems and Information Engineering Technical</p><p>Papers, Department of Systems and Information Engineering.</p><p></p><p>Brownlee, J. (2020). Train-Test Split for Evaluating Machine Learning Algorithms.</p><p>Python Machine Learning. https://machinelearningmastery.com/train-test-splitfor-</p><p>evaluating-machine-learning-algorithms/</p><p></p><p>Bunkley, Ni. (2008). Joseph Juran, 103, Pioneer in Quality Control, Dies. The New</p><p>York Times. https://www.nytimes.com/2008/03/03/business/03juran.html</p><p></p><p>Brger, G. (1996). Expanded downscaling for generating local weather scenarios.</p><p>Climate Research, 7(2), 111128. https://doi.org/10.3354/cr007111</p><p></p><p>Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold crossvalidation</p><p>and the repeated learning-testing methods. Biometrika, 76(3), 503</p><p>514. https://doi.org/10.1093/biomet/76.3.503</p><p></p><p>Campion, W. M., & Rubin, D. B. (1989). Multiple Imputation for Nonresponse in</p><p>Surveys. In Journal of Marketing Research (Vol. 26, Issue 4).</p><p>https://doi.org/10.2307/3172772</p><p></p><p>Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto,</p><p>L., & Zdeborov, L. (2019). Machine learning and the physical sciences.</p><p>Reviews of Modern Physics, 91(4), 45002.</p><p>https://doi.org/10.1103/RevModPhys.91.045002</p><p></p><p>Castellano, C. M., & DeGaetano, A. T. (2017). Downscaling extreme precipitation</p><p>from CMIP5 simulations using historical analogs. Journal of Applied</p><p>Meteorology and Climatology, 56(9), 24212439.</p><p>https://doi.org/10.1175/JAMC-D-16-0250.1</p><p></p><p>Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute</p><p>error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific</p><p>Model Development, 7(3), 12471250. https://doi.org/10.5194/gmd-7-1247-2014</p><p></p><p>Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods.</p><p>Computers and Electrical Engineering, 40(1), 1628.</p><p>https://doi.org/10.1016/j.compeleceng.2013.11.024</p><p></p><p>Che Mat Nor, S. M., Shaharudin, S. M., Ismail, S., Zainuddin, N. H., & Tan, M. L.</p><p>(2020). A comparative study of different imputation methods for daily rainfall</p><p>data in east-coast Peninsular Malaysia. Bulletin of Electrical Engineering and</p><p>Informatics, 9(2), 635643. https://doi.org/10.11591/eei.v9i2.2090</p><p></p><p>Cheema, J. R. (2014). A Review of Missing Data Handling Methods in Education</p><p>Research. Review of Educational Research, 84(4), 487508.</p><p>https://doi.org/10.3102/0034654314532697</p><p></p><p>Chen, C., & Shyu, M. L. (2011). Clustering-based binary-class classification for</p><p>imbalanced data sets. Proceedings of the 2011 IEEE International Conference on</p><p>Information Reuse and Integration, IRI 2011, 384389.</p><p>https://doi.org/10.1109/IRI.2011.6009578</p><p></p><p>Chen, S., Gu, C., Lin, C., Zhang, K., & Zhu, Y. (2020). Multi-kernel optimized</p><p>relevance vector machine for probabilistic prediction of concrete dam</p><p>displacement. Engineering with Computers, 0123456789.</p><p>https://doi.org/10.1007/s00366-019-00924-9</p><p></p><p>Chen, S. H., Jain, L., & Tai, C. C. (2005). Computational economics: A perspective</p><p>from computational intelligence. In Computational Intelligence and its</p><p>Applications Series (Issue May 2016). Idea Group Publishing.</p><p>https://doi.org/10.4018/978-1-59140-649-5</p><p></p><p>Chen, S. T., Yu, P. S., & Tang, Y. H. (2010). Statistical downscaling of daily</p><p>precipitation using support vector machines and multivariate analysis. Journal of</p><p>Hydrology, 385(14), 1322. https://doi.org/10.1016/j.jhydrol.2010.01.021</p><p></p><p>Chen, Z. (2001). Data-Mining and Uncertain Reasoning: An Integrated Approach. In</p><p>Information Visualization. Wiley, New York.</p><p>https://doi.org/10.1057/palgrave.ivs.9500041</p><p></p><p>Cheng, C. H., & Yang, J. H. (2016). A novel rainfall forecast model based on the</p><p>integrated non-linear attribute selection method and support vector regression.</p><p>Journal of Intelligent and Fuzzy Systems, 31(2), 915925.</p><p>https://doi.org/10.3233/JIFS-169021</p><p></p><p>Cheng, C. T., Niu, W. J., Feng, Z. K., Shen, J. J., & Chau, K. W. (2015). Daily</p><p>reservoir runoff forecasting method using artificial neural network based on</p><p>quantum-behaved particle swarm optimization. Water (Switzerland), 7(8), 4232</p><p>4246. https://doi.org/10.3390/w7084232</p><p></p><p>Chhabra, G., Vashisht, V., & Ranjan, J. (2017). A Comparison of Multiple Imputation</p><p>Methods for Data with Missing Values. Indian Journal of Science and</p><p>Technology, 10(19), 17. https://doi.org/10.17485/ijst/2017/v10i19/110646</p><p></p><p>Chhabra, G., Vashisht, V., & Ranjan, J. (2019). A review on missing data value</p><p>estimation using imputation algorithm. Journal of Advanced Research in</p><p>Dynamical and Control Systems, 11(7 Special Issue), 312318.</p><p></p><p>Cho, M. Y., & Hoang, T. T. (2017). Feature Selection and Parameters Optimization of</p><p>SVM Using Particle Swarm Optimization for Fault Classification in Power</p><p>Distribution Systems. Computational Intelligence and Neuroscience, 19.</p><p>https://doi.org/10.1155/2017/4135465</p><p></p><p>Coulibaly, P. (2004). Downscaling daily extreme temperatures with genetic</p><p>programming. Geophysical Research Letters, 31(16), 14.</p><p>https://doi.org/10.1029/2004GL020075</p><p></p><p>Crusoveanu, L. (2021). Epoch in Neural Networks. Baeldung.</p><p>https://www.baeldung.com/cs/epoch-neural-networks</p><p></p><p>Cummins, N., Sethu, V., Epps, J., & Krajewski, J. (2015). Relevance Vector Machine</p><p>for Depression Prediction Industrial Psychology , Rhenish University of Applied</p><p>Sciences Cologne , Germany. Interspeech 2015, 1(2), 110114.</p><p></p><p>Daniel, F. (2020). What is Machine Learning? Emerj The Al Research and Advisory</p><p>Company. https://emerj.com/ai-glossary-terms/what-is-machine-learning/</p><p></p><p>Das, J., & Nanduri, U. V. (2018). Assessment and evaluation of potential climate</p><p>change impact on monsoon flows using machine learning technique over</p><p>Wainganga River basin, India. Hydrological Sciences Journal, 63(7), 1020</p><p>1046. https://doi.org/10.1080/02626667.2018.1469757</p><p></p><p>Davey, A., & Savla, J. (2010). Statistical Power Analysis with Missing Data.</p><p>Routledge Taylor & Francis Group, LLC.</p><p></p><p>Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y., & Wilby, R. L. (2006). Flood</p><p>estimation at ungauged sites using artificial neural networks. Journal of</p><p>Hydrology, 319(14), 391409. https://doi.org/10.1016/j.jhydrol.2005.07.032</p><p></p><p>Deo, R. C., Samui, P., & Kim, D. (2016). Estimation of monthly evaporative loss</p><p>using relevance vector machine, extreme learning machine and multivariate</p><p>adaptive regression spline models. Stochastic Environmental Research and Risk</p><p>Assessment, 30(6), 17691784. https://doi.org/10.1007/s00477-015-1153-y</p><p></p><p>Department of Irrigation and Drainage. (2018). Hydrological Standard for Rainfall</p><p>Station Instrumentation.</p><p></p><p>Desai, K. M., Survase, S. A., Saudagar, P. S., Lele, S. S., & Singhal, R. S. (2008).</p><p>Comparison of artificial neural network (ANN) and response surface</p><p>methodology (RSM) in fermentation media optimization: Case study of</p><p>fermentative production of scleroglucan. Biochemical Engineering Journal,</p><p>41(3), 266273. https://doi.org/10.1016/j.bej.2008.05.009</p><p></p><p>Devak, M., & Dhanya, C. T. (2014). Downscaling of Precipitation in Mahanadi Basin</p><p>, India. International Journal of Civil Engineering Research, 5(2), 111120.</p><p></p><p>Dhiraj, K. (2019). Top 4 advantages and disadvantages of Support Vector Machine or</p><p>SVM. Medium. https://dhirajkumarblog.medium.com/top-4-advantages-anddisadvantages-</p><p>of-support-vector-machine-or-svm-a3c06a2b107</p><p></p><p>Dhurandhar, A., & Dobra, A. (2009). Evaluating Evaluation Measure. In Proceedings</p><p>of Evaluation Methods in Machine Learning Workshop in International</p><p>Conference on Machine Learning (ICML) 2009. https://doi.org/10.1002/pdh.264</p><p></p><p>Dominick, D., Juahir, H., Latif, M. T., Zain, S. M., & Aris, A. Z. (2012). Spatial</p><p>assessment of air quality patterns in Malaysia using multivariate analysis.</p><p>Atmospheric Environment, 60, 172181.</p><p>https://doi.org/10.1016/j.atmosenv.2012.06.021</p><p></p><p>Dong, Y., Wang, J., Wang, C., & Guo, Z. (2017). Research & application of hybrid</p><p>forecasting model based on an optimal feature selection system-A case study on</p><p>electrical load forecasting. Energies, 10(4). https://doi.org/10.3390/en10040490</p><p></p><p>Dorado, J., RabuAL, J. R., Pazos, A., Rivero, D., Santos, A., & Puertas, J. (2003).</p><p>Prediction and modeling of the rainfall-runoff transformation of a typical urban</p><p>basin using ann and gp. Applied Artificial Intelligence, 17(4), 329343.</p><p>https://doi.org/10.1080/713827142</p><p></p><p>Drago, C., & Scepi, G. (2015). Time series clustering from high dimensional data. In</p><p>Lecture Notes in Computer Science (including subseries Lecture Notes in</p><p>Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7627, Issue</p><p>December 2014). https://doi.org/10.1007/978-3-662-48577-4_5</p><p></p><p>Duhan, D., & Pandey, A. (2015). Statistical downscaling of temperature using three</p><p>techniques in the Tons River basin in Central India. Theoretical and Applied</p><p>Climatology, 121(34), 605622. https://doi.org/10.1007/s00704-014-1253-5</p><p></p><p>Efron, B., & Gong, G. (1985). A leisurely look at the Bootstrap, the Jackknife and</p><p>Cross-Validation. American Statistician, 37(1), 3648.</p><p></p><p>El-Shafie, A., Mukhlisin, M., Najah, A. A., & Taha, M. R. (2011). Performance of</p><p>artificial neural network and regression techniques for rainfall-runoff prediction.</p><p>International Journal of Physical Sciences, 6(8), 19972003.</p><p>https://doi.org/10.5897/IJPS11.314</p><p></p><p>Enders, C. K. (2010). Applied missing data analysis. Guilford Press.</p><p>https://books.google.com/books?hl=en&lr=&id=MN8ruJd2tvgC&oi=fnd&pg=P</p><p>A1&dq=Enders,+2010&ots=dJnDs_Vls8&sig=gEP41sXuZcAE2DlqF1qEOo9A</p><p>H8Q</p><p></p><p>Engel, D., Httenberger, L., & Hamann, B. (2012). A survey of dimension reduction</p><p>methods for high-dimensional data analysis and visualization. OpenAccess Series</p><p>in Informatics, 27, 135149. https://doi.org/10.4230/OASIcs.VLUDS.2011.135</p><p></p><p>Erdal, H. I., & Karakurt, O. (2013). Advancing monthly streamflow prediction</p><p>accuracy of CART models using ensemble learning paradigms. Journal of</p><p>Hydrology, 477, 119128. https://doi.org/10.1016/j.jhydrol.2012.11.015</p><p></p><p>Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., & Aravkin, A.</p><p>Y. (2020). Sparse Principal Component Analysis via Variable Projection. SIAM</p><p>Journal on Applied Mathematics, 80(2), 9771002.</p><p></p><p>Falkenberg Nielsen, O., & Johnsen, G. (2015). Normal aldring. Anatomi Og</p><p>Fysiologi, 1. Alsvg H. Omsorg-med udgangspunkt i Kari Mart.</p><p></p><p>Fang, C., & Wang, C. (2020). Time Series Data Imputation: A Survey on Deep</p><p>Learning Approaches. http://arxiv.org/abs/2011.11347</p><p></p><p>Ferguson, K. (2018). Why Its Important to Standardize Your Data. Human of Data</p><p>by Atlan. https://humansofdata.atlan.com/2018/12/datastandardization/#:~:</p><p>text=Standardized data is essential for,data to measure it</p><p>against.</p><p></p><p>Fogarty, D. J. (2006). Multiple imputation as a missing data approach to reject</p><p>inference on consumer credit scoring. Interstat, December 2000, 141.</p><p>http://interstat.statjournals.net/YEAR/2006/articles/0609001.pdf</p><p></p><p>Forghani, Y., Tabrizi, R. S., Yazdi, H. S., & Akbarzadeh-T, M. R. (2011). Fuzzy</p><p>support vector regression. 2011 1st International EConference on Computer and</p><p>Knowledge Engineering, ICCKE 2011, Vc, 2833.</p><p>https://doi.org/10.1109/ICCKE.2011.6413319</p><p></p><p>Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation.</p><p>Statistics and Computing, 21(2), 137146. https://doi.org/10.1007/s11222-009-</p><p>9153-8</p><p></p><p>Gaag, M. van der, Hoffman, T., Remijsen, M., Hijman, R., de Haan, L., van Meijel,</p><p>B., van Harten, P. N., Valmaggia, L., de Hert, M., Cuijpers, A., & Wiersma, D.</p><p>(2006). The five-factor model of the Positive and Negative Syndrome Scale II: A</p><p>ten-fold cross-validation of a revised model. Schizophrenia Research, 85(13),</p><p>280287. https://doi.org/10.1016/j.schres.2006.03.021</p><p></p><p>Gao, L., Song, J., Liu, X., Shao, J., Liu, J., & Shao, J. (2017). Learning in highdimensional</p><p>multimedia data: the state of the art. Multimedia Systems, 23(3),</p><p>303313. https://doi.org/10.1007/s00530-015-0494-1</p><p></p><p>Gao, Y., Merz, C., Lischeid, G., & Schneider, M. (2018). A review on missing</p><p>hydrological data processing. Environmental Earth Sciences, 77(2), 47.</p><p>https://doi.org/10.1007/s12665-018-7228-6</p><p></p><p>Gaur, A., & Simonovic, S. P. (2018). Introduction to physical scaling: A model aimed</p><p>to bridge the gap between statistical and dynamic downscaling approaches. In</p><p>Trends and Changes in Hydroclimatic Variables: Links to Climate Variability</p><p>and Change. Elsevier Inc. https://doi.org/10.1016/B978-0-12-810985-4.00004-9</p><p></p><p>Geisser, S. (1975). The predictive sample reuse method with applications. Journal of</p><p>the American Statistical Association, 70(350), 320328.</p><p>https://doi.org/10.1080/01621459.1975.10479865</p><p></p><p>Ghahramani, Z. (2004). Unsupervised Learning. Machine Learning, 72112.</p><p></p><p>Ghasemi, F., Mehridehnavi, A., Prez-Garrido, A., & Prez-Snchez, H. (2018).</p><p>Neural network and deep-learning algorithms used in QSAR studies: merits and</p><p>drawbacks. Drug Discovery Today, 23(10), 17841790.</p><p>https://doi.org/10.1016/j.drudis.2018.06.016</p><p></p><p>Ghosh, S., & Mujumdar, P. P. (2008). Statistical downscaling of GCM simulations to</p><p>streamflow using relevance vector machine. Advances in Water Resources,</p><p>31(1), 132146. https://doi.org/10.1016/j.advwatres.2007.07.005</p><p></p><p>Ghritlahre, H. K., & Prasad, R. K. (2018). Application of ANN technique to predict</p><p>the performance of solar collector systems - A review. Renewable and</p><p>Sustainable Energy Reviews, 84(September 2017), 7588.</p><p>https://doi.org/10.1016/j.rser.2018.01.001</p><p></p><p>Gill, M. K., Asefa, T., Kaheil, Y., & McKee, M. (2007). Effect of missing data on</p><p>performance of learning algorithms for hydrologic predictions: Implications to</p><p>an imputation technique. Water Resources Research, 43(7), 112.</p><p>https://doi.org/10.1029/2006WR005298</p><p></p><p>Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized Cross-Validation as a</p><p>Method for Choosing a Good Ridge Parameter. Technometrics, 21(2), 215223.</p><p></p><p>Goly, A., Teegavarapu, R. S. V., & Mondal, A. (2014). Development and evaluation</p><p>of statistical downscaling models for monthly precipitation. Earth Interactions,</p><p>18(18), 128. https://doi.org/10.1175/EI-D-14-0024.1</p><p></p><p>Gondara, L. (2016). Random forest with random projection to impute missing gene</p><p>expression data. Proceedings - 2015 IEEE 14th International Conference on</p><p>Machine Learning and Applications, ICMLA 2015, 12511256.</p><p>https://doi.org/10.1109/ICMLA.2015.29</p><p></p><p>Grace-Martin, K. (2013). Assessing the Fit of Regression Models. The Analysis</p><p>Factor. https://www.theanalysisfactor.com/assessing-the-fit-of-regressionmodels/</p><p></p><p>Graham, J. W. (2009). Missing data analysis: Making it work in the real world.</p><p>Annual Review of Psychology, 60, 549576.</p><p>https://doi.org/10.1146/annurev.psych.58.110405.085530</p><p></p><p>Gupta, P. (2017). Cross-Validation in Machine Learning. Towars Data Science.</p><p>https://towardsdatascience.com/cross-validation-in-machine-learning-</p><p>72924a69872f</p><p></p><p>Hadipour, S., Harun, S., Arefnia, A., & Alamgir, M. (2016). Transfer function models</p><p>for statistical downscaling of monthly precipitation. Jurnal Teknologi, 78(94),</p><p>5562. https://doi.org/10.11113/jt.v78.9695</p><p></p><p>Halik, G., Anwar, N., Santosa, B., & Edijatno. (2015). Reservoir inflow prediction</p><p>under GCM scenario downscaled by wavelet transform and support vector</p><p>machine hybrid models. Advances in Civil Engineering, 2015(July).</p><p>https://doi.org/10.1155/2015/515376</p><p></p><p>Hamidi, O., Poorolajal, J., Sadeghifar, M., Abbasi, H., Maryanaji, Z., Faridi, H. R., &</p><p>Tapak, L. (2015). A comparative study of support vector machines and artificial</p><p>neural networks for predicting precipitation in Iran. Theoretical and Applied</p><p>Climatology, 119(34), 723731. https://doi.org/10.1007/s00704-014-1141-z</p><p></p><p>Han, M., & Zhao, Y. (2010). Robust relevance vector machine with noise variance</p><p>coefficient. Proceedings of the International Joint Conference on Neural</p><p>Networks. https://doi.org/10.1109/IJCNN.2010.5596989</p><p></p><p>Hannah, L. (2015). The Climate System and Climate Change. In Climate Change</p><p>Biology. https://doi.org/10.1016/b978-0-12-420218-4.00002-0</p><p></p><p>Hasan, N., Nath, N. C., & Rasel, R. I. (2016). A support vector regression model for</p><p>forecasting rainfall. 2nd International Conference on Electrical Information and</p><p>Communication Technologies, EICT 2015, Eict, 554559.</p><p>https://doi.org/10.1109/EICT.2015.7392014</p><p></p><p>Hayati Rezvan, P., Lee, K. J., & Simpson, J. A. (2015). The rise of multiple</p><p>imputation: A review of the reporting and implementation of the method in</p><p>medical research Data collection, quality, and reporting. BMC Medical Research</p><p>Methodology, 15(1), 114. https://doi.org/10.1186/s12874-015-0022-1</p><p></p><p>Heitjan, D. F., Rubin, D. B., Heitjan, B. Y. D. F., & Rubin, D. B. (1991). Ignorability</p><p>and Coarse Data. The Annals of Statistics, 19(4), 22442253.</p><p></p><p>Henn, B., Raleigh, M. S., Fisher, A., & Lundquist, J. D. (2013). A comparison of</p><p>methods for filling gaps in hourly near-surface air temperature data. Journal of</p><p>Hydrometeorology, 14(3), 929945. https://doi.org/10.1175/JHM-D-12-027.1</p><p></p><p>Hewitson, B. C., & Crane, R. G. (1996). Climate downscaling: Techniques and</p><p>application. Climate Research, 7(2), 8595. https://doi.org/10.3354/cr007085</p><p></p><p>Hjelmfelt, A. T., & Wang, M. (1993). Predicting Runoff using Artificial Neural</p><p>Networks. Proceedings of the International Conference on Hydrology and Water</p><p>Resources, 16(December), 233244. https://doi.org/10.1007/978-94-011-0389-</p><p>3_16</p><p></p><p>Hoi, S. C. H., Jin, R., Zhu, J., & Lyu, M. R. (2009). Semisupervised SVM batch mode</p><p>active learning with applications to image retrieval. ACM Transactions on</p><p>Information Systems, 27(3), 129. https://doi.org/10.1145/1508850.1508854</p><p></p><p>Hong, S., & Lynn, H. S. (2020). Accuracy of random-forest-based imputation of</p><p>missing data in the presence of non-normality, non-linearity, and interaction.</p><p>BMC Medical Research Methodology, 20(1), 112.</p><p>https://doi.org/10.1186/s12874-020-01080-1</p><p></p><p>Hotelling, H. (1933). Analysis of a complex of statistical variables into principal</p><p>component. Journal of Educational Psychology, 24(6), 417.</p><p></p><p>Hou, K., Shao, G., Wang, H., Zheng, L., Zhang, Q., Wu, S., & Hu, W. (2018).</p><p>Research on practical power system stability analysis algorithm based on</p><p>modified SVM. Protection and Control of Modern Power Systems, 3(1).</p><p>https://doi.org/10.1186/s41601-018-0086-0</p><p></p><p>Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2016). A Practical Guide to Support Vector</p><p>Classification. Department of Computer Science NAtional Taiwan University,</p><p>106. https://doi.org/10.1177/02632760022050997</p><p></p><p>Huang, S., Nianguang, C. A. I., Penzuti Pacheco, P., Narandes, S., Wang, Y., &</p><p>Wayne, X. U. (2018). Applications of support vector machine (SVM) learning in</p><p>cancer genomics. Cancer Genomics and Proteomics, 15(1), 4151.</p><p>https://doi.org/10.21873/cgp.20063</p><p></p><p>Hunt, L. A. (2017). Missing data imputation and its effect on the accuracy of</p><p>classification. Studies in Classification, Data Analysis, and Knowledge</p><p>Organization, 195089, 314. https://doi.org/10.1007/978-3-319-55723-6_1</p><p></p><p>Hussain, M., Yusof, K. W., Mustafa, M. R., & Afshar, N. R. (2015). Application of</p><p>statistical downscaling model (SDSM) for long term prediction of rainfall in</p><p>Sarawak, Malaysia. Water Resources Management VIII, 1, 269278.</p><p>https://doi.org/10.2495/wrm150231</p><p></p><p>I, W., & Rahman S, S. S. U. (2015). Treatment of Missing Values in Data Mining.</p><p>Journal of Computer Science & Systems Biology, 09(02), 5153.</p><p>https://doi.org/10.4172/jcsb.1000221</p><p></p><p>Idri, A., Abnane, I., & Abran, A. (2015). Systematic mapping study of missing values</p><p>techniques in software engineering data. 2015 IEEE/ACIS 16th International</p><p>Conference on Software Engineering, Artificial Intelligence, Networking and</p><p>Parallel/Distributed Computing, SNPD 2015 - Proceedings.</p><p>https://doi.org/10.1109/SNPD.2015.7176280</p><p></p><p>Irawan, N. D., Wijono, W., & Setyawati, O. (2017). Perbaikan Missing value</p><p>Menggunakan Pendekatan Korelasi Pada Metode K-Nearest Neighbor. Jurnal</p><p>Infotel, 9(3). https://doi.org/10.20895/infotel.v9i3.286</p><p></p><p>Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random</p><p>survival forests. Annals of Applied Statistics, 2(3), 841860.</p><p>https://doi.org/10.1214/08-AOAS169</p><p></p><p>Janecek, A., Gansterer, W. N. W., Demel, M., & Ecker, G. (2008). On the</p><p>Relationship Between Feature Selection and Classification Accuracy. Fsdm, 4,</p><p>90105.</p><p></p><p>Jemain, A. A. (2015). Penyurihan Ikhtisas Data Hujan. Dewan Bahasa dan Pustaka.</p><p></p><p>Jiang, P., & Chen, J. (2016). Displacement prediction of landslide based on</p><p>generalized regression neural networks with K-fold cross-validation.</p><p>Neurocomputing, 198, 4047. https://doi.org/10.1016/j.neucom.2015.08.118</p><p></p><p>Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent</p><p>developments. Philosophical Transactions of the Royal Society A: Mathematical,</p><p>Physical and Engineering Sciences, 374(2065).</p><p>https://doi.org/10.1098/rsta.2015.0202</p><p></p><p>Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and</p><p>prospects. Science, 349(6245), 255260. https://doi.org/10.1126/science.aaa8415</p><p></p><p>Joseph, V. R., & Vakayil, A. (2021). SPlit: An Optimal Method for Data Splitting.</p><p>Technometrics, 0(0), 111. https://doi.org/10.1080/00401706.2021.1921037</p><p></p><p>Journe, M., Nesterov, Y., Richtrik, P., & Sepulchre, R. (2010). Generalized power</p><p>method for sparse principal component analysis. Journal of Machine Learning</p><p>Research, 11, 517553.</p><p></p><p>Juvonen, A., Sipola, T., & Hmlinen, T. (2015). Online anomaly detection using</p><p>dimensionality reduction techniques for HTTP log analysis. Computer Networks,</p><p>91, 4656. https://doi.org/10.1016/j.comnet.2015.07.019</p><p></p><p>Kriinen, M. (2006). Semi-supervised model selection based on cross-validation.</p><p>IEEE International Conference on Neural Networks - Conference Proceedings,</p><p>18941899. https://doi.org/10.1109/ijcnn.2006.246911</p><p></p><p>Kabanda, T., & Nenwiini, S. (2016). Impacts of climate variation on the length of the</p><p>rainfall season: an analysis of spatial patterns in North-East South Africa.</p><p>Theoretical and Applied Climatology, 125(12), 93100.</p><p>https://doi.org/10.1007/s00704-015-1498-7</p><p></p><p>Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.</p><p>Psychometrika, 23(3), 187200. https://doi.org/10.1007/BF02289233</p><p></p><p>Kaiser, J. (2014). Dealing with Missing Values in Data. Journal of Systems</p><p>Integration, 4251. https://doi.org/10.20470/jsi.v5i1.178</p><p></p><p>Kamaruzaman, I. F., Wan Zin, W. Z., & Mohd Ariff, N. (2017). A comparison of</p><p>method for treating missing daily rainfall data in Peninsular Malaysia. Malaysian</p><p>Journal of Fundamental and Applied Sciences, 13(41), 375380.</p><p>https://doi.org/10.11113/mjfas.v13n4-1.781</p><p></p><p>Kamble, V. B., & Deshmukh, S. N. (2017). Comparision Between Accuracy and</p><p>MSE,RMSE by Using Proposed Method with Imputation Technique. Oriental</p><p>Journal of Computer Science and Technology, 10(04), 773779.</p><p>https://doi.org/10.13005/ojcst/10.04.11</p><p></p><p>Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of</p><p>Anesthesiology, 64(5), 402406. https://doi.org/10.4097/kjae.2013.64.5.402</p><p></p><p>Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J., & Rajabi, M. J. (2014).</p><p>Advantage and drawback of support vector machine functionality. I4CT 2014 -</p><p>1st International Conference on Computer, Communications, and Control</p><p>Technology, Proceedings, I4ct, 6365.</p><p>https://doi.org/10.1109/I4CT.2014.6914146</p><p></p><p>Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1995). Neural networks</p><p>for river flow prediction. Journal of Computing in Civil Engineering, 8(2), 201</p><p>220. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(293.x)</p><p></p><p>Kassambara. (2018). Evaluation of Classification Model Accuracy: Essentials.</p><p>Statistical Tools for High-Throughput Data Analysis (STHDA).</p><p>http://www.sthda.com/english/articles/36-classification-methods-essentials/143-</p><p>evaluation-of-classification-model-accuracy-essentials/</p><p></p><p>Katal, A., Wazid, M., & Goundar, R. (2013). Big Data: Issues, Challenges, Tools and</p><p>Good Practices. 2013 Sixth International Conference on Contemporary</p><p>Computing (IC3), 404409. https://doi.org/10.1109/IC3.2013.6612229.</p><p></p><p>Kavitha, R., & Kannan, E. (2016). An efficient framework for heart disease</p><p>classification using feature extraction and feature selection technique in data</p><p>mining. 1st International Conference on Emerging Trends in Engineering,</p><p>Technology and Science, ICETETS 2016 - Proceedings.</p><p>https://doi.org/10.1109/ICETETS.2016.7603000</p><p></p><p>Khan, F. U. F., Khan, K. U. Z., & Singh, S. K. (2018). Is Group Means Imputation</p><p>Any Better Than Mean Imputation: A Study Using C5.0 Classifier. Journal of</p><p>Physics: Conference Series, 1060(1), 15. https://doi.org/10.1088/1742-</p><p>6596/1060/1/012014</p><p></p><p>Kim, J., & Ryu, J. H. (2016). A heuristic gap filling method for daily precipitation</p><p>series. Water Resources Management, 30(7), 22752294.</p><p>https://doi.org/10.1007/s11269-016-1284-z</p><p></p><p>Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent</p><p>benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores.</p><p>Hydrology and Earth System Sciences, 23(10), 43234331.</p><p>https://doi.org/10.5194/hess-23-4323-2019</p><p></p><p>Koch, P., Konen, W., Flasch, O., & Bartz-Beielstein, T. (n.d.). Optimization of</p><p>Support Vector Regression Models for Stormwater Prediction. 146--160.</p><p></p><p>Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy</p><p>Estimation and Model Selection. International Joint Conference of Artificial</p><p>Intelligence, March 2001.</p><p></p><p>Kolmogorov, A. N. (1957). On the representation of continuous functions of several</p><p>variables as superpositions of continuous functions of one variable and addition.</p><p>Doklady Akademii Nauk SSSR, 114(5), 953956. https://doi.org/10.18411/lj-12-</p><p>2018-148</p><p></p><p>Kong, D., Chen, Y., Li, N., Duan, C., Lu, L., & Chen, D. (2019). Relevance vector</p><p>machine for tool wear prediction. Mechanical Systems and Signal Processing,</p><p>127, 573594. https://doi.org/10.1016/j.ymssp.2019.03.023</p><p></p><p>Kong, Q., Gong, H., Ding, X., & Hou, R. (2017). Classification Application Based on</p><p>Mutual Information and Random Forest Method for High Dimensional Data.</p><p>Proceedings - 9th International Conference on Intelligent Human-Machine</p><p>Systems and Cybernetics, IHMSC 2017, 1(Mi), 171174.</p><p>https://doi.org/10.1109/IHMSC.2017.45</p><p></p><p>Kotu, V., & Deshpande, B. (2019). Model Evaluation. Data Science, 263279.</p><p>https://doi.org/10.1016/b978-0-12-814761-0.00008-3</p><p></p><p>Kouhestani, S., Eslamian, S. S., Abedi-Koupai, J., & Besalatpour, A. A. (2016).</p><p>Projection of climate change impacts on precipitation using soft-computing</p><p>techniques: A case study in Zayandeh-rud Basin, Iran. Global and Planetary</p><p>Change, 144(July), 158170. https://doi.org/10.1016/j.gloplacha.2016.07.013</p><p></p><p>Kumar, P. S., Praveen, T. V., & Prasad, M. A. (2016). Artificial Neural Network</p><p>Model for Rainfall-Runoff -A Case Study. International Journal of Hybrid</p><p>Information Technology, 9(3), 263272.</p><p>https://doi.org/10.14257/ijhit.2016.9.3.24</p><p></p><p>Lang, K. M., & Little, T. D. (2018). Principled missing data treatments. Prevention</p><p>Science, 19(3), 284294. https://doi.org/10.1007/s11121-016-0644-5</p><p></p><p>Larson, S. C. (1931). The shrinkage of the coefficient of multiple correlation. Journal</p><p>of Educational Psychology, 22(1), 4555. https://doi.org/10.1037/h0072400</p><p></p><p>Lee, K. J., & Carlin, J. B. (2010). Multiple imputation for missing data: Fully</p><p>conditional specification versus multivariate normal imputation. American</p><p>Journal of Epidemiology, 171(5), 624632. https://doi.org/10.1093/aje/kwp425</p><p></p><p>Lei, J. (2019). Cross-Validation With Confidence. Journal of the American Statistical</p><p>Association, 115(532), 19781997.</p><p>https://doi.org/10.1080/01621459.2019.1672556</p><p></p><p>Li, L., He, S., Zhang, J., & Ran, B. (2016). Short-term highway traffic flow prediction</p><p>based on a hybrid strategy considering temporalspatial information. Journal of</p><p>Advanced Transportation, 50(8), 20292040. https://doi.org/10.1002/atr.1443</p><p></p><p>Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R</p><p>News, 2(3), 1822.</p><p></p><p>Lin, S., Zhang, S., Qiao, J., Liu, H., & Yu, G. (2008). A parameter choosing method</p><p>of SVR for time series prediction. Proceedings of the 9th International</p><p>Conference for Young Computer Scientists, ICYCS 2008, 130135.</p><p>https://doi.org/10.1109/ICYCS.2008.393</p><p></p><p>Lionello, P., Abrantes, F., Congedi, L., Dulac, F., Gacic, M., Gomis, D., Goodess, C.,</p><p>Hoff, H., Kutiel, H., Luterbacher, J., Planton, S., Reale, M., Schrder, K.,</p><p>Vittoria Struglia, M., Toreti, A., Tsimplis, M., Ulbrich, U., & Xoplaki, E. (2012).</p><p>Introduction: Mediterranean Climate-Background Information. In The Climate of</p><p>the Mediterranean Region. Elsevier. https://doi.org/10.1016/B978-0-12-416042-</p><p>2.00012-4</p><p></p><p>Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the</p><p>assessment of groundwater quality in a blackfoot disease area in Taiwan. Science</p><p>of the Total Environment, 313(13), 7789. https://doi.org/10.1016/S0048-</p><p>9697(02)00683-6</p><p></p><p>Lo Presti, R., Barca, E., & Passarella, G. (2010). A methodology for treating missing</p><p>data applied to daily rainfall data in the Candelaro River Basin (Italy).</p><p>Environmental Monitoring and Assessment, 160(14), 122.</p><p>https://doi.org/10.1007/s10661-008-0653-3</p><p></p><p>Lopez, C., Tucker, S., Salameh, T., & Tucker, C. (2018). An unsupervised machine</p><p>learning method for discovering patient clusters based on genetic signatures.</p><p>Journal of Biomedical Informatics, 85(June), 3039.</p><p>https://doi.org/10.1016/j.jbi.2018.07.004</p><p></p><p>Loyola R, D. G., Pedergnana, M., & Gimeno Garca, S. (2016). Smart sampling and</p><p>incremental function learning for very large high dimensional data. Neural</p><p>Networks, 78, 7587. https://doi.org/10.1016/j.neunet.2015.09.001</p><p></p><p>Luo, J., & Sun, Y. (2020). Optimization of process parameters for the minimization of</p><p>surface residual stress in turning pure iron material using central composite</p><p>design. Measurement: Journal of the International Measurement Confederation,</p><p>163, 108001. https://doi.org/10.1016/j.measurement.2020.108001</p><p></p><p>MacKay, D. J. C. (1996). Bayesian Methods for Backpropagation Networks. Physics</p><p>of Neural Networks, 211254. https://doi.org/10.1007/978-1-4612-0723-8_6</p><p></p><p>Mahmood, B. (2016). 4 Reasons Your Machine Learning Model is Wrong (and How</p><p>to Fix It). KD Nuggets. https://www.kdnuggets.com/2016/12/4-reasons-machinelearning-</p><p>model-wrong.html</p><p></p><p>Majumder, S. K., Ghosh, N., & Gupta, P. K. (2005). Relevance vector machine for</p><p>optical diagnosis of cancer. Lasers in Surgery and Medicine, 36(4), 323333.</p><p>https://doi.org/10.1002/lsm.20160</p><p></p><p>Malhi, A., & Gao, R. X. (2004). PCA-based feature selection scheme for machine</p><p>defect classification. IEEE Transactions on Instrumentation and Measurement,</p><p>53(6), 15171525. https://doi.org/10.1109/TIM.2004.834070</p><p></p><p>Mandel J, S. P. (2015). A Comparison of Six Methods for Missing Data Imputation.</p><p>Journal of Biometrics & Biostatistics, 06(01), 16. https://doi.org/10.4172/2155-</p><p>6180.1000224</p><p></p><p>Manikandan, J., & Venkataramani, B. (2009). Design of a modified one-against-all</p><p>SVM classifier. Conference Proceedings - IEEE International Conference on</p><p>Systems, Man and Cybernetics, October, 18691874.</p><p>https://doi.org/10.1109/ICSMC.2009.5346200</p><p></p><p>Marais, J., Dreuzy, J. De, Marais, J., Prospective, J. D. D., & Learning, D. (2018).</p><p>Prospective Interest of Deep Learning for Hydrological Inference. Groundwater,</p><p>Wiley, 55(5), 688692. https://hal-insu.archives-ouvertes.fr/insu-01574652</p><p></p><p>McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the NashSutcliffe</p><p>Efficiency Index. Journal of Hydrologic Engineering, 11(6), 597602.</p><p>https://doi.org/10.1061/(asce)1084-0699(2006)11:6(597)</p><p></p><p>Mechoso, C. R., & Arakawa, A. (2015). Numerical Models: General Circulation</p><p>Models. In Encyclopedia of Atmospheric Sciences: Second Edition (Second Edi,</p><p>Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-12-382225-3.00157-2</p><p></p><p>Mehta, P., Bukov, M., Wang, C. H., Day, A. G. R., Richardson, C., Fisher, C. K., &</p><p>Schwab, D. J. (2019). A high-bias, low-variance introduction to Machine</p><p>Learning for physicists. Physics Reports, 810, 1124.</p><p>https://doi.org/10.1016/j.physrep.2019.03.001</p><p></p><p>Mekonnen, D. G., Moges, M. A., Mulat, A. G., & Shumitter, P. (2019). The impact of</p><p>climate change on mean and extreme state of hydrological variables in Megech</p><p>watershed, Upper Blue Nile Basin, Ethiopia. In Extreme Hydrology and Climate</p><p>Variability: Monitoring, Modelling, Adaptation and Mitigation (Issue 2009).</p><p>Elsevier Inc. https://doi.org/10.1016/B978-0-12-815998-9.00011-7</p><p></p><p>Meng, C., Zeleznik, O. A., Thallinger, G. G., Kuster, B., Gholami, A. M., & Culhane,</p><p>A. C. (2016). Dimension reduction techniques for the integrative analysis of</p><p>multi-omics data. Briefings in Bioinformatics, 17(4), 628641.</p><p>https://doi.org/10.1093/bib/bbv108</p><p></p><p>Methaprayoon, K., Yingvivatanapong, C., Lee, W. J., & Liao, J. R. (2007). An</p><p>integration of ANN wind power estimation into unit commitment considering the</p><p>forecasting uncertainty. IEEE Transactions on Industry Applications, 43(6),</p><p>14411448. https://doi.org/10.1109/TIA.2007.908203</p><p></p><p>Minakshi Vohra, R. G. (2014). Missing Value Imputation in Multi Attribute Data Set.</p><p>International Journal of Computer Science and Information Technologies, 5(4),</p><p>53155321.</p><p></p><p>Mishra, N., Soni, H. K., Sharma, S., & Upadhyay, A. K. (2018). Development and</p><p>analysis of Artificial Neural Network models for rainfall prediction by using</p><p>time-series data. International Journal of Intelligent Systems and Applications,</p><p>10(1), 1623. https://doi.org/10.5815/ijisa.2018.01.03</p><p></p><p>Mishra, S., & Datta-Gupta, A. (2018). Data-Driven Modeling. Applied Statistical</p><p>Modeling and Data Analytics, 195224. https://doi.org/10.1016/b978-0-12-</p><p>803279-4.00008-0</p><p></p><p>Moritz, S., Sard, A., Bartz-Beielstein, T., Zaefferer, M., & Stork, J. (2015).</p><p>Comparison of different Methods for Univariate Time Series Imputation in R.</p><p>Preprint ArXiv:1510.03924, arXiv, 120. http://arxiv.org/abs/1510.03924</p><p></p><p>Moss, H. B., Leslie, D. S., & Rayson, P. (2018). Using J-K-fold cross validation to</p><p>reduce variance when tuning NLP models. ArXiv.</p><p></p><p>Mosteller, F., & Tukey, J. W. (1968). Data analysis, including statistics. In Handbook</p><p>of Social Psychology. Addison-Wesley. https://doi.org/10.1214/aos/1043351253</p><p></p><p>Mosteller, Frederick, & Wallace, D. L. (1963). Inference in an Authorship Problem.</p><p>Journal of the American Statistical Association, 58(302), 275309.</p><p>https://doi.org/10.1080/01621459.1963.10500849</p><p></p><p>Mubarak, S., Darwis, H., Umar, F., Ilmawan, L. B., Anraeni, S., & Mude, M. A.</p><p>(2018). Feature Selection of Oral Cyst and Tumor Images Using Principal</p><p>Component Analysis. Proceedings - 2nd East Indonesia Conference on</p><p>Computer and Information Technology: Internet of Things for Industry,</p><p>EIConCIT 2018, 322325. https://doi.org/10.1109/EIConCIT.2018.8878641</p><p></p><p>Muhammad, I., & Yan, Z. (2015). Supervised Machine Learning Approaches: a</p><p>Survey. ICTACT Journal on Soft Computing, 05(03), 946952.</p><p>https://doi.org/10.21917/ijsc.2015.0133</p><p></p><p>Murti, D. M. P., Pujianto, U., Wibawa, A. P., & Akbar, M. I. (2019). K-Nearest</p><p>Neighbor (K-NN) based Missing Data Imputation. Proceeding - 2019 5th</p><p>International Conference on Science in Information Technology: Embracing</p><p>Industry 4.0: Towards Innovation in Cyber Physical System, ICSITech 2019, 83</p><p>88. https://doi.org/10.1109/ICSITech46713.2019.8987530</p><p></p><p>Naik, P., Wedel, M., Bacon, L., Bodapati, A., Bradlow, E., Kamakura, W., Kreulen,</p><p>J., Lenk, P., Madigan, D. M., & Montgomery, A. (2008). Challenges and</p><p>opportunities in high-dimensional choice data analyses. Marketing Letters, 19(3</p><p>4), 201213. https://doi.org/10.1007/s11002-008-9036-3</p><p></p><p>Nanda, M. A., Seminar, K. B., Nandika, D., & Maddu, A. (2018). A comparison study</p><p>of kernel functions in the support vector machine and its application for termite</p><p>detection. Information (Switzerland), 9(1). https://doi.org/10.3390/info9010005</p><p></p><p>Nash, J. E., & Sutcliffe, J. V. (1970). River Flow Forecasting through Conceptual</p><p>Models Part 1- A discussion of principles. In Journal of Hydrology (Vol. 10,</p><p>Issue 3). https://doi.org/10.1080/00750770109555783</p><p></p><p>Nasteski, V. (2017). An overview of the supervised machine learning methods.</p><p>Horizons.B, 4(December 2017), 5162.</p><p>https://doi.org/10.20544/horizons.b.04.1.17.p05</p><p></p><p>Nasution, M. Z. F., Sitompul, O. S., & Ramli, M. (2018). PCA based feature</p><p>reduction to improve the accuracy of decision tree c4.5 classification. Journal of</p><p>Physics: Conference Series, 978(1). https://doi.org/10.1088/1742-</p><p>6596/978/1/012058</p><p></p><p>Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipfs law.</p><p>Contemporary Physics, 46(5), 323351.</p><p>https://doi.org/10.1080/00107510500052444</p><p></p><p>Ng, S. C. (2017). Principal component analysis to reduce dimension on digital image.</p><p>Procedia Computer Science, 111(2015), 113119.</p><p>https://doi.org/10.1016/j.procs.2017.06.017</p><p></p><p>Nikolaev, N., & Tino, P. (2005). Sequential relevance vector machine learning from</p><p>time series. Proceedings of the International Joint Conference on Neural</p><p>Networks, 2, 13081313. https://doi.org/10.1109/IJCNN.2005.1556043</p><p></p><p>Nishijima, M., Nieuwenhoff, N., Pires, R., & Oliveira, P. R. (2019). Movie films</p><p>consumption in Brazil: an analysis of support vector machine classification. AI</p><p>and Society, 0123456789. https://doi.org/10.1007/s00146-019-00899-7</p><p></p><p>Noor, M., Tarmizi Ismail, S. S., Bin, F. A. B., Nashwan, M. S., Khan, N., Ahmed, K.,</p><p>Shiru, M. S., Muhammad, M. K. I. Bin, A.Salman, S., Momade, M. H., Iqbal, Z.,</p><p>SaAdi, Z., & Khan, and S. U. (n.d.). Annual Rainfall Variations in Peninsular</p><p>Malaysia under Climate Change Scenarios. 1(15), 298317.</p><p></p><p>Nourani, V., Razzaghzadeh, Z., Baghanam, A. H., & Molajou, A. (2019). ANN-based</p><p>statistical downscaling of climatic parameters using decision tree predictor</p><p>screening method. Theoretical and Applied Climatology, 137(34), 17291746.</p><p>https://doi.org/10.1007/s00704-018-2686-z</p><p></p><p>O. Yamini, & Prof. S. Ramakrishna. (2015). A Study on Advantages of Data Mining</p><p>Classification Techniques. International Journal of Engineering Research And,</p><p>V4(09), 969972. https://doi.org/10.17577/ijertv4is090815</p><p></p><p>Okkan, U., & Inan, G. (2015). Bayesian Learning and Relevance Vector Machines</p><p>Approach for Downscaling of Monthly Precipitation. Journal of Hydrologic</p><p>Engineering, 20(4), 04014051. https://doi.org/10.1061/(asce)he.1943-</p><p>5584.0001024</p><p></p><p>Okkan, U., Serbes, Z. A., & Samui, P. (2014). Relevance vector machines approach</p><p>for long-term flow prediction. Neural Computing and Applications, 25(6), 1393</p><p>1405. https://doi.org/10.1007/s00521-014-1626-9</p><p></p><p>Othman, A. S., & Tukimat, N. N. A. (2018). Assessment of the Potential Occurrence</p><p>of Dry Period in the Long Term for Pahang State, Malaysia. MATEC Web of</p><p>Conferences, 150, 16. https://doi.org/10.1051/matecconf/201815003004</p><p></p><p>Pal, M. (2011). Kernel Methods in Remote Sensing: A review. Ish Journal of</p><p>Hydraulic Engineering, 15(1), 194215. http://arxiv.org/abs/1101.2987</p><p></p><p>Panigrahi, R., & Borah, S. (2019). Classification and Analysis of Facebook Metrics</p><p>Dataset Using Supervised Classifiers. In Social Network Analytics. Elsevier Inc.</p><p>https://doi.org/10.1016/b978-0-12-815458-8.00001-3</p><p></p><p>Pantanowitz, A., & Marwala, T. (2009). Missing data imputation through the use of</p><p>the random forest algorithm. Advances in Intelligent and Soft Computing, 61</p><p>AISC, 5362. https://doi.org/10.1007/978-3-642-03156-4_6</p><p></p><p>Parmar, A., Mistree, K., & Sompurna, M. (2017). Machine Learning Techniques for</p><p>Rainfall Prediction : A Review. 3(6), 913917.</p><p></p><p>Paul D., A. (2001). Missing data Quantitative applications in the social sciences.</p><p>SAGE Publication.</p><p></p><p>Pearson F.R.S., K. (1901). Llll. On lines and planes of closest fit to systems of points</p><p>in space. The London, Edinburgh, and Dublin Philosophical Magazine and</p><p>Journal of Science Series, 2(11), 559572.</p><p>https://doi.org/10.1080/14786440109462720</p><p></p><p>Pekalska, E. (2015). Pattern Recognition Tools. Pattern Recognition Tools 37Steps.</p><p>http://37steps.com/4859/cross-validation/</p><p></p><p>Pepinsky, T. B. (2018). A Note on Listwise Deletion versus Multiple Imputation.</p><p>Political Analysis, 26(4), 480488. https://doi.org/10.1017/pan.2018.18</p><p></p><p>Peterson, C., & Rognvaldsson, T. (1991). An Introduction to Artifical Neuron</p><p>Network. In Fundamental of Neural Network: Architecture Algorithm and</p><p>Application (pp. 113169). 1991 CERN School of Computing.</p><p></p><p>Pett, M., Lackey, N., & Sullivan, J. (2011). An Overview of Factor Analysis. Making</p><p>Sense of Factor Analysis, 212. https://doi.org/10.4135/9781412984898.n1</p><p></p><p>Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review</p><p>of reporting practices and suggestions for improvement. Review of Educational</p><p>Research, 74(4), 525556. https://doi.org/10.3102/00346543074004525</p><p></p><p>Pour, S. H., Shahid, S., & Chung, E. S. (2016). A Hybrid Model for Statistical</p><p>Downscaling of Daily Rainfall. Procedia Engineering, 154, 14241430.</p><p>https://doi.org/10.1016/j.proeng.2016.07.514</p><p></p><p>Pramoditha, R. (2021). 11 Dimensionality reduction techniques you should know in</p><p>2021. Medium. https://towardsdatascience.com/11-dimensionality-reductiontechniques-</p><p>you-should-know-in-2021-dcb9500d388b</p><p></p><p>Punlumjeak, W., Arunrerk, J., & Rachburee, N. (2017). An analytics prediction model</p><p>of monthly rainfall time series: Case of Thailand. Journal of Telecommunication,</p><p>Electronic and Computer Engineering, 9(26), 5357.</p><p></p><p>Qian, L., Liu, C., Yi, J., & Liu, S. (2020). Application of hybrid algorithm of bionic</p><p>heuristic and machine learning in nonlinear sequence. Journal of Physics:</p><p>Conference Series, 1682(1). https://doi.org/10.1088/1742-6596/1682/1/012009</p><p></p><p>Qiu, M., Song, Y., & Akagi, F. (2016). Application of artificial neural network for the</p><p>prediction of stock market returns: The case of the Japanese stock market.</p><p>Chaos, Solitons and Fractals, 85, 17.</p><p>https://doi.org/10.1016/j.chaos.2016.01.004</p><p></p><p>Qiu, S., Gao, L., & Wang, J. (2014). Classification and regression of ELM, LVQ and</p><p>SVM for E-nose data of strawberry juice. Journal of Food Engineering, 144, 77</p><p>85. https://doi.org/10.1016/j.jfoodeng.2014.07.015</p><p></p><p>Quiiionero-candela, J., & Hansen, L. K. (2002). Time Series Prediction based on the</p><p>Relevance Vector Machine with Adaptive Kernels. 2002 IEEE International</p><p>Conference on Acoustics, Speech, and Signal Processing, 985988.</p><p></p><p>Raghavendra, S., & Deka, P. C. (2014). Support vector machine applications in the</p><p>field of hydrology: A review. Applied Soft Computing Journal, 19, 372386.</p><p>https://doi.org/10.1016/j.asoc.2014.02.002</p><p></p><p>Rakesh Tanty, & Tanweer S. Desmukh. (2015). Application of Artificial Neural</p><p>Network in Hydrology- A Review. International Journal of Engineering</p><p>Research And, V4(06), 27. https://doi.org/10.17577/ijertv4is060247</p><p></p><p>Raman, H., & Sunilkumar, N. (1995). Multivariate modelling of water resources time</p><p>series using artificial neural networks. Hydrological Sciences Journal, 40(2),</p><p>145163. https://doi.org/10.1080/02626669509491401</p><p></p><p>Rau, P., Bourrel, L., Labat, D., Melo, P., Dewitte, B., Frappart, F., Lavado, W., &</p><p>Felipe, O. (2017). Regionalization of rainfall over the Peruvian Pacific slope and</p><p>coast. International Journal of Climatology, 37(1), 143158.</p><p>https://doi.org/10.1002/joc.4693</p><p></p><p>Rawal, S., Gupta, S. C., & Singh, S. (2017). Predicting Missing Values in a Dataset:</p><p>Challenges and Approaches. International Journal of Recent Research Aspects,</p><p>4(3), 3438. https://www.ijrra.net/Vol4issue3/IJRRA-04-03-07.pdf</p><p></p><p>Ray, S. (2015). 7 Regression Techniques you should know! Analytics Vidhya.</p><p>https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guideregression/</p><p></p><p>Ray, S. (2017). Understanding Support Vector Machine(SVM) algorithm from</p><p>examples (along with code). Analytics Vidhya.</p><p>https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vectormachine-</p><p>example-code/</p><p></p><p>Ries, A., Campbell, A., Strategic, A., Centre, M., & Zeldin, T. (1997). The 80/20</p><p>principle: The secret of achieving more with less. In Long Range Planning (Vol.</p><p>30, Issue 6). https://doi.org/10.1016/s0024-6301(97)80978-8</p><p></p><p>Ritter, A., & Muoz-Carpena, R. (2013). Performance evaluation of hydrological</p><p>models: Statistical significance for reducing subjectivity in goodness-of-fit</p><p>assessments. Journal of Hydrology, 480, 3345.</p><p>https://doi.org/10.1016/j.jhydrol.2012.12.004</p><p></p><p>Rodr, R., Pastorini, M., Etcheverry, L., Chreties, C., Fossati, M., Castro, A., &</p><p>Gorgoglione, A. (2021). Water-Quality Data Imputation with a High Percentage</p><p>of Missing Values : A Machine Learning Approach. Sustainability, 13, 6318.</p><p></p><p>Rohani, A., Taki, M., & Abdollahpour, M. (2018). A novel soft computing model</p><p>(Gaussian process regression with K-fold cross validation) for daily and monthly</p><p>solar radiation forecasting (Part: I). Renewable Energy, 115, 411422.</p><p>https://doi.org/10.1016/j.renene.2017.08.061</p><p></p><p>Rosebrock, A. (2019). Why is my validation loss lower than my training loss?</p><p>PyImageSearch. https://www.pyimagesearch.com/2019/10/14/why-is-myvalidation-</p><p>loss-lower-than-my-training-loss/</p><p></p><p>Roudier, P. (2017). Just enough machine learning to be dangerous. Creative</p><p>Commons Attribution 4.0. http://pierreroudier.github.io/teaching/20171014-</p><p>DSM-Masterclass-Hamilton/machine-learningtheory.</p><p>html#for_more_information</p><p></p><p>Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581592.</p><p>https://doi.org/10.1186/1471-2105-12-432</p><p></p><p>Rubin, D. B., & Wiley, A. J. (2014). Statistical Analysis with Missing Data. NY: John</p><p>Wiley & Sons.</p><p></p><p>Ruiming, F. (2019). Wavelet based relevance vector machine model for monthly</p><p>runoff prediction. Water Quality Research Journal of Canada, 54(2), 134141.</p><p>https://doi.org/10.2166/wcc.2018.196</p><p></p><p>Rushton, A., Croucher, P. and Baker, P. (2014). Handbook of logistics and</p><p>distribution management. Kogan Page Limited.</p><p></p><p>Sachindra, D. A., Ahmed, K., Rashid, M. M., Shahid, S., & Perera, B. J. C. (2018).</p><p>Statistical downscaling of precipitation using machine learning techniques.</p><p>Atmospheric Research, 212, 240258.</p><p>https://doi.org/10.1016/j.atmosres.2018.05.022</p><p></p><p>Sachindra, D. A., Huang, F., Barton, A., & Perera, B. J. C. (2013). Least square</p><p>support vector and multi-linear regression for statistically downscaling general</p><p>circulation model outputs to catchment streamflows. International Journal of</p><p>Climatology, 33(5), 10871106. https://doi.org/10.1002/joc.3493</p><p></p><p>Saiful Samsudin, M., Azid, A., Iskandar Khalit, S., Milleana Shaharudin, S., Lananan,</p><p>F., & Juahir, H. (2018). Pollution Sources Identification of Water Quality Using</p><p>Chemometrics: a Case Study in Klang River Basin, Malaysia. International</p><p>Journal of Engineering & Technology, 7(4.43), 8389.</p><p>https://www.researchgate.net/publication/331701453</p><p></p><p>Saini, O. and P. S. S. (2018). A Review on Dimension Reduction Techniques in Data</p><p>Mining. Computer Engineering and Intelligent Systems, 9(1), 714.</p><p></p><p>Saitta, S. (2010). What is a good classification accuracy in data mining? Data</p><p>Mining. http://www.dataminingblog.com/what-is-a-good-classificationaccuracy-</p><p>in-data-mining/</p><p></p><p>Salvi, K., S., K., & Ghosh, S. (2013). High-resolution multisite daily rainfall</p><p>projections in India with statistical downscaling for climate change impacts</p><p>assessment. Journal of Geophysical Research: Atmospheres, 118(9), 35573578.</p><p>https://doi.org/10.1002/jgrd.50280</p><p></p><p>Samsudin, M. S., Khalit, S. I., Azid, A., Juahir, H., Mohd Saudi, A. S., Sharip, Z., &</p><p>Zaudi, M. A. (2017). Control limit detection for source apportionment in Perlis</p><p>River Basin, Malaysia. Malaysian Journal of Fundamental and Applied</p><p>Sciences, 13(3). https://doi.org/10.11113/mjfas.v13n3.687</p><p></p><p>Samui, P. (2012). Application of Relevance Vector Machine for Prediction of</p><p>Ultimate Capacity of Driven Piles in Cohesionless Soils. Geotechnical and</p><p>Geological Engineering, 30(5), 12611270. https://doi.org/10.1007/s10706-012-</p><p>9539-9</p><p></p><p>Samui, P., & Dixon, B. (2012). Application of support vector machine and relevance</p><p>vector machine to determine evaporative losses in reservoirs. Hydrological</p><p>Processes, 26(9), 13611369. https://doi.org/10.1002/hyp.8278</p><p></p><p>Samui, P., Mandla, V. R., Krishna, A., & Teja, T. (2011). Prediction of Rainfall Using</p><p>Support Vector Machine and Relevance Vector Machine. Earth Science India,</p><p>4(Iv), 188200.</p><p></p><p>Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.</p><p>Psychological Methods, 7(2), 147177. https://doi.org/10.1037/1082-</p><p>989X.7.2.147</p><p></p><p>Schmidt, I., & Mosima, B. (2014). To Impute or Not Impute : That Is the Question ?</p><p>In & H. J. A. (Eds. . In G. J. Mellenbergh (Ed.), Advising on research methods:</p><p>Selected topics 2013. Johannes van Kessel Publishing.</p><p>http://www.paultwin.com/wpcontent/</p><p>uploads/Lodder_1140873_Paper_Imputation.pdf</p><p></p><p>Schlkopf, B., Smola, A., & Mller, K. R. (1997). Kernel principal component</p><p>analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes</p><p>in Artificial Intelligence and Lecture Notes in Bioinformatics), 1327, 583588.</p><p></p><p>Schoof, J. T. (2013). Statistical downscaling in climatology. Geography Compass,</p><p>7(4), 249265. https://doi.org/10.1111/gec3.12036</p><p></p><p>Shaharudin, S. M., Ahmad, N., Zainuddin, N. H., & Mohamed, N. S. (2018).</p><p>Identification of rainfall patterns on hydrological simulation using robust</p><p>principal component analysis. Indonesian Journal of Electrical Engineering and</p><p>Computer Science, 11(3), 11621167.</p><p>https://doi.org/10.11591/ijeecs.v11.i3.pp1162-1167</p><p></p><p>Shaharudin, Shazlyn Milleana, Andayani, S., Kismiantini, Binatari, N., Kurniawan,</p><p>A., Basri, M. A. A., & Zainuddin, N. H. (2020). Imputation methods for</p><p>addressing missing data of monthly rainfall in Yogyakarta, Indonesia.</p><p>International Journal of Advanced Trends in Computer Science and</p><p>Engineering, 9(1.4 Special Issue), 646651.</p><p>https://doi.org/10.30534/ijatcse/2020/9091.42020</p><p></p><p>Shamseldin, A. Y. (1997). Application of a neural network technique to rainfallrunoff</p><p>modelling. Journal of Hydrology, 199(34), 272294.</p><p>https://doi.org/10.1016/S0022-1694(96)03330-6</p><p></p><p>Sherer, T., & JiayueHu. (2018). Training and Test Data sets.</p><p>Shetty, B. (2020). An In-Depth Guide to Supervised Machine Learning Classification.</p><p>Built In. https://builtin.com/data-science/supervised-machine-learningclassification</p><p></p><p>Shi, C. R., & Adnan, R. (2014). Modified cross-validation as a method for estimating</p><p>parameter. AIP Conference Proceedings, 1635(2014), 724731.</p><p>https://doi.org/10.1063/1.4903662</p><p></p><p>Shinozaki, T., & Ostendorf, M. (2008). Cross-validation and aggregated EM training</p><p>for robust parameter estimation. Computer Speech and Language, 22(2), 185</p><p>195. https://doi.org/10.1016/j.csl.2007.07.005</p><p></p><p>Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and</p><p>apportionment of pollution sources of Gomti river (India) using multivariate</p><p>statistical techniques - A case study. Analytica Chimica Acta, 538(12), 355</p><p>374. https://doi.org/10.1016/j.aca.2005.02.006</p><p></p><p>Smid, M., & Costa, A. C. (2018). Climate projections and downscaling techniques: a</p><p>discussion for impact studies in urban systems. International Journal of Urban</p><p>Sciences, 22(3), 277307. https://doi.org/10.1080/12265934.2017.1409132</p><p></p><p>Soley-bori, M. (2013). Dealing with missing data: Key assumptions and methods for</p><p>applied analysis. PM931 Directed Study in Health Policy and Management, 4,</p><p>20.</p><p></p><p>Song, F., Guo, Z., & Mei, D. (2010). Feature selection using principal component</p><p>analysis. Proceedings - 2010 International Conference on System Science,</p><p>Engineering Design and Manufacturing Informatization, ICSEM 2010, 1, 2730.</p><p>https://doi.org/10.1109/ICSEM.2010.14</p><p></p><p>Stahl, J. (2019). Overfitting in Machine Learning: What it is and How to prevent.</p><p>Elite Data Science. https://elitedatascience.com/overfitting-in-machine-learning</p><p></p><p>Stekhoven, D. J., & Bhlmann, P. (2012). Missforest-Non-parametric missing value</p><p>imputation for mixed-type data. Bioinformatics, 28(1), 112118.</p><p>https://doi.org/10.1093/bioinformatics/btr597</p><p></p><p>Stephen, O. (2012). Hybrid GA-SVM for Efficient Feature Selection in E-mail</p><p>Classification. 3(3), 1729.</p><p></p><p>Stone M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions.</p><p>Journal of the Royal Statistical Society. Series B (Methodological), 36(2), 111</p><p>147.</p><p></p><p>Stone, M. (1977). Equivalence of Choice of Model by Cross-validation An</p><p>Asymptotic Akaike s Criterion. Journal of the Royal Statistical Society. Series</p><p>B (Methodological), 39(1), 4447.</p><p></p><p>Su, Y., Huang, Y., & Kuo, C. C. J. (2018). Efficient Text Classification Using Treestructured</p><p>Multi-linear Principal Component Analysis. Proceedings -</p><p>International Conference on Pattern Recognition, 2018-Augus, 585590.</p><p>https://doi.org/10.1109/ICPR.2018.8545832</p><p></p><p>Tahir, T., Hashim, A. M., & Yusof, K. W. (2018). Statistical downscaling of rainfall</p><p>under transitional climate in Limbang River Basin by using SDSM. IOP</p><p>Conference Series: Earth and Environmental Science, 140(1).</p><p>https://doi.org/10.1088/1755-1315/140/1/012037</p><p></p><p>Tang, F., & Ishwaran, H. (2017). Random forest missing data algorithms. Statistical</p><p>Analysis and Data Mining, 10(6), 363377. https://doi.org/10.1002/sam.11348</p><p></p><p>Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., & Wu, J. (2016). Statistical</p><p>downscaling and dynamical downscaling of regional climate in China: Present</p><p>climate evaluations and future climate projections. Journal of Geophysical</p><p>Research: Atmospheres, 121, 21102129. https://doi.org/10.1038/175238c0</p><p></p><p>Tangri, N., Ansell, D., & Naimark, D. (2008). Predicting technique survival in</p><p>peritoneal dialysis patients: Comparing artificial neural networks and logistic</p><p>regression. Nephrology Dialysis Transplantation, 23(9), 29722981.</p><p>https://doi.org/10.1093/ndt/gfn187</p><p></p><p>Tannenbaum, C. E. (2009). The Empirical Nature and Statistical Treatment of</p><p>Missing data [University of Pennsylvania]. In ProQuest Dissertations</p><p>Publishing. http://dx.doi.org/10.1016/j.jaci.2012.05.050</p><p></p><p>Tanwar, S., Ramani, T., & Tyagi, S. (2018). Dimensionality reduction using PCA and</p><p>SVD in big data: A comparative case study. Lecture Notes of the Institute for</p><p>Computer Sciences, Social-Informatics and Telecommunications Engineering,</p><p>LNICST, 220 LNICST, 116125. https://doi.org/10.1007/978-3-319-73712-6_12</p><p></p><p>Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping</p><p>using a novel ensemble weights-of-evidence and support vector machine models</p><p>in GIS. Journal of Hydrology, 512, 332343.</p><p>https://doi.org/10.1016/j.jhydrol.2014.03.008</p><p></p><p>Tipping, M. E. (2000). The relevance vector machine. Advances in Neural</p><p>Information Processing Systems, 653658.</p><p></p><p>Tipping, M. E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine.</p><p>Journal of Machine Learning Research, 1(3), 211244.</p><p>https://doi.org/10.1162/15324430152748236</p><p></p><p>Tisseuil, C., Vrac, M., Lek, S., & Wade, A. J. (2010). Statistical downscaling of river</p><p>flows. Journal of Hydrology, 385(14), 279291.</p><p>https://doi.org/10.1016/j.jhydrol.2010.02.030</p><p></p><p>Toku, A. A. (2021). Splitting a Dataset into Train and Test Sets. Baeldung.</p><p>https://www.baeldung.com/cs/train-test-datasets-ratio</p><p></p><p>Tripathi, S., & Govindaraju, R. S. (2007). On selection of kernel parametes in</p><p>relevance vector machines for hydrologic applications. Stochastic Environmental</p><p>Research and Risk Assessment, 21(6), 747764. https://doi.org/10.1007/s00477-</p><p>006-0087-9</p><p></p><p>Tripathi, S., Srinivas, V. V., & Nanjundiah, R. S. (2006). Downscaling of</p><p>precipitation for climate change scenarios: A support vector machine approach.</p><p>Journal of Hydrology, 330(34), 621640.</p><p>https://doi.org/10.1016/j.jhydrol.2006.04.030</p><p></p><p>Trzaska, S., & Schnarr, E. (2014). A review of downscaling methods for climate</p><p>change projections. United States Agency for International Development by</p><p>Tetra Tech ARD, September, 142.</p><p></p><p>Tsakiri, K., Marsellos, A., & Kapetanakis, S. (2018). Artificial neural network and</p><p>multiple linear regression for flood prediction in Mohawk River, New York.</p><p>Water (Switzerland), 10(9). https://doi.org/10.3390/w10091158</p><p></p><p>Tutz, G., & Ramzan, S. (2015). Improved methods for the imputation of missing data</p><p>by nearest neighbor methods. Computational Statistics and Data Analysis,</p><p>90(xxxx), 8499. https://doi.org/10.1016/j.csda.2015.04.009</p><p></p><p>Valentine, J. C., & McHugh, C. M. (2007). The Effects of Attrition on Baseline</p><p>Comparability in Randomized Experiments in Education: A Meta-Analysis.</p><p>Psychological Methods, 12(3), 268282. https://doi.org/10.1037/1082-</p><p>989X.12.3.268</p><p></p><p>Vallantin, L. (2018). Why you should not trust only in accuracy to measure machine</p><p>learning performance. Medium. https://medium.com/@limavallantin/why-youshould-</p><p>not-trust-only-in-accuracy-to-measure-machine-learning-performancea72cf00b4516</p><p></p><p>van der Heijden, G. J. M. G., T. Donders, A. R., Stijnen, T., & Moons, K. G. M.</p><p>(2006). Imputation of missing values is superior to complete case analysis and</p><p>the missing-indicator method in multivariable diagnostic research: A clinical</p><p>example. Journal of Clinical Epidemiology, 59(10), 11021109.</p><p>https://doi.org/10.1016/j.jclinepi.2006.01.015</p><p></p><p>Van Heerden, C., Barnard, E., Davel, M., Van Der Walt, C., Van Dyk, E., Feld, M., &</p><p>Mller, C. (2010). Combining regression and classification methods for</p><p>improving automatic speaker age recognition. ICASSP, IEEE International</p><p>Conference on Acoustics, Speech and Signal Processing - Proceedings, 5174</p><p>5177. https://doi.org/10.1109/ICASSP.2010.5495006</p><p></p><p>Van Uytven, E., De Niel, J., & Willems, P. (2019). Uncovering the shortcomings of a</p><p>weather typing based statistical downscaling method. Hydrology and Earth</p><p>System Sciences Discussions, 135. https://doi.org/10.5194/hess-2019-40</p><p></p><p>Vandal, T., Kodra, E., & Ganguly, A. R. (2019). Intercomparison of machine learning</p><p>methods for statistical downscaling: the case of daily and extreme precipitation.</p><p>Theoretical and Applied Climatology, 137(12), 557570.</p><p>https://doi.org/10.1007/s00704-018-2613-3</p><p></p><p>Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer Science.</p><p>https://doi.org/10.1007/978-1-4757-2440-0</p><p></p><p>Visoni, P. (2015). Predictive Model Selection Criteria for Logistic Regression.</p><p>Statistical Modelling, 8, 10001005. https://doi.org/10.1400/40307</p><p></p><p>Vrac, M., Stein, M., & Hayhoe, K. (2007). Statistical downscaling of precipitation</p><p>through nonhomogeneous stochastic weather typing. Climate Research, 34(3),</p><p>169184. https://doi.org/10.3354/cr00696</p><p></p><p>Vu, M. T., Aribarg, T., Supratid, S., Raghavan, S. V., & Liong, S. Y. (2016).</p><p>Statistical downscaling rainfall using artificial neural network: significantly</p><p>wetter Bangkok? Theoretical and Applied Climatology, 126(34), 453467.</p><p>https://doi.org/10.1007/s00704-015-1580-1</p><p></p><p>Wakefield, K. (2019). Predictive analytics and machine learning. SAS Analytics.</p><p>https://www.sas.com/en_gb/insights/articles/analytics/a-guide-to-predictiveanalytics-</p><p>and-machine-learning.html</p><p></p><p>Waljee, A. K., Mukherjee, A., Singal, A. G., Zhang, Y., Warren, J., Balis, U.,</p><p>Marrero, J., Zhu, J., & Higgins, P. D. R. (2013). Comparison of imputation</p><p>methods for missing laboratory data in medicine. BMJ Open, 3(8), 17.</p><p>https://doi.org/10.1136/bmjopen-2013-002847</p><p></p><p>Wang, J. E., & Qiao, J. Z. (2014). Parameter selection of SVR based on improved kfold</p><p>cross validation. Applied Mechanics and Materials, 462463, 182186.</p><p>https://doi.org/10.4028/www.scientific.net/AMM.462-463.182</p><p></p><p>Wang, Y., Xiao, Y., Lai, J., & Chen, Y. (2020). An adaptive k nearest neighbour</p><p>method for imputation of missing traffic data based on two similarity metrics.</p><p>Archives of Transport, 54(2), 5973. https://doi.org/10.5604/01.3001.0014.2968</p><p></p><p>Wei, L., Yang, Y., Nishikawa, R. M., Wernick, M. N., & Edwards, A. (2005).</p><p>Relevance vector machine for automatic detection a of clustered</p><p>microcalcifications. IEEE Transactions on Medical Imaging, 24(10), 12781285.</p><p>https://doi.org/10.1109/TMI.2005.855435</p><p></p><p>Wen, Z., Li, B., Ramamohanarao, K., Chen, J., Chen, Y., & Zhang, R. (2017).</p><p>Improving efficiency of SVM k-fold cross-validation by alpha seeding. 31st</p><p>AAAI Conference on Artificial Intelligence, AAAI 2017, i, 27682774.</p><p></p><p>Wigley, R. L. W. and T. M. L. (1997). Downscaling general circulation model</p><p>output:a review of methods and limitations. Progress in Physical Geography,</p><p>21(4), 530548.</p><p></p><p>Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., & Mearns, L. O.</p><p>(2004). Guidelines for Use of Climate Scenarios Developed from Statistical</p><p>Downscaling Methods. Analysis, 27(August), 127. https://doi.org/citeulikearticle-</p><p>id:8861447</p><p></p><p>Wiskott, L. (2016). Lecture notes on Principal Component Analysis.</p><p>https://doi.org/http://orcid.org/0000-0001-6237-740X</p><p></p><p>Wiskott, L., & Alberto N., E.-B. (2013). How to Solve Classification and Regression</p><p>Problems on High-Dimensional Data with a Supervised Extension of Slow</p><p>Feature Analysis. Journal of Machine Learning Research, 14, 36833719.</p><p>http://cogprints.org/8966/</p><p></p><p>Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold</p><p>and leave-one-out cross validation. Pattern Recognition, 48(9), 28392846.</p><p>https://doi.org/10.1016/j.patcog.2015.03.009</p><p></p><p>Wu, Y., & Liu, Y. (2007). Robust truncated hinge loss support vector machines.</p><p>Journal of the American Statistical Association, 102(479), 974983.</p><p>https://doi.org/10.1198/016214507000000617</p><p></p><p>Xia, Y. (2020). Correlation and association analyses in microbiome study integrating</p><p>multiomics in health and disease. In Progress in Molecular Biology and</p><p>Translational Science (1st ed., Vol. 171). Elsevier Inc.</p><p>https://doi.org/10.1016/bs.pmbts.2020.04.003</p><p></p><p>Xu, R., Chen, N., Chen, Y., & Chen, Z. (2020). Downscaling and Projection of Multi-</p><p>CMIP5 Precipitation Using Machine Learning Methods in the Upper Han River</p><p>Basin. Advances in Meteorology, 2020. https://doi.org/10.1155/2020/8680436</p><p></p><p>Yadav, S., & Shukla, S. (2016). Analysis of k-Fold Cross-Validation over Hold-Out</p><p>Validation on Colossal Datasets for Quality Classification. Proceedings - 6th</p><p>International Advanced Computing Conference, IACC 2016, Cv, 7883.</p><p>https://doi.org/10.1109/IACC.2016.25</p><p></p><p>Ye, Y., Xiong, Y., Zhou, Q., Wu, J., Li, X., & Xiao, X. (2020). Comparison of</p><p>Machine Learning Methods and Conventional Logistic Regressions for</p><p>Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective</p><p>Cohort Study. Journal of Diabetes Research, 2020.</p><p>https://www.hindawi.com/journals/jdr/2020/4168340/</p><p></p><p>Zainudin, S., Jasim, D. S., & Bakar, A. A. (2016). Comparative analysis of data</p><p>mining techniques for malaysian rainfall prediction. International Journal on</p><p>Advanced Science, Engineering and Information Technology, 6(6), 11481153.</p><p>https://doi.org/10.18517/ijaseit.6.6.1487</p><p></p><p>Zhang, D., Tan, M. L., Dawood, S. R. S., Samat, N., Chang, C. K., Roy, R., Tew, Y.</p><p>L., & Mahamud, M. A. (2020). Comparison of ncep-cfsr and cmads for</p><p>hydrological modelling using swat in the muda river basin, malaysia. Water</p><p>(Switzerland), 12(11). https://doi.org/10.3390/w12113288</p><p></p><p>Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural</p><p>networks in bankruptcy prediction: general framework and cross-validation</p><p>analysis. European Journal of Operational Research, 116(1), 1632.</p><p>https://doi.org/10.1016/S0377-2217(98)00051-4</p><p></p><p>Zhang, Yongli. (2012). Support vector machine classification algorithm and its</p><p>application. Communications in Computer and Information Science, 308</p><p>CCIS(PART 2), 179186. https://doi.org/10.1007/978-3-642-34041-3_27</p><p></p><p>Zhang, Yudong, & Wu, L. (2012). Classification of fruits using computer vision and a</p><p>multiclass support vector machine. Sensors (Switzerland), 12(9), 1248912505.</p><p>https://doi.org/10.3390/s120912489</p><p></p><p>Zhao, Y., & Miner, S. D. (2014). Data Mining Applications with R: ProQuest Tech</p><p>Books.</p><p>http://proquest.safaribooksonline.com.proxy1.library.mcgill.ca/book/programmin</p><p>g/r/9780124115118</p><p></p><p>Zorita, E., & von Storch, H. (1997). A survey of statistical downscaling techniques.</p><p>GKSS Report, 20. https://www.osti.gov/etdeweb/servlets/purl/595191</p><p></p><p>Zoro, R. (2012). How to explain poor classification performance of recall when using</p><p>SVM. Cross Validated. https://stats.stackexchange.com/q/22208</p><p></p>