Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
<p>The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped</p><p>ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV)</p><p>photoconductive sensor and photocatal...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2019
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=9162 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:9162 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
|
spellingShingle |
Mohammed, Ali Abdul Ameer Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
description |
<p>The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped</p><p>ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV)</p><p>photoconductive sensor and photocatalytic applications. The method used to synthesize GO was</p><p>electrochemical exfoliation assisted by custom- made triple-tails sodium 1, 4-bis</p><p>(neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4- dioxobutane-2-silphonate (TC14) and commercially</p><p>available single-tail sodium dodecyl sulphate (SDS) surfactants. Then, to produce rGO the</p><p>exfoliated GO was reduced via reduction process by adding hydrazine hydrate. The ZnO and AlZnO NRs</p><p>and NWs were synthesized via sol-gel immersion method. The hybridized ZnO and AlZnO NRs and NWs</p><p>samples with SDS-GO, SDS-rGO, TC14-GO and TC14-rGO were done by spray coating method. The</p><p>ZnO/GO-based samples were characterized using scanning electron microscopy, energy dispersive</p><p>X-ray, high resolution transmission electron microscopy, X-ray diffraction, micro-Raman, UV-visible</p><p>(UV- Vis) spectroscopy and four-point probes measurement. The UV photocurrent measurement</p><p>system and UV-Vis spectroscopy were then used to analyse the UV photoconductive sensor and</p><p>photocatalytic performances respectively. The finding show that the highest sensitivity and</p><p>responsivity of UV photoconductive sensor at around 47.3 and 345.7 mA/W were observed in AlZnO</p><p>NWs/TC14-GO (24 hours) sample. Meanwhile 90 g of sand/ZnO NRs/TC14-GO with reaction time of 48</p><p>hours exhibited the highest photocatalytic efficiency of 100% removal of 5ppm of methylene blue</p><p>(MB). The improvement of both UV photoconductive sensor and photocatalytic performances were</p><p>believed due to the existence of GO that help to lower the recombination rate of electrons-holes by</p><p>trapping the electron within the GO sheets. In conclusion, the AlZnO NWs/TC14-GO (24 hours)</p><p>nanocomposites demonstrate a good material for UV photoconductive sensor application. The sand/ZnO</p><p>NRs/TC14-GO is a great potential material for photocatalytic application. The implication of this</p><p>study is a novel, green and economical approach for UV photoconductive sensor and photocatalytic</p><p>application by using AlZnO NWs/TC14-</p><p>GO (24 hours) and sand/ZnO NRs/TC14-GO, respectively.</p><p></p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Mohammed, Ali Abdul Ameer |
author_facet |
Mohammed, Ali Abdul Ameer |
author_sort |
Mohammed, Ali Abdul Ameer |
title |
Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
title_short |
Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
title_full |
Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
title_fullStr |
Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
title_full_unstemmed |
Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
title_sort |
fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2019 |
url |
https://ir.upsi.edu.my/detailsg.php?det=9162 |
_version_ |
1776104596767244288 |
spelling |
oai:ir.upsi.edu.my:91622023-07-10 Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application 2019 Mohammed, Ali Abdul Ameer <p>The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped</p><p>ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV)</p><p>photoconductive sensor and photocatalytic applications. The method used to synthesize GO was</p><p>electrochemical exfoliation assisted by custom- made triple-tails sodium 1, 4-bis</p><p>(neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4- dioxobutane-2-silphonate (TC14) and commercially</p><p>available single-tail sodium dodecyl sulphate (SDS) surfactants. Then, to produce rGO the</p><p>exfoliated GO was reduced via reduction process by adding hydrazine hydrate. The ZnO and AlZnO NRs</p><p>and NWs were synthesized via sol-gel immersion method. The hybridized ZnO and AlZnO NRs and NWs</p><p>samples with SDS-GO, SDS-rGO, TC14-GO and TC14-rGO were done by spray coating method. The</p><p>ZnO/GO-based samples were characterized using scanning electron microscopy, energy dispersive</p><p>X-ray, high resolution transmission electron microscopy, X-ray diffraction, micro-Raman, UV-visible</p><p>(UV- Vis) spectroscopy and four-point probes measurement. The UV photocurrent measurement</p><p>system and UV-Vis spectroscopy were then used to analyse the UV photoconductive sensor and</p><p>photocatalytic performances respectively. The finding show that the highest sensitivity and</p><p>responsivity of UV photoconductive sensor at around 47.3 and 345.7 mA/W were observed in AlZnO</p><p>NWs/TC14-GO (24 hours) sample. Meanwhile 90 g of sand/ZnO NRs/TC14-GO with reaction time of 48</p><p>hours exhibited the highest photocatalytic efficiency of 100% removal of 5ppm of methylene blue</p><p>(MB). The improvement of both UV photoconductive sensor and photocatalytic performances were</p><p>believed due to the existence of GO that help to lower the recombination rate of electrons-holes by</p><p>trapping the electron within the GO sheets. In conclusion, the AlZnO NWs/TC14-GO (24 hours)</p><p>nanocomposites demonstrate a good material for UV photoconductive sensor application. The sand/ZnO</p><p>NRs/TC14-GO is a great potential material for photocatalytic application. The implication of this</p><p>study is a novel, green and economical approach for UV photoconductive sensor and photocatalytic</p><p>application by using AlZnO NWs/TC14-</p><p>GO (24 hours) and sand/ZnO NRs/TC14-GO, respectively.</p><p></p> 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=9162 https://ir.upsi.edu.my/detailsg.php?det=9162 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>A.A.Ameer, Suriani, A.R.Jabur, N. Hashim, Fatiatun, & K.Zaid. (2019). The</p><p>Fabrication of Zinc Oxide Nanorods and Nanowires by Sol-Gel Immersion Methods. IOP Conf. Series:</p><p>Journal of Physics, 1170(1), 012005.</p><p></p><p>Abd, Engku, Ghapur Engku, W A Dhafina, S Hasiah, and N A N Ali. (2012). Effect of the ZnO Rods</p><p>Growth Time to the Conductivity Of ZnO Thin Film Combined with N Dye. In Advanced Materials</p><p>Research, 390(12), 328690.</p><p></p><p>Abdulgafour, H. I., Z. Hassan, N. H. Al-Hardan, and F. K. Yam. (2010). Growth of High-Quality ZnO</p><p>Nanowires without a Catalyst. Physica B: Condensed Matter 405(19), 42164218.</p><p></p><p>Abdulrahman, A. F., S. M. Ahmed, and M. A. Almessiere. (2017). Effect of the Growth Time on the</p><p>Optical Properties of ZnO Nanorods Grown by Low Temperature Method. Digest Journal of Nanomaterials</p><p>and Biostructures 12(4), 10011009.</p><p></p><p>Acik, Muge, and Yves J Chabal. (2012).A Review on Reducing Graphene Oxide for Band Gap</p><p>Engineering. Journal of Materials Science Research, 2(1), 101112.</p><p></p><p>Aguilar-bolados, H, J Brasero, M A Lopez-manchado, and M Yazdani-pedram. (2014). High Performance</p><p>Natural Rubber/Thermally Reduced Graphite Oxide Nanocomposites by Latex Technology. Composites Part</p><p>B Engineering 67(12), 449454.</p><p></p><p>Ahmad, M., E. Ahmed, Yuewei Zhang, N. R. Khalid, Jianfeng Xu, M. Ullah, and Zhanglian Hong. (2013).</p><p>Preparation of Highly Efficient Al-Doped ZnO Photocatalyst by Combustion Synthesis. Current Applied</p><p>Physics, 13(4), 697 704.</p><p></p><p>Ahmad, Rafiq, Min-sang Ahn, and Yoon-bong Hahn. (2017). ZnO Nanorods Array Based Field-Effect</p><p>Transistor Biosensor for Phosphate Detection. Journal of Colloid And Interface Science, 498(7),</p><p>29297.</p><p></p><p>Ahn, Cheol Hyoun, Won Suk Han, Bo Hyun Kong, and Hyung Koun Cho. (2009). Ga-Doped ZnO Nanorod</p><p>Arrays Grown by Thermal Evaporation and Their Electrical Behavior. Nanotechnology, 20(1), 015601.</p><p></p><p>Al-Hardan, N. H., Azman Jalar, M. A. Abdul Hamid, Lim Kar Keng, N. M. Ahmed, and R. Shamsudin.</p><p>(2014). A Wide-Band UV Photodiode Based on N-ZnO/p-Si Heterojunctions. Sensors and Actuators, A:</p><p>Physical, 207(12), 6166.</p><p></p><p>Alam, M J, and D C Cameron. (2014). Preparation and Properties of Transparent Conductive</p><p>Aluminum-Doped Zinc Oxide Thin Films by Sol Gel Process Journal of Vacuum Science & Technology A:</p><p>Vacuum, Surfaces, and Films, 19</p><p>(4), 1642-1646.</p><p></p><p>Alam, Syed Nasimul, Nidhi Sharma, and Lailesh Kumar. (2017). Synthesis of Graphene Oxide (GO) by</p><p>Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide ( rGO ).</p><p>Scientific Research Publishing, 6(1), 1-18.</p><p></p><p>Albini, Angelo, and Maurizio Fagnoni. (2008). 1908: Giacomo Ciamician and the Concept of Green</p><p>Chemistry. ChemSusChem, 1(12), 6366.</p><p></p><p>Alchaar, Rodolphe, Houssin Makhlouf, Nadine Abboud, Sophie Tingry, Radhouane Chtourou, Matthieu</p><p>Weber, and Mikhael Bechelany. (2017). Enhanced UV Photosensing Properties of ZnO Nanowires Prepared</p><p>by Electrodeposition and Atomic Layer Deposition. Journal of Solid State Electrochemistry, 21(10),</p><p>2877- 2886.</p><p></p><p>Ali, Ghusoon M., and P. Chakrabarti. (2010). ZnO-Based Interdigitated MSM and MISIM Ultraviolet</p><p>Photodetectors. Journal of Physics D: Applied Physics, 43 (41), 415103.</p><p></p><p>Ali A A Mohammed. Suriani & Akram R Jabur. (2018). The Enhancement Of UV Sensor Response By Zinc</p><p>Oxide Nanorods/Reduced Graphene Oxide Bilayer Nanocomposites Film The Enhancement Of UV Sensor</p><p>Response By Zinc Oxide Nanorods/Reduced Graphene Oxide Bilayer Nanocomposites Film. IOP Conf.</p><p>Series: Journal of Physics, 1003(5), 012070.</p><p></p><p>Alzoubi, Tariq, Hamzeh Qutaish, Esra Al-shawwa, and Sameh Hamzawy. (2018). Enhanced UV-Light</p><p>Detection Based on ZnO Nanowires/Graphene Oxide Hybrid Using Cost-Effective Low Temperature</p><p>Hydrothermal Process. Optical Materials, 77(1), 22632.</p><p></p><p>Ambrosi, Adriano, and Martin Pumera. (2016). Electrochemically Exfoliated Graphene and</p><p>Graphene Oxide for Energy Storage and Electrochemistry Applications. Chemistry - A European</p><p>Journal, 22(1), 15359.</p><p></p><p>Ameen, Sadia, M. Shaheer Akhtar, Minwu Song, and Hyung Shik Shin. (2012). Vertically Aligned ZnO</p><p>Nanorods on Hot Filament Chemical Vapor Deposition Grown Graphene Oxide Thin Film Substrate: Solar</p><p>Energy Conversion. ACS Applied Materials and Interfaces, 4(8), 440512.</p><p></p><p>Anas Boussaa, S., A. Kheloufi, N. Boutarek Zaourar, and F. Kerkar. (2016). Valorization of Algerian</p><p>Sand for Photovoltaic Application. Acta Physica Polonica A, 130(1), 13337.</p><p></p><p>Antony, Albin, P. Poornesh, I. V. Kityk, G. Myronchuk, Ganesh Sanjeev, Vikash Chandra Petwal, Vijay</p><p>Pal Verma, and Jishnu Dwivedi. (2019). A Study of 8 MeV E-Beam on Localized Defect States in ZnO</p><p>Nanostructures and Its Role on Photoluminescence and Third Harmonic Generation. Journal of</p><p>Luminescence, 207(11), 32132.</p><p></p><p>Aprilia, A., H. Fernando, A. Bahtiar, L. Safriani, and R. Hidayat. (2018). Influences of Al Dopant</p><p>Atoms to the Structure and Morphology of Al Doped ZnO Nanorod Thin Film. Journal of Physics:</p><p>Conference Series, 1080(1), 18.</p><p></p><p>Arias, L. M.Franco, A. Arias Duran, D. Cardona, E. Camps, M. E. Gmez, and G. Zambrano. (2015).</p><p>Effect of Annealing Treatment on the Photocatalytic Activity of TiO Thin Films Deposited by Dc</p><p>Reactive Magnetron Sputtering. IOP Conf. Series: Journal of Physics, 614(1), 012008.</p><p></p><p>Aslam, Sehrish, Tanveer Hussain Bokhari, Tauseef Anwar, Usman Khan, Adeela Nairan, and Karim Khan.</p><p>(2019). Graphene Oxide Coated Graphene Foam Based Chemical Sensor. Materials Letters, 235(9),</p><p>6670.</p><p></p><p>Azimirad, R., A. Khayatian, M. Almasi Kashi, and S. Safa. (2014). Electrical Investigation and</p><p>Ultraviolet Detection of ZnO Nanorods Encapsulated with ZnO and Fe-Doped ZnO Layer. Journal of</p><p>Sol-Gel Science and Technology, 71 (3), 54048.</p><p></p><p>Azmina, M S, R Nor, H A Rafaie, N S A Razak, S F A Sani, and Z Osman. (2017). Enhanced</p><p>Photocatalytic Activity of ZnO Nanoparticles Grown on Porous Silica Microparticles. Applied</p><p>Nanoscience, 7(8), 88592.</p><p></p><p>B.C.Brodie. 2018. On the Atomic Weight of Graphite. The Royal Society, 149(1859), 24959.</p><p></p><p>Bahadur, Harish, Senior Member, A K Srivastava, and Sudhir Chandra. (2008). Effect of Sol Strength</p><p>on Growth , Faceting and Orientation of Sol-Gel Derived ZnO Nanostructures. IEEE Sensors Journal,</p><p>8(6), 83136.</p><p></p><p>Bai, Suo, Qi Xu, Long Gu, Fei Ma, Yong Qin, and Zhong Lin Wang. (2012). Single Crystalline Lead</p><p>Zirconate Titanate (PZT) Nano/micro-Wire Based Self- Powered UV Sensor. Nano Energy, 1(6), 78995.</p><p></p><p>Bai, Xiaojuan, Li Wang, Ruilong Zong, Yanhui Lv, Yiqing Sun, and Yongfa Zhu. (2013). Performance</p><p>Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene</p><p>Hybridization. Langmuir, 29 (9), 3097 3105.</p><p></p><p>Balaguera-Gelves, Marcia del R., Oscar J. Perales-Prez, Surinder P. Singh, Jos A. Jimnez, Joaqun A.</p><p>Aparicio-Bolaos, & Samuel P. Hernndez-Rivera. (2013). Improved Low-Temperature Aqueous Synthesis of</p><p>ZnO Nanorods and Their Use in SERS Detection of 4-ABT and RDX. Materials Sciences and Applications,</p><p>4 (1), 2938.</p><p></p><p>Balandin, Alexander A, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng</p><p>Miao, & Chun Ning Lau. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano</p><p>letters, 8(3), 902-907.</p><p></p><p>Balcha, Abebe, Om Prakash Yadav, & Tania Dey. (2016). Photocatalytic Degradation of Methylene</p><p>Blue Dye by Zinc Oxide Nanoparticles Obtained from Precipitation and Sol-Gel Methods.</p><p>Environmental Science and Pollution Research 23(24), 2548593.</p><p></p><p>Bao, Jiming, Ilan Shalish, Zhihua Su, Ron Gurwitz, Federico Capasso, Xiaowei Wang, & Zhifeng Ren.</p><p>(2011). Photoinduced Oxygen Release and Persistent Photoconductivity in ZnO Nanowires. Nanoscale</p><p>Research Letters, 6(404), 17.</p><p></p><p>Barroso-bujans, F, S Cerveny, R Verdejo, & J J Val. (2010). Permanent Adsorption of Organic</p><p>Solvents in Graphite Oxide and Its Effect on the Thermal Exfoliation. Carbon, 48 (4), 10791087.</p><p></p><p>Basak, D., G. Amin, B. Mallik, G. K. Paul, & S. K. Sen. (2003). Photoconductive UV Detectors on</p><p>Sol-Gel-Synthesized ZnO Films. Journal of Crystal Growth, 256 (12), 7377.</p><p></p><p>Bayram, K, & Didem Omay. (2014). Materials Science in Semiconductor Processing In-Situ Deposition</p><p>of Zinc Oxide Nanowires onto UV-Cured Chitin Derivatives and Their Antibacterial Properties.</p><p>Materials Science in Semiconductor Processing, 20(12), 3540.</p><p></p><p>Becker, John, Krishna Reddy Raghupathi, Jordan St. Pierre, Dan Zhao, & Ranjit T. Koodali. 2011.</p><p>Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in</p><p>Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation. Journal of Physical</p><p>Chemistry C, 115(28), 1384413850.</p><p></p><p>Berg, Hermann. (2008). Johann Wilhelm Ritter - The Founder of Scientific Electrochemistry. Review</p><p>of Polarography, 54(2), 99103.</p><p></p><p>Bhatt, Vishwa, Manjeet Kumar, Joondong Kim, Hak Jun Chung, & Ju Hyung Yun. (2019). Persistent</p><p>Photoconductivity in Al-Doped ZnO Photoconductors under Air, Nitrogen and Oxygen Ambiance: Role of</p><p>Oxygen Vacancies Induced DX Centers. Ceramics International, 45(7), 8561-8570.</p><p></p><p>Bhunia, A K, P K Jha, D Rout, & S Saha. (2016). Morphological Properties and Raman Spectroscopy of</p><p>ZnO Nanorods. Journal of Physical Sciences, 21(12), 23500352.</p><p></p><p>Bindu, P., & Sabu Thomas. (2014). Estimation of Lattice Strain in ZnO Nanoparticles:</p><p>X-Ray Peak Profile Analysis. Journal of Theoretical and Applied Physics, 8(4), 12334.</p><p></p><p>Bo, Zheng, Xiaorui Shuai, Shun Mao, Huachao Yang, Jiajing Qian, Junhong Chen, Jianhua Yan, & Kefa</p><p>Cen. (2014). Green Preparation of Reduced Graphene Oxide for Sensing and Energy Storage</p><p>Applications. Scientific reports, 4(2014), 4684.</p><p></p><p>Boon, Chin, Law Yong, & Abdul Wahab. (2018). A Review of ZnO Nanoparticles as Solar Photocatalysts</p><p>: Synthesis , Mechanisms and Applications. Renewable and Sustainable Energy Reviews 81(3), 53651.</p><p></p><p>Boruah, Purna K., Sabine Szunerits, Rabah Boukherroub, & Manash R. Das. (2018). Magnetic</p><p>Fe3O4@V2O5/rGO Nanocomposite as a Recyclable Photocatalyst for Dye Molecules Degradation under</p><p>Direct Sunlight Irradiation. Chemosphere 191(2018), 50313.</p><p></p><p>Bragg, W H, & W L Bragg. (1913). The Reflection of X-rays by Crystals. (II.). Proceedings of the</p><p>Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,</p><p>89(610), 246-248.</p><p></p><p>Brauer, G. (1963). Handbook of Preparative Inorganic Chemistry. Academic Press New York London.</p><p>Vol. 1.</p><p></p><p>C.M.Firdaus, M. S.B. Shah Rizam, M. Rusop, & S. Rahmatul Hidayah. (2012). Characterization of ZnO</p><p>and ZnO:TiO thin Films Prepared by Sol-Gel Spray- Spin Coating Technique. Procedia Engineering,</p><p>41(2012), 136773.</p><p></p><p>Caglar, Mujdat, Saliha Ilican, Yasemin Caglar, & Fahrettin Yakuphanoglu. (2009). Applied Surface</p><p>Science Electrical Conductivity and Optical Properties of ZnO Nanostructured Thin Film. Applied</p><p>Surface Science, 255(8), 4491-4496.</p><p></p><p>Caputo, D., G. de Cesare, A. Nascetti, & M. Tucci. (2006). Innovative Window Layer for Amorphous</p><p>Silicon/amorphous Silicon Carbide UV Sensor. Journal of Non- Crystalline Solids, 352(920),</p><p>181821.</p><p></p><p>Chang, S. P., S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, Y. C. Lin, C. F. Kuo, &</p><p>H. M. Chang. (2007). ZnO Photoconductive Sensors Epitaxially Grown on Sapphire Substrates. Sensors</p><p>and Actuators, A: Physical, 140(1), 6064.</p><p></p><p>Chang, Yoon-seok. (2015). Partitioning Behavior of Heavy Metals and Persistent Organic Pollutants</p><p>among FetoMaternal Bloods and Tissues. Environmental science & technology, 49(12), 7411-7422.</p><p></p><p>Charpentier, C., P. Prodhomme, I. Maurin, M. Chaigneau, & P. Roca i Cabarrocas. (2011). X-Ray</p><p>Diffraction and Raman Spectroscopy for a Better Understanding of ZnO:Al Growth Process. EPJ</p><p>Photovoltaics, 2(2011), 25002.</p><p></p><p>Chauhan, Pankaj Singh, Rishi Kant, Ashutosh Rai, Ankur Gupta, & Shantanu Bhattacharya. (2019).</p><p>Facile Synthesis of ZnO/GO Nanoflowers over Si Substrate for Improved Photocatalytic Decolorization</p><p>of MB Dye and Industrial Wastewater under Solar Irradiation. Materials Science in</p><p>Semiconductor Processing, 89(6), 617.</p><p></p><p>Chem, J Mater. (2 2). Crystal Composite via Thermal Treatment . The Royal Society of Chemistry,</p><p>22(2012) 38253831.</p><p></p><p>Chen, C Y, C A Lin, M J Chen, G R Lin, & J H He. (2009). ZnO/AlO Coreshell Nanorod</p><p>Arrays:Growth, Structural Characterization, and Luminescent Properties. Nanotechnology, 20(18),</p><p>185605.</p><p></p><p>Chen, Changsong. (2018). UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO</p><p>Nanowires Composite for Photoresponse Enhancement in UV Photodetectors. Nanomaterials, 8(1), 26.</p><p></p><p>Chen, Hongyu, Kewei Liu, Linfeng Hu, Ahmed A. Al-Ghamdi, & Xiaosheng Fang. (2015). New Concept</p><p>Ultraviolet Photodetectors. Materials Today, 18(9), 493</p><p>502.</p><p></p><p>Chen, K J, F Y Hung, S J Chang, & S J Young. (2009). Optoelectronic Characteristics of UV</p><p>Photodetector Based on ZnO Nanowire Thin Films. Journal of Alloys and Compounds, 479(24), 67477.</p><p></p><p>Chen, Ming-Wei, Cheng-Ying Chen, Der-Hsien Lien, Yong Ding, & Jr-Hau He. (2010). Photoconductive</p><p>Enhancement of Single ZnO Nanowire through Localized Schottky Effects. Optics Express, 18(14),</p><p>14836.</p><p></p><p>Chen, P. K., G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, & J. J. Wu. (2013). Hydrothermal</p><p>Synthesis of Coral-like Au/ZnO Catalyst and Photocatalytic Degradation of Orange II Dye. Materials</p><p>Research Bulletin, 48 (6), 23752382.</p><p></p><p>Chen, Xu, Daping He, Hui Wu, Xiaofeng Zhao, Jian Zhang, Kun Cheng, Peng Wu, & Shichun Mu. (2015).</p><p>Platinized Graphene/ceramics Nano-Sandwiched Architectures and Electrodes with Outstanding</p><p>Performance for PEM Fuel Cells. Scientific Reports, 5 (11), 110.</p><p></p><p>Chen, Yao, & Yanwei Ma. (2010). High Performance Supercapacitors Based on Reduced Graphene Oxide in</p><p>Aqueous and Ionic Liquid Electrolytes. Carbon, 49 (2), 573580.</p><p></p><p>Cheng, Jiping, Yunjin Zhang, & Ruyan Guo. (2008). ZnO Microtube Ultraviolet Detectors. Journal of</p><p>Crystal Growth, 310(1), 5761.</p><p></p><p>Choi, Kyeongmuk, Taeho Kang, & Seong-geun Oh. (2012). Preparation of Disk Shaped ZnO Particles</p><p>Using Surfactant and Their PL Properties. Materials Letters, 75, 240243.</p><p></p><p>Choon, Jeung, Sung Ho, Jong Hun, Se Hong, Ki Buem, Yongho Seo, Young-soo Seo, & Naesung Lee.</p><p>(2011). Spectroscopic Studies and Electrical Properties of Transparent Conductive Films Fabricated</p><p>by Using Surfactant-Stabilized Single- Walled Carbon Nanotube Suspensions. Carbon, 49(13), 430113.</p><p></p><p>Chua, Chun Kiang, & Martin Pumera. (2014). Chem Soc Rev Chemical Reduction of Graphene Oxide :A</p><p>Synthetic Chemistry Viewpoint. Chemical Society Reviews, 43(1), 291-312.</p><p></p><p>Colonna, S, O Monticelli, J Gomez, C Novara, G Saracco, & A Fina. (2016). Effect of Morphology and</p><p>Defectiveness of Graphene-Related Materials on the Electrical and Thermal Conductivity of Their</p><p></p><p>Polymer Nanocomposites. Polymer, 102 (2016), 292300.</p><p></p><p>Compton, Owen C, & Sonbinh T Nguyen. (2010). Graphene Oxide , Highly Reduced Graphene Oxide , and</p><p>Graphene : Versatile Building Blocks for Carbon-Based Materials. Small, 6(6), 71123.</p><p></p><p>Cooper, Adam J, & Ian Kinloch. (2015). How to get between the Sheets: A Review of Recent Works on</p><p>the Electrochemical Exfoliation of Graphene Materials from Bulk Graphite. Nanoscale, 7(16):</p><p>6944-6956.</p><p></p><p>Damen, T C, S P S Porto, and B Tell. 966. Raman Effect in Zinc Oxide. J. Phys. Chem. Solids Mitra</p><p>and J. I. Bryant, Bull. Am. Phys. Soc 142 (10): 10851333.</p><p></p><p>Daneshvar, N, D Salari, and A R Khataee. (2004). Photocatalytic Degradation of AZO Dye Acid Red 14</p><p>in Water on ZnO as an Alternative Catalyst to TiO. A: chemistry, 162(2-3), 317-322.</p><p></p><p>Dehghanzad, Behzad, Mir Karim, Razavi Aghjeh, Omid Rafeie, Akram Tavakoli, & Amin Jameie Oskooie.</p><p>(2016). Synthesis and Characterization of Graphene and Functionalized Graphene Via Chemical and</p><p>Thermal Treatment Methods. RSC Advances, 6(1), 357885.</p><p></p><p>Desai, A. V., & M. A. Haque. (2007). Mechanical Properties of ZnO Nanowires.</p><p>Sensors and Actuators, A: Physical 134 (1), 169176.</p><p></p><p>Devaraj, Ramasamy, Krishnamoorthy Karthikeyan, & Kadarkaraithangam Jeyasubramanian. (2013).</p><p>Synthesis and properties of ZnO nanorods by modified pechini process. Applied Nanoscience, 3(1),</p><p>3740.</p><p></p><p>Dhahril, R, & K Omril. (2010). Optical, Electrical and Sensing Properties of ZnO Anoparticles</p><p>Synthesized by Sol-Gel Technique. In 2014 IEEE 9th Nanotechnology Materials and Devices</p><p>Conference (NMDC), 2(2010), 100- 103.</p><p></p><p>Di, Alessandro, Maria Cantarella, Giuseppe Nicotra, & Vittorio Privitera. (2016). Applied</p><p>Catalysis B : Environmental Low Temperature Atomic Layer Deposition of ZnO:Applications in</p><p>Photocatalysis. Applied Catalysis B, Environmental, 196(5), 6876.</p><p></p><p>Ding, Jijun, Minqiang Wang, Jianping Deng, Weiyin Gao, Zhi Yang, & Chenxin Ran. (2013). A</p><p>Comparison Study between ZnO Nanorods Coated with Graphene Oxide and Reduced Graphene Oxide.</p><p>Journal of Alloys and Compounds, 582(1), 29-32.</p><p></p><p>Dong, Jing-Jing, Chun-Yang Zhen, Hui-Ying Hao, Jie Xing, Zi-Li Zhang, Zhi-Yuan Zheng, and</p><p>Xing-Wang Zhang. (2013). Controllable Synthesis of ZnO Nanostructures on the Si Substrate by</p><p>a Hydrothermal Route. Nanoscale Research Letters, 8(1), 378.</p><p></p><p>Zhao, Q. X., Klason, P., & Willander, M. (2007). Growth of ZnO nanostructures by vaporliquidsolid</p><p>method. Applied Physics A, 88(1), 27-30.</p><p></p><p>Elena, Maria, Alessandro Di, Domenico A Cristaldi, Maria Cantarella, Giuliana Impellizzeri, &</p><p>Vittorio Privitera. (2017). ZnO Nanorods Grown on Ultrathin ZnO Seed Layers : Application in Water</p><p>Treatment. Journal of Photochemistry & Photobiology, A: Chemistry, 332(2017), 497504.</p><p></p><p>Eskandari, M, & V Ahmadi. (2015). Electrochimica Acta Treatment Effects of ZnO and Al:ZnO</p><p>Photoanodes on Short-Circuit Photocurrent and Open-Circuit Photovoltage of Quantum Dot Sensitized</p><p>Solar Cell Using Ag Nanoparticles. Electrochimica Acta, 165(2015), 23946.</p><p></p><p>Liu, J., Yang, H., Zhen, S. G., Poh, C. K., Chaurasia, A., Luo, J.,& Shen, Z. (2013). A green</p><p>approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of</p><p>pencil core. Rsc Advances, 3(29), 11745-11750.</p><p></p><p>Fatiatun. (2018). Fabrication of Graphene Oxide/Zinc Oxide Nanocomposite Through Spraying Method</p><p>for Solar Cell Application. UPSI, Physics</p><p></p><p>Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, et al.</p><p>(2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 14.</p><p></p><p>Fouda, A N, A B El Basaty, and E A Eid. (2016). Photo-Response of Functionalized Self-Assembled</p><p>Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination. Nanoscale Research Letters, 11(1),</p><p>13.</p><p></p><p>Fournier, Carrie, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, &</p><p>A. K. Pradhan. (2008). Effects of Substrate Temperature on the Optical and Electrical Properties of</p><p>Al:ZnO Films. Semiconductor Science and Technology, 23(8), 85019.</p><p></p><p>Fu, Weiwei, Yanwei Wang, Huijuan Zhang, Miaomiao He, Ling Fang, Xiaohui Yang, Zhengyong Huang, Jian</p><p>Li, Xiao Gu, & Yu Wang. (2019). Epitaxial Growth of Graphene on V8C7 Nanomeshs for Highly Efficient</p><p>and Stable Hydrogen Evolution Reaction. Journal of Catalysis, 369(2019), 4753.</p><p></p><p>Fu, Xue-wen, Zhi-min Liao, Yang-bo Zhou, Han-chun Wu, Ya-qing Bie, & Jun Xu. (2012). Graphene/ZnO</p><p>Nanowire/Graphene Vertical Structure Based Fast- Response Ultraviolet Photodetector. Applied</p><p>Physics Letters, 223114(5), 25.</p><p></p><p>Fujishima, Akira, and Kenichi Honda. (1972). Electrochemical Photolysis of Water at a Semiconductor</p><p>Electrode. Nature, 238(5358), 3738.</p><p></p><p>Gao, Rongfa, Zhihua Ying, Weiqin Sheng, & Peng Zheng. (2018). Gas Sensors Based on ZnO/silk Fibroin</p><p>Film for Nitrogen Dioxide Detection under UV Light at Room Temperature. Materials Letters, 229(7),</p><p>21012.</p><p></p><p>Gedamu, Dawit, Ingo Paulowicz, Sren Kaps, Oleg Lupan, Sebastian Wille, Galina Haidarschin,</p><p>Yogendra Kumar Mishra, & Rainer Adelung. (2014). Rapid Fabrication Technique for Interpenetrated</p><p>ZnO Nanotetrapod Networks for Fast UV Sensors. Advanced materials, 26(10), 1541-1550.</p><p></p><p>Gong, Bo, Tielin Shi, Guanglan Liao, Xiaoping Li, Jie Huang, Temgyuan Zhou, & Zirong Tang. (2017).</p><p>UV Irradiation Assisted Growth of ZnO Nanowires on Optical Fiber Surface. Applied Surface Science,</p><p>406(6), 294300.</p><p></p><p>Graf, Davy, & Klaus Ensslin. (2008). Spatially Resolved Raman Spectroscopy of Single- and Few-Layer</p><p>Graphene. Nano letters, 7(2), 238-242.</p><p></p><p>Grigorovici, R, & A Vancu. (1966). Optical Properties and Electronic Structure of Amorphous</p><p>Germanium. Physica Status Solidi (b), 15(2), 627-637.</p><p></p><p>Gu, Yu-Zhu, Hong-Liang Lu, Yuan Zhang, Peng-Fei Wang, Shi-Jin Ding, & David Wei Zhang. (2015).</p><p>Effects of ZnO Seed Layer Annealing Temperature on the Properties of N-ZnO NWs/AlO/p-Si</p><p>Heterojunction. Optics Express, 23(19), 24456.</p><p></p><p>Guo, M. Y., M. K. Fung, F. Fang, X. Y. Chen, A. M C Ng, A. B. Djurii, & W. K. Chan. (2011). ZnO</p><p>and TiO 1D Nanostructures for Photocatalytic Applications. Journal of Alloys and Compounds,</p><p>509(4), 13281332.</p><p></p><p>Guo, Min, Peng Diao, & Shengmin Cai. (2005). Hydrothermal Growth of Well- Aligned ZnO Nanorod</p><p>Arrays:Dependence of Morphology and Alignment Ordering upon Preparing Conditions. Journal of Solid</p><p>State Chemistry, 178(6), 1864-1873.</p><p></p><p>Gupta, V. K., and Suhas. (2009). Application of Low-Cost Adsorbents for Dye Removal - A Review.</p><p>Journal of Environmental Management, 90(8), 2313 2342.</p><p></p><p>Haddad, Mohammadine El, Abdelmajid Regti, Rachid Slimani, & Sad Lazar. (2014). Assessment of the</p><p>Biosorption Kinetic and Thermodynamic for the Removal of Safranin Dye from Aqueous Solutions Using</p><p>Calcined Mussel Shells. Journal of Industrial and Engineering Chemistry, 20(2), 71724.</p><p></p><p>Hamid, Sharifah Bee Abdul, Swe Jyan Teh, & Chin Wei Lai. (2017). Photocatalytic Water Oxidation on</p><p>ZnO: A Review. Catalysts, 7(3), 93.</p><p></p><p>Han, Jingbin, Fengru Fan, Chen Xu, Shisheng Lin, Min Wei, Xue Duan, & Zhong Lin Wang. (2010). ZnO</p><p>Nanotube-Based Dye-Sensitized Solar Cell and Its Application in Self-Powered Devices.</p><p>Nanotechnology, 21(40), 405203.</p><p></p><p>Han, Yu, Caizhen Gao, Huarui Zhu, Shuwen Chen, Qianwen Jiang, Tao Li, Magnus Willander, Xia Cao, &</p><p>Ning Wang. (2015). Piezotronic Effect Enhanced Nanowire Sensing of HO Released by Cells. Nano</p><p>Energy 13(4), 40513.</p><p></p><p>Hasin, Panitat, Mario a Alpuche-aviles, & Yiying Wu. (2010). Electrocatalytic Activity of Graphene</p><p>Multilayers toward I-/I3-:Effect of Preparation Conditions and Polyelectrolyte Modification.</p><p>Journal of Physical Chemistry C, 114(37), 1585761.</p><p></p><p>Hasnidawani, J N, H N Azlina, H Norita, N N Bonnia, S Ratim, & E S Ali. (2016). Synthesis of ZnO</p><p>Nanostructures Using Sol-Gel Method. Procedia Chemistry 19(3), 211216.</p><p></p><p>Hayes, William Ignatius, Paul Joseph, Muhammad Zeeshan Mughal, & Pagona Papakonstantinou. (2014).</p><p>Production of Reduced Graphene Oxide via Hydrothermal Reduction in an Aqueous Sulphuric Acid</p><p>Suspension and Its Electrochemical Behaviour. Journal of Solid State Electrochemistry, 19(2), 361</p><p>380.</p><p></p><p>Hernandez-como, N, G Rivas-montes, F J Hernandez-cuevas, & I Mejia. (2015). Materials Science in</p><p>Semiconductor Processing Ultraviolet Photodetectors Based on Low Temperature Processed</p><p>ZnO/PEDOT:PSS Schottky Barrier Diodes. Materials Science in Semiconductor Processing, 37(9), 14-18.</p><p></p><p>Hessein, Amr, Feiju Wang, Hirokazu Masai, Kazunari Matsuda, & Ahmed Abd El- moneim. (2017).</p><p>One-Step Fabrication of Copper Sulfide Nanoparticles Decorated on Graphene Sheets as Highly</p><p>Stable and Efficient Counter Electrode for CdS-Sensitized Solar Cells. Japanese Journal of Applied</p><p>Physics, 55(11): 112301.</p><p></p><p>Holi, Araa Mebdir, Zulkarnain Zainal, Zainal Abidin Talib, Hong-ngee Lim, Chi-chin Yap, Sook-keng</p><p>Chang, & Asmaa Kadim Ayal. (2016). Effect of Hydrothermal Growth Time on ZnO Nanorod Arrays</p><p>Photoelectrode Performance. Optik- International Journal for Light and Electron Optics 127(23),</p><p>11111-11118.</p><p></p><p>Hong, Hoang-si, and Gwiy-sang Chung. (2014). Sensors and Actuators B:Chemical Controllable Growth</p><p>of Oriented ZnO Nanorods Using Ga-Doped Seed Layers and Surface Acoustic Wave Humidity Sensor.</p><p>Sensors & Actuators:B. Chemical 195(5), 44651.</p><p></p><p>Hong, Li-Yang, & Heh-Nan Lin. (2015). Fabrication of Single Titanium Oxide Nanodot Ultraviolet</p><p>Sensors by Atomic Force Microscopy Nanolithography. Sensors and Actuators A: Physical 232(8),</p><p>9498.</p><p></p><p>Hong, Ruijin, Hongji Qi, Jianbing Huang, Hongbo He, Zhengxiu Fan, and Jianda Shao. (2005).</p><p>Influence of Oxygen Partial Pressure on the Structure and Photoluminescence of Direct Current</p><p>Reactive Magnetron Sputtering ZnO Thin Films. Thin Solid Films, 473(1), 58-62.</p><p></p><p>Hong, Wenjing, Yuxi Xu, Gewu Lu, Chun Li, & Gaoquan Shi. (2008). Transparent Graphene/PEDOTPSS</p><p>Composite Films as Counter Electrodes of Dye- Sensitized Solar Cells. Electrochemistry</p><p>Communications, 10(10), 1555-1558.</p><p></p><p>Hou, Jungang, Zheng Wang, Shuqiang Jiao, & Hongmin Zhu. (2011). 3D BiTiO/TiO</p><p>hierarchical Heterostructure:Synthesis and Enhanced Visible- Light Photocatalytic Activities.</p><p>Journal of Hazardous Materials 192(3), 1772 1779.</p><p></p><p>Hou, Xianming, Lixia Wang, Feng Li, Guofang He, & Liqing Li. (2015). Controlled Loading of Gold</p><p>Nanoparticles on ZnO Nanorods and Their High Photocatalytic Activity. Materials Letters, 159(11),</p><p>502505.</p><p></p><p>Hsu, Chih-Hsiung, & Dong-Hwang Chen. (2010). Synthesis and Conductivity Enhancement of Al-Doped ZnO</p><p>Nanorod Array Thin Films. Nanotechnology 21 (28), 285603.</p><p></p><p>Huang, Guozhong, Peipei Zhang, & Zhiming Bai. (2019). Self-Powered UVvisible Photodetectors Based</p><p>on ZnO/graphene/CdS/electrolyte Heterojunctions. Journal of Alloys and Compounds, 776(3),</p><p>346352.</p><p></p><p>Huang, K., Y. H. Li, S. Lin, C. Liang, H. Wang, C. X. Ye, Y. J. Wang, et al. (2014). A Facile Route</p><p>to Reduced Graphene Oxide-Zinc Oxide Nanorod Composites with Enhanced Photocatalytic Activity.</p><p>Powder Technology, 257(5), 113119.</p><p></p><p>Huang, X H, X H Xia, Y F Yuan, & F Zhou. 2011. Electrochimica Acta Porous ZnO Nanosheets Grown on</p><p>Copper Substrates as Anodes for Lithium Ion Batteries. Electrochimica Acta 56(14), 49604965.</p><p></p><p>Hullavarad, S. S., Hullavarad, N. V., Karulkar, P. C., Luykx, A., & Valdivia, P. (2007). Ultra</p><p>Violet Sensors Based on Nanostructured ZnO Spheres in Network of Nanowires : A Novel Approach.</p><p>Journal of Alloys and Compounds 479 (1), 161167.</p><p></p><p>Hullavarad, Shiva, Nilima Hullavarad, David Look, & Bruce Claflin. (2009). Persistent</p><p>Photoconductivity Studies in Nanostructured ZnO UV Sensors. Nanoscale Research Letters, 4(12),</p><p>14211427.</p><p></p><p>Hummers & Offeman. (1957). Preparation of Graphitic Oxide. Journal of the American Chemical</p><p>Society, 208(1937), 1937.</p><p></p><p>Hung, Chu Manh, Dang Thi Thanh Le, & Nguyen Van Hieu. (2017). On-Chip Growth of Semiconductor Metal</p><p>Oxide Nanowires for Gas Sensors:A Review. Journal of Science: Advanced Materials and Devices, 2(3),</p><p>26385.</p><p></p><p>Iqbal, Younas, M K Mustafa, & N L Muhammad Rosdi. (2016). Effect of Orientation and Configuration</p><p>of ZnO Nanorods on Electrical Conductivity Prepared through Hydrothermal Method on Suspended</p><p>Substrate. Journal of Science and Technology, 8(2), 1417.</p><p></p><p>Jagadale, Supriya B., Vithoba L. Patil, Sharadrao A. Vanalakar, Pramod S. Patil, & Harish P.</p><p>Deshmukh. (2018). Preparation, Characterization of 1D ZnO Nanorods and Their Gas Sensing</p><p>Properties. Ceramics International 44(3), 33333340.</p><p></p><p>Jang, Eue Soon, Jung Hee Won, Seong Ju Hwang, & Jin Ho Choy. (2006). Fine Tuning of the Face</p><p>Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity. Advanced Materials, 18(24),</p><p>33093312.</p><p></p><p>Jayabal, P., S. Gayathri, V. Sasirekha, J. Mayandi, & V. Ramakrishnan. (2014). Preparation and</p><p>Characterization of ZnO/Graphene Nanocomposite for Improved Photovoltaic Performance. Journal of</p><p>Nanoparticle Research, 16(11), 2640.</p><p></p><p>Jeong, Huisu, Ki Seok Kim, Yong Hwan Kim, Hyun Jeong, Hui Song, Kwang Ho Lee, Mun Seok Jeong, Deli</p><p>Wang, & Gun Young Jung. (2011). A Crossbar-Type High Sensitivity Ultraviolet Photodetector Array</p><p>Based on a One Hole-One Nanorod Configuration via Nanoimprint Lithography. Nanotechnology, 22(27),</p><p>275310.</p><p></p><p>Jiao, Kejia, Dangwen Zhang, & Yunfa Chen. (2014). Efficient and cost-effective graphene on silicon</p><p>solar cells prepared by spray coating. RSC Advances, 4(98), 55300-55304.</p><p>Jimnez-Gonzlez, A.E., Jose A. Soto Urueta, & R. Surez-Parra. (1998). Optical and Electrical</p><p>Characteristics of Aluminum-Doped ZnO Thin Films Prepared by Solgel Technique. Journal of Crystal</p><p>Growth 192(34), 430438.</p><p></p><p>Jin, Z. C., I. Hamberg, & C. G. Granqvist. (1988). Optical Properties of Sputter- Deposited ZnO:Al</p><p>Thin Films. Journal of Applied Physics, 64(10), 51175131.</p><p></p><p>Jose, Juan. (2011). The Synthesis of Graphene Sheets with Controlled Thickness and Order Using</p><p>Surfactant-Assisted Electrochemical Processes. Carbon, 50(1), 142- 152.</p><p></p><p>Ju, Dianxing, Hongyan Xu, Jun Zhang, Jing Guo & Bingqiang Cao. (2014). Direct Hydrothermal Growth</p><p>of ZnO Nanosheets on Electrode for Ethanol Sensing. Sensors and Actuators, B:Chemical, 201(10),</p><p>444451.</p><p></p><p>Kakaei, Karim, & Kobra Hasanpour. (2014). Synthesis of Graphene Oxide Nanosheets by </p><p>Electrochemical Exfoliation of Graphite in Cetyltrimethylammonium Bromide and Its</p><p>Application for Oxygen Reduction. Journal of Materials Chemistry A, 2(37), 15428-15436.</p><p></p><p>Kar, J. P., S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee, & J. M. Myoung. (2009).</p><p>Fabrication of UV Detectors Based on ZnO Nanowires Using Silicon Microchannel. Journal of</p><p>Crystal Growth, 311(12), 33053309.</p><p></p><p>Karak, Ercan. (2017). Structural and Optical Properties of ZnO Nanorods Prepared by Spray Pyrolysis</p><p>Method. Energy, 140(12), 92-97.</p><p></p><p>Kaur, Gurpreet, Anirban Mitra, & K. L. Yadav. (2015). Pulsed Laser Deposited Al- Doped ZnO Thin</p><p>Films for Optical Applications. Progress in Natural Science: Materials International, 25(1), 1221.</p><p></p><p>Khai, Tran Van, Tran Dai Lam, Le Van Thu, & Hyoun Woo Kim. (2015). A Two- Step Method for the</p><p>Preparation of Highly Conductive Graphene Film and Its Gas-Sensing Property. Materials Sciences and</p><p>Applications, 6(11), 963977.</p><p></p><p>Khamkhom, P, M Horprathum, S Pokai, P Eiamchai, S Tuscharoen, V Pattantsetakul, S Limwichean, N</p><p>Nuntawong, P Limnonthakul, & J Kaewkhao. 2017. ScienceDirect Preparation of Vertically Aligned</p><p>ZnO Nanorods on AZO Thin Film by Hydrothermal Method. Materials Today: Proceedings 4(5), 62006204.</p><p></p><p>Khan, Mohammad Mansoob, Syed Farooq Adil, & Abdullah Al-Mayouf. (2015). Metal Oxides as</p><p>Photocatalysts. Journal of Saudi Chemical Society 19(5), 462 464.</p><p></p><p>Khan, Rizwan, Periyayya Uthirakumar, Tae Hwan Kim, & In-Hwan Lee. (2019). Enhanced Photocurrent</p><p>Performance of Partially Decorated Au Nanoparticles on ZnO Nanorods Based UV Photodetector.</p><p>Materials Research Bulletin, 3(17), 22.</p><p></p><p>Khayatian, A, V Asgari, A Ramazani, S F Akhtarianfar, & M Almasi. (2017). Diameter-Controlled</p><p>Synthesis of ZnO Nanorods on Fe-Doped ZnO Seed Layer and Enhanced Photodetection Performance.</p><p>Materials Research Bulletin, 94(10), 77-84.</p><p></p><p>Khun, Kimleang, Sami Elhag, Zafar Hussain, Volodymyr Khranovskyy, Omer Nur, & Magnus Willander.</p><p>(2015). Supramolecules-Assisted ZnO Nanostructures Growth and Their UV Photodetector</p><p>Application. Solid State Sciences, 4(3), 14 18.</p><p></p><p>Khusaimi, Z, S Amizam, M.H.Mamat, M Z Sahdan, M K Ahmad, M Rusop, S Amizam, et al. (2010).</p><p>Controlled Growth of Zinc Oxide Nanorods by Aqueous- Solution Method. Synthesis and Reactivity in</p><p>Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(3), 190-194.</p><p></p><p>Kim, Daeil, Gunchul Shin, Jangyeol Yoon, Dongseok Jang, Seung-Jung Lee, Goangseup Zi, & Jeong Sook</p><p>Ha. (2013). High Performance Stretchable UV Sensor Arrays of SnO Nanowires. Nanotechnology,</p><p>24(31), 315502.</p><p></p><p>Kim, H, & A Pique. (2005). Effect of Aluminum Doping on Zinc Oxide Thin Films Grown by Pulsed Laser</p><p>Deposition for Organic Light-Emitting Devices. Thin solid films, 377(12), 798-802.</p><p></p><p>Kim, Kang-Pil, Daeic Chang, Sang Kyoo Lim, Soo-Keun Lee, Hong-Kun Lyu, & Dae-Kue Hwang. (2011).</p><p>Thermal Annealing Effects on the Dynamic Photoresponse Properties of Al-Doped ZnO Nanowires</p><p>Network. Current Applied Physics, 11(6), 13111314.</p><p></p><p>Kim, Keun Soo, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn,</p><p>Philip Kim, Jae-Young Choi, & Byung Hee Hong. (2009). Large-Scale Pattern Growth of Graphene Films</p><p>for Stretchable Transparent Electrodes. Nature, 457(7230), 706710.</p><p></p><p>Kim, Kyung Ho, Tomoyuki Umakoshi, Yoshio Abe, Midori Kawamura, & Takayuki Kiba. (2016).</p><p>Morphological Properties of Al-Doped ZnO Nano/microstructures. Superlattices and Microstructures,</p><p>91(1), 188192.</p><p></p><p>Kim, Kyung Ho, Kazuomi Utashiro, Yoshio Abe, & Midori Kawamura. (2014). Structural Properties of</p><p>Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in</p><p>Dye-Sensitized Solar Cells. Materials, 7(4), 2522-2533.</p><p></p><p>Kim, Yong Jae, Yung Ho Kahng, Nara Kim, Jong-hoon Lee, Yun-hwa Hwang, Min Lee, Sung Mook Choi, Won</p><p>Bae Kim, & Kwanghee Lee. (2015). Impact of Synthesis Routes on the Chemical, Optical, and</p><p>Electrical Properties of Graphene Oxides and Its Derivatives. Current Applied Physics, 15(11),</p><p>1435- 1444.</p><p></p><p>Kim, Young Sung, Weon Pil Tai, & Su Jeong Shu. (2005). Effect of Preheating Temperature on</p><p>Structural and Optical Properties of ZnO Thin Films by Sol-Gel Process. Thin Solid Films, 491(12),</p><p>153160.</p><p></p><p>Kind, H, H Yan, B Messer, M Law, and P Yang. 2 2. Nanowire Ultraviolet Photodetectors and Optical</p><p>Switches. Adv. Mater. 14 (2): 15860.</p><p></p><p>Kingma, K. J., & R. J. Hemley. (1994). Raman Spectroscopic Study of Microcrystalline</p><p>Silica. American Mineralogist, 79(34), 269273.</p><p></p><p>Kochuveedu, Saji Thomas, Yoon Hee Jang, & Dong Ha Kim. (2013). A Study on the Mechanism for the</p><p>Interaction of Light with Noble Metal-Metal Oxide Semiconductor Nanostructures for Various</p><p>Photophysical Applications. Chemical Society Reviews, 42(21), 8467.</p><p></p><p>Kong, Jieying, Lin Li, Zheng Yang, Jianlin Liu, Jieying Kong, Lin Li, Zheng Yang, & Jianlin Liu.</p><p>(2014). Ultraviolet Light Emissions in MgZnO/ZnO Double Heterojunction Diodes by Molecular Beam</p><p>Epitaxy. American Vacuum Society, 10(2010), 14.</p><p></p><p>Kose, H, S Karaal, A O Aydin, & H Akbulut. (2015). A Facile Synthesis of Zinc Oxide/multiwalled</p><p>Carbon Nanotube Nanocomposite Lithium Ion Battery Anodes by Sol-Gel Method. Journal of Power</p><p>Sources, 295(11), 235245.</p><p></p><p>Kumar, Ravi, Vinay Sharma, & Bijoy Kumar Kuanr. (2018). Effect of Annealing on Electrical</p><p>Properties of Zinc Oxide/Graphene Oxide Nanocomposite. Advanced Science Letters, 24(2), 881884.</p><p></p><p>Kuo, Shou Yi, Wei Chun Chen, Fang I. Lai, Chin Pao Cheng, Hao Chung Kuo, Shing Chung Wang, & Wen</p><p>Feng Hsieh. (2006). Effects of Doping Concentration and Annealing Temperature on Properties of</p><p>Highly-Oriented Al-Doped ZnO Films. Journal of Crystal Growth, 287(1), 7884.</p><p></p><p>L.B.Valdes. (1952). Resistivity Measurements on Germanium Transistors.</p><p>Proceedings of the IRE, 29(2), 14291434.</p><p></p><p>Lajvardi, M, M E Ghazi, M Izadifard, H Eshghi, & I Hadi. (2018). Effect of Seed Layer Thickness on</p><p>Optoelectronic Properties of Zno-Nrs/P-Si Photodiodes. Optik, 160(5), 234-242.</p><p></p><p>Lee, Byoung Hoon, Jong-hoon Lee, Yung Ho Kahng, Nara Kim, Yong Jae Kim, Jongjin Lee, Takhee Lee, &</p><p>Kwanghee Lee. (2014). Graphene-Conducting Polymer Hybrid Transparent Electrodes for Efficient</p><p>Organic Optoelectronic Devices. Advanced Functional Materials, 24(13), 1847-1856.</p><p></p><p>Lee, Changgu. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer</p><p>Graphene. science, 321(5887), 385-388.</p><p></p><p>Lee, Hee Kwan, Myung Sub Kim, & Jae Su Yu. (2011). Effect of AZO Seed Layer on Electrochemical</p><p>Growth and Optical Properties of ZnO Nanorod Arrays on ITO Glass. Nanotechnology, 22(44), 445602.</p><p></p><p>Lee, Jae Woong, Kyeong Ju Moon, Moon Ho Ham, & Jae Min Myoung. (2008). Dielectrophoretic Assembly</p><p>of GaN Nanowires for UV Sensor Applications. Solid State Communications, 148(56), 194198.</p><p></p><p>Lee, Joon Hwan, Chia-Yun Chou, Zhenxing Bi, Chen-Fong Tsai, and Haiyan Wang. (2009).</p><p>Growth-Controlled Surface Roughness in Al-Doped ZnO as Transparent Conducting Oxide.</p><p>Nanotechnology, 20(39), 395704.</p><p></p><p>Lee, Woong, Min-chang Jeong, & Jae-min Myoung. (2004). Catalyst-Free Growth of ZnO Nanowires by</p><p>Metal-Organic Chemical Vapour Deposition (MOCVD) and Thermal Evaporation. Acta Materialia, 52(13),</p><p>3949-3957.</p><p></p><p>Li, Benxia, Tongxuan Liu, Yanfen Wang, & Zhoufeng Wang. (2012). ZnO/graphene- Oxide Nanocomposite</p><p>with Remarkably Enhanced Visible-Light-Driven Photocatalytic Performance. Journal of Colloid and</p><p>Interface Science, 377(1), 114121.</p><p></p><p>Li, Chunping, Yuzhen Lv, Lin Guo, Huibin Xu, Xicheng Ai, & Jianping Zhang. (2007). Raman and</p><p>Excitonic Photoluminescence Characterizations of ZnO Star- Shaped Nanocrystals. Journal of</p><p>Luminescence, 123(4), 415417.</p><p></p><p>Li, Hai Guo, Gang Wu, Hong Zheng Chen, & Mang Wang. (2011). Polymer/ZnO Hybrid Materials for</p><p>near-UV Sensors with Wavelength Selective Response. Sensors and Actuators, B: Chemical, 160(1),</p><p>11361140.</p><p></p><p>Li, Jianjiang, Jingjiao Zhang, Liang Fang, Junling Wang, Mingrong Shen, and Xiaodong Su. (2015).</p><p>Enhanced Visible Light Photocatalytic Properties of TiO Thin Films on the Textured</p><p>Multicrystalline Silicon Wafers. Journal of Materials Chemistry A: Materials for Energy and</p><p>Sustainability, 3(4), 4903 4908.</p><p></p><p>Li, Ping, Hui Liu, Yan Feng Zhang, Yu Wei, & Xin Kui Wang. (2007). Synthesis of Flower-like ZnO</p><p>Microstructures via a Simple Solution Route. Materials Chemistry and Physics, 106(1), 6369.</p><p></p><p>Li, Qiuguo, HAO Chen, & Sheng Chu. (2017). Mg-Alloyed ZnO Nanocombs for Self-Gating Photodetectors.</p><p>Optics Express, 25(5), 5091.</p><p></p><p>Li, Yinhua, Jian Gong, Gaohong He, & Yulin Deng. (2012). Enhancement of Photoresponse and</p><p>UV-Assisted Gas Sensing with Au Decorated ZnO Nanofibers. Materials Chemistry and Physics,</p><p>134(23), 11721178.</p><p></p><p>Li, Zhuoqun, Feng Gong, Gang Zhou, & Zhong-sheng Wang. (2013). NiS/Reduced Graphene Oxide</p><p>Nanocomposites for E Ffi Cient Dye- Sensitized Solar Cells. The Journal of Physical Chemistry C,</p><p>117(13), 6561-6566.</p><p></p><p>Liang, Yimai, Na Guo, Linlin Li, Ruiqing Li, Guijuan Ji, & Shucai Gan. (2016). Facile Synthesis of</p><p>Ag/ZnO Micro-Flowers and Their Improved Ultraviolet and Visible Light Photocatalytic Activity. New</p><p>J. Chem, 40(2), 15871594.</p><p></p><p>Lim, Z. H., Z. X. Chia, M. Kevin, A. S W Wong, & G. W. Ho. (2010). A Facile Approach towards ZnO</p><p>Nanorods Conductive Textile for Room Temperature Multifunctional Sensors. Sensors and Actuators,</p><p>B:Chemical, 151(1), 121126.</p><p></p><p>Lin, Hailing, Lin Wei, Cuncun Wu, Yanxue Chen, Shishen Yan, Liangmo Mei, & Jun Jiao. (2016).</p><p>High-Performance Self-Powered Photodetectors Based on ZnO/ZnS Core-Shell Nanorod Arrays. Nanoscale</p><p>Research Letters, 11(1), 420.</p><p></p><p>Linsebigler, Amy L, Guangquan Lu, & John T Yates. (1995). Photocatalysis on TiO Surfaces</p><p>Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758.</p><p></p><p>Liu, Deshuai, Hui Jun Li, Jinrao Gao, Shuang Zhao, Yuankun Zhu, Ping Wang, Ding Wang, Aiying Chen,</p><p>Xianying Wang, & Junhe Yang. (2018). High-Performance Ultraviolet Photodetector Based on Graphene</p><p>Quantum Dots Decorated ZnO Nanorods/GaN Film Isotype Heterojunctions. Nanoscale Research Letters,</p><p>13 (1), 261.</p><p></p><p>Liu, Hongtao, Lei Zhang, Yunlong Guo, Cheng Cheng, Lianjiang Yang, Lang Jiang, Gui Yu, Wenping Hu,</p><p>Yunqi Liu, & Daoben Zhu. (2013). Reduction of Graphene Oxide to Highly Conductive Graphene by</p><p>Lawessons Reagent and Its Electrical Applications. Journal of Materials Chemistry C, 1(18),</p><p>31043109.</p><p></p><p>Liu, Jinbin, Songhe Fu, Bin Yuan, Yulin Li, & Zhaoxiang Deng. (2010). Toward a Universal Adhesive</p><p>Nanosheet for the Assembly of Multiple Nanoparticles Based on a Protein-Induced</p><p>Reduction/Decoration of Graphene. Chemical Society, 132(21), 7279-7281.</p><p></p><p>Liu, Jinbin, Mengxiao Yu, Chen Zhou, Shengyang Yang, Xuhui Ning, & Jie Zheng. (2013). Passive</p><p>Tumor Targeting of Renal-Clearable Luminescent Gold</p><p></p><p>Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance.</p><p>Journal of the American Chemical Society, 135(13), 49784981.</p><p></p><p>Liu, Xinjuan, Likun Pan, Qingfei Zhao, Tian Lv, Guang Zhu, Taiqiang Chen, & Ting Lu. (2012).</p><p>UV-Assisted Photocatalytic Synthesis of ZnOReduced Graphene Oxide Composites with Enhanced</p><p>Photocatalytic Activity in Reduction of Cr ( VI ). Chemical Engineering Journal, 183(2), 238243.</p><p></p><p>Liu, Yanjun, Li Sun, Jiagen Wu, Ting Fang, Ran Cai, & Ang Wei. (2015). Preparation and</p><p>Photocatalytic Activity of ZnO/FeO Nanotube Composites. Materials Science and Engineering:B,</p><p>194(4), 913.</p><p></p><p>Look, D. C. (2001). Recent Advances in ZnO Materials and Devices. Materials Science and Engineering</p><p>B:Solid-State Materials for Advanced Technology, 80 (13), 383387.</p><p></p><p>Lotus, A. F., Y. C. Kang, J. I. Walker, R. D. Ramsier, & G. G. Chase. (2010). Effect of Aluminum</p><p>Oxide Doping on the Structural, Electrical, and Optical Properties of Zinc Oxide (AOZO) Nanofibers</p><p>Synthesized by Electrospinning. Materials Science and Engineering B:Solid-State Materials for</p><p>Advanced Technology, 166 (1), 6166.</p><p></p><p>Low, C T J. (2012). Electrochemical Approaches to the Production of Graphene Flakes and Their</p><p>Potential Applications. Carbon, 54(4), 121.</p><p></p><p>Low, Foo Wah, Chin Wei Lai, and Sharifah Bee Abd Hamid. (2015). Easy Preparation of Ultrathin</p><p>Reduced Graphene Oxide Sheets at a High Stirring Speed. Ceramics International, 41(4), 57985806.</p><p></p><p>Lu, Qiaoqi, Xinhua Pan, Weihao Wang, Yusong Zhou, & Zhizhen Ye. (2018). Ultraviolet Photodetector</p><p>Based on Nanostructured ZnO-Reduced Graphene Oxide Composite. Applied Physics A, 124(11), 733.</p><p></p><p>Luka, G, L Nittler, E Lusakowska, and P Smertenko. (2017). Electrical Properties of Zinc Oxide</p><p>Tetracene Heterostructures with Different N-Type ZnO Fi Lms. Organic Electronics, 45(6), 240246.</p><p></p><p>Luo, J., S. Y. Ma, A. M. Sun, L. Cheng, G. J. Yang, T. Wang, W. Q. Li, X. B. Li, Y.</p><p>Z. Mao, & D. J. Gz. (2014). Ethanol Sensing Enhancement by Optimizing ZnO Nanostructure: From 1D</p><p>Nanorods to 3D Nanoflower. Materials Letters, 137(12), 1720.</p><p></p><p>Luo, Lei, Yanfeng Zhang, Samuel S. Mao, & Liwei Lin. (2006). Fabrication and Characterization of</p><p>ZnO Nanowires Based UV Photodiodes. Sensors and Actuators, A: Physical, 127(2), 2016.</p><p></p><p>Lupan, O., T. Pauport, L. Chow, B. Viana, F. Pell, L. K. Ono, B. Roldan Cuenya, &</p><p>H. Heinrich. (2010). Effects of Annealing on Properties of ZnO Thin Films Prepared by</p><p>Electrochemical Deposition in Chloride Medium. Applied Surface Science, 256(6), 18951907.</p><p></p><p>Lv, Tian, Likun Pan, Xinjuan Liu, Ting Lu, Guang Zhu, & Zhuo Sun. (2011). Enhanced Photocatalytic</p><p>Degradation of Methylene Blue by ZnO-Reduced Graphene Oxide Composite Synthesized via</p><p>Microwave-Assisted Reaction. Journal of Alloys and Compounds, 509(41), 1008610091.</p><p></p><p>M.F. Malek. (2017). Fabrication and Characterisation of Nanostructured Zinc Oxide Thin Films</p><p>Incorporated with Nanorod Arrays-Based Solar Cells. UiTM.</p><p></p><p>M.F. Malek, M.H.Mamat, Mohd Zainizan Sahdan, Musa Mohamed Zahidi, Zuraida Khusaimi, & Mohamad Rusop</p><p>Mahmood. (2013). Influence of Various Sol Concentrations on Stress/strain and Properties of ZnO</p><p>Thin Films Synthesised by Sol-Gel Technique. Thin Solid Films, 527(1), 102109.</p><p></p><p>M.F. Malek, Mohd Zainizan Sahdan, M.H.Mamat, M Z Musa, Z Khusaimi, S S Husairi, N D Sin, & M Rusop.</p><p>(2013). Applied Surface Science A Novel Fabrication of MEH-PPV/Al:ZnO Nanorod Arrays Based</p><p>Ordered Bulk Heterojunction Hybrid Solar Cells. Applied Surface Science, 275(6), 7583.</p><p></p><p>M.F.Malek, M.H.Mamat, M. Z. Musa, Z. Khusaimi, M. Z. Sahdan, A. B. Suriani, A. Ishak, I. Saurdi, S.</p><p>A. Rahman, & M. Rusop. (2014). Thermal Annealing- Induced Formation of ZnO Nanoparticles:</p><p>Minimum Strain and Stress Ameliorate Preferred c-Axis Orientation and Crystal-Growth Properties.</p><p>Journal of Alloys and Compounds, 610(5), 575588.</p><p></p><p>M.F.Malek, M H Mamat, Z Khusaimi, M Z Sahdan, M Z Musa, A R Zainun, A B Suriani, N D Sin, S B Abd</p><p>Hamid, & M Rusop. (2014). Sonicated SolGel Preparation of Nanoparticulate ZnO Thin Films with</p><p>Various Deposition Speeds:The Highly Preferred c-Axis (002) Orientation Enhances the Final</p><p>Properties. Journal of Alloys and Compounds, 582,(8), 1221.</p><p></p><p>M.H.Mamat. (2013). Fabrication and Characterization Aligned Zinc Oxide Nanorod Array-Based</p><p>Ultraviolet Photoconductive Sensors. UiTM.</p><p></p><p>M.H.Mamat, Sin, N D, I Saurdi, N N Hafizah, M F Malek, M N Asiah, Z Khusaimi, Z Habibah, N</p><p>Nafarizal, & M Rusop. (2014). Performance of Ultraviolet Photoconductive Sensor Based on</p><p>Aluminium-Doped Zinc Oxide Nanorod- Nanoflake Network Thin Film Using Aluminium Contacts. Advanced</p><p>Materials Research, 832 (11), 298302.</p><p></p><p>M.H.Mamat, M.H.Hafizah, & M Rusop. (2013). Fabrication of Thin , Dense and Small-Diameter Zinc</p><p>Oxide Nanorod Array-Based Ultraviolet Photoconductive Sensors with High Sensitivity by</p><p>Catalyst-Free Radio Frequency Magnetron Sputtering. Materials Letters, 93(2013), 21518.</p><p></p><p>M.H.Mamat, Mohd Izzudin, Che Khalin, Nik Noor, Hafizah Nik, Zuraida Khusaimi, Nor Diyana Sin,</p><p>Shafinaz Sobihana Shariffudin, Musa Mohamed Zahidi, and Mohamad Rusop Mahmood. (2012). Effects of</p><p>Annealing Environments on the Solution-Grown , Aligned Aluminium-Doped Zinc Oxide</p><p>Nanorod-Array-Based Ultraviolet Photoconductive Sensor. Journal of Nanomaterials, 2012(8), 15.</p><p></p><p>M.H.Mamat, Mohamad Hafiz, Zuraida Khusaimi, Musa Mohamed Zahidi, & Mohamad Rusop Mahmood. (2012).</p><p>ZnO Nanorod Arrays Synthesised Using Ultrasonic-Assisted Sol-Gel and Immersion Methods for</p><p>Ultraviolet Photoconductive Sensor Applications, IntechOpen, 9(6), 93-118</p><p></p><p>M.H.Mamat, Z. Khusaimi, M. Z. Musa, M. F. Malek, & M. Rusop. (2011). Fabrication of Ultraviolet</p><p>Photoconductive Sensor Using a Novel Aluminium- Doped Zinc Oxide Nanorod-Nanoflake Network Thin</p><p>Film Prepared via Ultrasonic-Assisted Sol-Gel and Immersion Methods. Sensors and Actuators, A:</p><p>Physical, 171(2), 241247.</p><p></p><p>M.H.Mamat, Zuraida Khusaimi, Musa Mohamed Zahidi, Suriani Abu Bakar, Yosri Mohd Siran, Syahril</p><p>Anuar Md Rejab, Ahmad Jaril Asis, Shawaluddin Tahiruddin, Saifollah Abdullah, & Mohamad Rusop</p><p>Mahmood. (2011). Controllable Growth of Vertically Aligned Aluminum-Doped Zinc Oxide Nanorod</p><p>Arrays by Sonicated Sol-Gel Immersion Method Depending on Precursor Solution Volumes. Japanese</p><p>Journal of Applied Physics, 50(6), 1015.</p><p></p><p>M.H.Mamat, Zuraida Khusaimi, Musa Mohamed Zahidi, & Mohamad Rusop Mahmood. (2011). Performance of</p><p>an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays</p><p>Annealed in an Air and Oxygen Environment. Japanese Journal of Applied Physics, 50(6S), 06GF05.</p><p></p><p>M.H.Mamat, M. Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah, & M. Rusop. (2010). Influence of</p><p>Doping Concentrations on the Aluminum Doped Zinc Oxide Thin Films Properties for Ultraviolet</p><p>Photoconductive Sensor Applications. Optical Materials, 32(6), 696699.</p><p></p><p>Mahdavi, Reza, & S Siamak Ashraf Talesh. (2017). Sol-Gel Synthesis Structural and Enhanced</p><p>Photocatalytic Performance of Al Doped ZnO Nanoparticles. Advanced Powder Technology, 28(5),</p><p>1418-1425.</p><p></p><p>Mahendraprabhu, Kamaraj, Arumugam Selva Sharma, & Perumal Elumalai. (2019). CO Sensing Performances</p><p>of YSZ-Based Sensor Attached with Sol-Gel Derived ZnO Nanospheres. Sensors and Actuators,</p><p>B:Chemical, 283(2), 84247.</p><p></p><p>Manthina, Venkata, Juan Pablo, Correa Baena, Guangliang Liu, & Alexander G Agrios. (2 2). ZnOTiO</p><p>Nanocomposite Films for High Light Harvesting E Ffi Ciency and Fast Electron Transport in</p><p>Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 45(116), 2386423870.</p><p></p><p>Marie, Mohammed, Sanghamitra Mandal, & Omar Manasreh. (2015). An Electrochemical Glucose</p><p>Sensor Based on Zinc Oxide Nanorods. Sensors, 15(8), 18714-18723.</p><p>Marin, Oscar, Mnica Tirado, Nicols Budini, Edgar Mosquera, & Carlos Figueroa. (2016). Materials</p><p>Science in Semiconductor Processing Photoluminescence from c -Axis Oriented ZnO Fi Lms Synthesized</p><p>by Sol-Gel with Diethanolamine as Chelating Agent. Materials Science in Semiconductor Processing</p><p>56(8): 5965.</p><p></p><p>Mauro, Alessandro Di, Massimo Zimbone, Mario Scuderi, Giuseppe Nicotra, & Maria Elena Fragal.</p><p>(2015). Effect of Pt Nanoparticles on the Photocatalytic Activity of ZnO Nanofibers. Nanoscale</p><p>Research Letters, 10(1), 484-491.</p><p></p><p>Mohamed, Azmi, Kieran Trickett, Swee Yee Chin, Stephen Cummings, Masanobu Sagisaka, Laura Hudson,</p><p>Sandrine Nave,. (2010). Universal Surfactant for Water, Oils and CO. Langmuir, 26(17),</p><p>13861-13866.</p><p></p><p>Mohanty, Nihar, & Vikas Berry. (2008). Resolution Biodevice and DNA Transistor:Interfacing</p><p>Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett, 8(12), 4469-4476.</p><p></p><p>Monroy, E, F Omn s, & F Calle. (2003). Wide-Bandgap Semiconductor Ultraviolet Photodetectors.</p><p>Semiconductor Science and Technology, 18(4), R33R51.</p><p></p><p>Montenegro, D N, V Hortelano, & O Mart. (2013). Non-Radiative Recombination Centres in</p><p>Catalyst-Free ZnO Nanorods Grown by Atmospheric-Metal Organic Chemical. Journal of Physics</p><p>D:Applied Physics, 46(23), 235302.</p><p></p><p>Moura, A P De, R C Lima, M L Moreira, D P Volanti, J W M Espinosa, M O Orlandi, P S Pizani, J A</p><p>Varela, & E Longo. (2010). ZnO Architectures Synthesized by a Microwave-Assisted Hydrothermal</p><p>Method and Their Photoluminescence Properties. Solid State Ionics, 181(1516), 775780.</p><p></p><p>Musat, V., M. Mazilu, N. Tigau, P. Alexandru, A. Dinescu, & M. Purica. (2016). Effect of Doping</p><p>Concentration and Temperature on the Morphology, Crystallinity and Electrical Conductivity of</p><p>Al:ZnO Nanostructured Films Grown from Aqueous Solution. Thin Solid Films, 617(7), 120125.</p><p></p><p>Mustafa, M. K., Y. Iqbal, U. Majeed, and M. Z. Sahdan. (2 7). Effect of Precursors Concentration</p><p>on Structure and Morphology of ZnO Nanorods Synthesized through Hydrothermal Method on Gold</p><p>Surface. AIP Conference Proceedings, 1788(3), 30120.</p><p></p><p>Nafees, Muhammad, & Salamat Ali. (2012). Synthesis of ZnO/Al:ZnO Nanomaterial:Structural</p><p>and Band Gapvariation in ZnO Nanomaterial by Al Doping. Applied Nanoscience, 3(1), 49-55.</p><p></p><p>Narasimhan, K. L., Pai, S. P., Palkar, V. R., & Pinto, R. (1997). High quality zinc oxide films by</p><p>pulsed laser ablation. Thin Solid Films, 295(2), 104106.</p><p></p><p>Nanakkal, A. R., & L. K. Alexander. (2017). Photocatalytic Activity of Graphene/ZnO</p><p>Nanocomposite Fabricated by Two-Step Electrochemical Route. Journal of Chemical Sciences, 129(1),</p><p>95102.</p><p></p><p>Chang, H., Sun, Z., Ho, K. Y. F., Tao, X., Yan, F., Kwok, W. M., & Zheng, Z. (2011). A highly</p><p>sensitive ultraviolet sensor based on a facile in situ solution- grown ZnO nanorod/graphene</p><p>heterostructure. Nanoscale, 3(1), 258-264.</p><p></p><p>Nenavathu, Bhavani P., Syam Kandula, & Swati Verma. (2018). Visible-Light-Driven Photocatalytic</p><p>Degradation of Safranin-T Dye Using Functionalized Graphene Oxide Nanosheet (FGS)/ZnO</p><p>Nanocomposites. RSC Advances, 8(35), 19659 19667.</p><p></p><p>Ng, Sing Muk, Derrick Sing Nguong Wong, Jane Hui Chiun Phung, & Hong Siang Chua. (2013). Integrated</p><p>Miniature Fluorescent Probe to Leverage the Sensing Potential of ZnO Quantum Dots for the Detection</p><p>of Copper (II) Ions. Talanta, 116(7), 514519.</p><p></p><p>Ni, Zhenhua, Yingying Wang, Ting Yu, & Zexiang Shen. (2008). Raman Spectroscopy and Imaging of</p><p>Graphene. Nano Research, 1(4), 273291.</p><p></p><p>Nipane, S. V., P. V. Korake, & G. S. Gokavi. (2015). Graphene-Zinc Oxide Nanorod Nanocomposite as</p><p>Photocatalyst for Enhanced Degradation of Dyes under UV Light Irradiation. Ceramics International,</p><p>41(13), 4549-4557.</p><p></p><p>Nishihara, Tokihiro, Jifang Xu, & I Introduction. (1993). Control of Preferred Orientation for ZnO</p><p>X Films : Control of Self-Texture. Journal of Crystal Growth, 130(1-2), 269-279.</p><p></p><p>Nishiyabu, Ryuhei, Shiho Ushikubo, Yuka Kamiya, & Yuji Kubo. (2014). A Boronate Hydrogel Film</p><p>Containing Organized Two-Component Dyes as a Multicolor Fluorescent Sensor for Heavy Metal Ions in</p><p>Water. Journal of Materials Chemistry A, 2(38), 1584615852.</p><p></p><p>Noothongkaew, Suttinart, Orathai Thumthan, & Ki Seok An. (2018). UV- Photodetectors Based</p><p>on CuO/ZnO Nanocomposites. Materials Letters, 233(9), 318323.</p><p></p><p>Novoselov, K.S., A.K. Geim, S.V. Morozov, D Jiang, Y Zhang, S.V. Dubonos, I.V. Grigorieva, & A. A</p><p>Firsov. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(10), 666669.</p><p></p><p>Nurhafizah, M.D. (2017). Synthesis of Graphene Oxide via Electrochemical Exfoliation Method Using</p><p>Triple-Tails Surfactant as Electrode Materials Application. UPSI.</p><p></p><p>Sim Lan Ching, Leong Kah Hon, Ibrahim Shaliza & Saravanan Pichiah. (2014). Graphene oxide and Ag</p><p>engulfed TiO2 nanotube arrays for enhanced electron mobility and visible light-driven</p><p>photocatalytic performance. Journal of Materials Chemistry, 2(1), 53155322.</p><p></p><p>Opoku, Francis, Krishna Kuben Govender, Cornelia Gertina Catharina Elizabeth Van Sittert, & Penny</p><p>Poomani Govender. (2017). Understanding the Mechanism of Enhanced Charge Separation and Visible</p><p>Light Photocatalytic Activity of Modified Wurtzite ZnO with Nanoclusters of ZnS and Graphene Oxide:</p><p>From a Hybrid Density Functional Study. New Journal of Chemistry, 41(16), 8140 8155.</p><p></p><p>Otiti, Tom. (2014). Review of Zinc Oxide Thin Films. College of Computing and Information Science</p><p>Makerere.1-78</p><p></p><p>zgr, ., V. Avrutin, & H. Morko. (2013). Zinc Oxide Materials and Devices Grown by MBE.</p><p>Molecular Beam Epitaxy, 369-416</p><p></p><p>Pal, Dipayan, Aakash Mathur, Ajaib Singh, Jaya Singhal, Amartya Sengupta, Surjendu Dutta, Stefan</p><p>Zollner, & Sudeshna Chattopadhyay. (2017). Tunable Optical Properties in Atomic Layer Deposition</p><p>Grown ZnO Thin Films. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 35(1),</p><p>01B108.</p><p></p><p>Papageorgiou, Dimitrios G, Ian A Kinloch, & Robert J Young. (2017). Progress in Materials Science</p><p>Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Progress in Materials Science,</p><p>90(10), 75127.</p><p></p><p>Pawar, R. C., J. S. Shaikh, S. S. Suryavanshi, & P. S. Patil. (2012). Growth of ZnO Nanodisk,</p><p>Nanospindles and Nanoflowers for Gas Sensor:PH Dependency. Current Applied Physics, 12(3), 778783.</p><p></p><p>Pei, Songfeng, & Hui-ming Cheng. (2011). The Reduction of Graphene Oxide.</p><p>Carbon, 50(9), 32103228.</p><p></p><p>Pham, Viet Hung, Tran Viet Cuong, Seung Hyun Hur, Eun Woo Shin, Jae Seong Kim, Jin Suk Chung, & Eui</p><p>Jung Kim. (2010). Fast and Simple Fabrication of a Large Transparent Chemically-Converted Graphene</p><p>Film by Spray-Coating. Carbon, 48(7), 19451951.</p><p></p><p>Polsongkram, D., P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf,</p><p>S. Park, & A. Schulte. (2008). Effect of Synthesis Conditions on the Growth of ZnO Nanorods via</p><p>Hydrothermal Method. Physica B:Condensed Matter, 403 (1920), 37133717.</p><p></p><p>Qiu, Feng, Guangjian He, Mingyang Hao, & Guizhen Zhang. (2018). Enhancing the Mechanical and</p><p>Electrical Properties of Poly(vinyl Chloride)-Based Conductive Nanocomposites by Zinc Oxide</p><p>Nanorods. Materials, 11(11), 115.</p><p></p><p>Rajamanickam, D., & M. Shanthi. (2016). Photocatalytic Degradation of an Organic Pollutant by Zinc</p><p>OxideSolar Process. Arabian Journal of Chemistry, 9(5), S1858-S1868.</p><p></p><p>Rajeshwar, K., M. E. Osugi, W. Chanmanee, C. R. Chenthamarakshan, M. V.B. Zanoni, P.</p><p>Kajitvichyanukul, & R. Krishnan-Ayer. (2008). Heterogeneous Photocatalytic Treatment of Organic</p><p>Dyes in Air and Aqueous Media. Journal of Photochemistry and Photobiology C: Photochemistry</p><p>Reviews, 9(4), 171192.</p><p></p><p>Ranjith, Kuglaur Shanmugam, Palanisamy Manivel, Ramasamy Thangavel Rajendrakumar, & Tamer</p><p>Uyar. (2017). Multifunctional ZnO Nanorod-Reduced Graphene Oxide Hybrids Nanocomposites for</p><p>Effective Water Remediation:</p><p></p><p>Effective Sunlight Driven Degradation of Organic Dyes and Rapid Heavy Metal Adsorption. Chemical</p><p>Engineering Journal, 325(5), 588600.</p><p></p><p>Rashid, Affa Rozana Abdul, P. Susthitha Menon, N. Arsad, & Sahbudin Shaari. (2011). Ultraviolet</p><p>Sensing by Al-Doped ZnO Thin Films. Advanced Materials Research, 364 (10), 154158.</p><p></p><p>Rashid, Tonny Roksana, Duy Thach Phan, & Gwiy Sang Chung. (2012). Characteristics of UV</p><p>Sensors Using ZnO Nanostructures Synthesized by Galvanostatic Electrochemical Deposition.</p><p>Proceedings of IEEE Sensors, 2012(10), 14.</p><p></p><p>Ren, Peng-gang, Ding-xiang Yan, Xu Ji, & Tao Chen. (2011). Temperature Dependence of Graphene</p><p>Oxide Reduced by Hydrazine Hydrate. Nanotechnology, 22(5), 055705.</p><p></p><p>Ridha, Noor J, Mohammad Hafizuddin, Haji Jumali, Akrajas Ali Umar, & F Alosfur. (2013).</p><p>Defects-Controlled ZnO Nanorods with High Aspect Ratio for Ethanol Detection. Int. J. Electrochem.</p><p>Sci, 8(4), 45834594.</p><p></p><p>Rodwihok, Chatchai, Supab Choopun, Pipat Ruankham, Atcharawon Gardchareon, Surachet</p><p>Phadungdhitidhada, & Duangmanee Wongratanaphisan. (2017). UV Sensing Properties of ZnO</p><p>Nanowires/Nanorods. Applied Surface Science, 477(5),159-165.</p><p></p><p>Rogachev, Alexandr V, Alina V Semchenko, Dmitry L Kovalenko, Vitaliy V Sidsky, Olga I Tyulenkova,</p><p>Nina I Tyulenkova, Dumitru Luca, Vitaliy A Solodukha, Alyaxandr N Pyatlitski, & Natalya S</p><p>Kovalchuk. (2018). Sol-Gel Synthesis of ZnO Nanorods for MEMS. Recent Advances in Technology</p><p>Research and Education, 660(5), 17.</p><p></p><p>Rusli, Nurul Izni, Masahiro Tanikawa, Mohamad Rusop Mahmood, & Kanji Yasui. (2012). Growth of</p><p>High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation. Materials, 5(12),</p><p>2817-2832.</p><p></p><p>Rusop, M., M.H. Mamat, Mohd Firdaus Malek, I. Saurdi, Mohd Nor Asiah, Nor Diyana Md Sin, Nayan</p><p>Nafarizal, Zuraida Khusaimi, N.N. Hafizah, & Zulkefle Habibah. (2013). Investigation of Stress and</p><p>Electrical Properties of Air- Annealed and Oxygen-Annealed Aluminium-Doped Zinc Oxide Nanorod</p><p>Arrays. Advanced Materials Research, 832 (2014), 303309.</p><p></p><p>Sabeeh, Sabah Habeeb, & Ruaa Hashim Jassam. (2018). The Effect of Annealing Temperature and Al</p><p>Dopant on Characterization of ZnO Thin Films Prepared by Sol-Gel Method. Results in Physics, 10(5),</p><p>21216.</p><p></p><p></p><p>Senz-Trevizo, Anglica, Patricia Amzaga-Madrid, Pedro Piz-Ruiz, Wilber Antnez-Flores, &</p><p>Mario Miki-Yoshida. (2016). Optical Band Gap Estimation of ZnO Nanorods. Materials Research, 19(7),</p><p>3338.</p><p></p><p>Safa, M Zare S, & R Azimirad S Mokhtari. (2017). Graphene Oxide Incorporated ZnO Nanostructures as</p><p>a Powerful Ultraviolet Composite Detector. Journal of Materials Science: Materials in Electronics,</p><p>28(9), 69196927.</p><p></p><p>Safa, S., S. Mokhtari, A. Khayatian, & R. Azimirad. (2018). Improving Ultraviolet Photodetection of</p><p>ZnO Nanorods by Cr Doped ZnO Encapsulation Process. Optics Communications, 413(12), 131135.</p><p></p><p>Safa, S., R. Sarraf-Mamoory, & R. Azimirad. (2014). Investigation of Reduced Graphene Oxide Effects</p><p>on Ultra-Violet Detection of ZnO Thin Film. Physica E: Low-Dimensional Systems and Nanostructures,</p><p>57(11), 155160.</p><p></p><p>Saha, Tridib, Ajay Achath Mohanan, Varghese Swamy, Ningqun Guo, & N. Ramakrishnan. (2016). An</p><p>Optimal Thermal Evaporation Synthesis of c-Axis Oriented ZnO Nanowires with Excellent UV</p><p>Sensing and Emission Characteristics. Materials Research Bulletin, 77(1), 147154.</p><p></p><p>Saha, Tridib, Ningqun Guo, & N. Ramakrishnan. (2016). A Novel Langasite Crystal Microbalance</p><p>Instrumentation for UV Sensing Application. Sensors and Actuators, A: Physical, 252(12), 1625.</p><p></p><p>Sahoo, Nanda Gopal, Yongzheng Pan, Lin Li, and Siew Hwa Chan. (2012). Graphene-Based Materials for</p><p>Energy Conversion. Advanced Materials, 24(30), 4203-4210.</p><p></p><p>Sahoo, Satyaprakash, G. L. Sharma, and Ram S. Katiyar. (2012). Raman Spectroscopy to</p><p>Probe Residual Stress in ZnO Nanowire. Journal of Raman Spectroscopy, 43(1), 7275.</p><p></p><p>Saleh, Tawfik A, M A Gondal, and Q A Drmosh. (2010). Preparation of a MWCNT/ ZnO Nanocomposite and</p><p>Its Photocatalytic Activity for the Removal of Cyanide from Water using a Laser. Nanotechnology,</p><p>21(49), 495705.</p><p></p><p>Scholes, D. Tyler, Patrick Y. Yee, Jeffrey R. Lindemuth, Hyeyeon Kang, Jonathan Onorato, Raja</p><p>Ghosh, Christine K. Luscombe, Frank C. Spano, Sarah H. Tolbert, & Benjamin J. Schwartz. (2017). The</p><p>Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed</p><p>F4TCNQ-Doped Conjugated Polymer Films. Advanced Functional Materials, 27(44), 113.</p><p></p><p>Senthil, R Jeyachitra V Senthilnathan T S. (2018). Studies on Electrical Behavior of Fe Doped ZnO</p><p>Nanoparticles Prepared via Co-Precipitation Approach for Photo- Catalytic Application. Journal of</p><p>Materials Science: Materials in Electronics, 29 (2), 118997.</p><p></p><p>Shabannia, R. (2015). Vertically Aligned ZnO Nanorods on Porous Silicon Substrates : Effect of</p><p>Growth Time. Progress in Natural Science:Materials International, 25(2), 95-100.</p><p></p><p>Shahil, Khan M F, & Alexander A Balandin. (2012). Thermal Properties of Graphene and Multilayer</p><p>Graphene : Applications in Thermal Interface Materials. Solid State Communications, 152(15),</p><p>13311340.</p><p></p><p>Shi, Ruixia, Ping Yang, Xiaobin Dong, Qian Ma, & Aiyu Zhang. (2013). Growth of Flower-like ZnO on</p><p>ZnO Nanorod Arrays Created on Zinc Substrate through Low-Temperature Hydrothermal Synthesis.</p><p>Applied Surface Science, 264(10), 162170.</p><p></p><p>Si, Yongchao, Edward T Samulski, Chapel Hill, & North Carolina. (2008). Synthesis of Water Soluble</p><p>Graphene. Nano Letters, 8(6), 1679-1682.</p><p></p><p>Singh, Kamaljit, & Sucharita Arora. (2011). Removal of Synthetic Textile Dyes from Wastewaters:A</p><p>Critical Review on Present Treatment Technologies. Critical Reviews in Environmental Science and</p><p>Technology, 41(9), 80778.</p><p></p><p>Singh, Shaivalini. 2016. Al Doped ZnO Based Metal-Semiconductor-Metal and</p><p>Metal-Insulator-Semiconductor-Insulator-Metal UV Sensors. Optik, 127(7), 35233526.</p><p>Son, Dong Ick, Hee Yeon Yang, Tae Whan Kim, Won Il Park, Dong Ick Son, Hee Yeon Yang, Tae Whan Kim,</p><p>& Won Il Park. (2013). Photoresponse Mechanisms of Ultraviolet Photodetectors Based on Colloidal</p><p></p><p>ZnO Quantum Dot-Graphene Nanocomposites. Applied Physics Letters, 102(2), 021105-0211053.</p><p>Song, Jaejin, & Sangwoo Lim. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods. Physical</p><p>Chemistry C, 111(2): 596600.</p><p></p><p>Stankovich, Sasha, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes,</p><p>Yuanyuan Jia, Yue Wu, Son Binh T Nguyen, & Rodney S. Ruoff. 2007. Synthesis of Graphene-Based</p><p>Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45(7), 15581565.</p><p></p><p>Steurer, Peter, Rainer Wissert, Ralf Thomann, & Rolf Mu. (2009). Functionalized Graphenes and</p><p>Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol. Rapid Communications,</p><p>30(45), 316327.</p><p></p><p>Sudhagar, P., Anitha Devadoss, Taeseup Song, P. Lakshmipathiraj, Hyungkyu Han, Volodymyr V. Lysak,</p><p>C. Terashima, et al. (2014). Enhanced Photocatalytic Performance at a Au/N-TiO hollow Nanowire</p><p>Array by a Combination of Light Scattering and Reduced Recombination. Physical Chemistry Chemical</p><p>Physics 16(33), 1774817755.</p><p></p><p>Sun, Ye, Gareth M Fuge, & Michael N R Ashfold. (2004). Growth of Aligned ZnO Nanorod Arrays by</p><p>Catalyst-Free Pulsed Laser Deposition Methods. Chemical Physics Letters, 396(1-3), 21-26.</p><p></p><p>Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi. (2016).</p><p>Highly Conductive Electrodes of Graphene Oxide / Natural Rubber Latex-Based Electrodes by Using</p><p>a Hyper-Branched Surfactant. Advanced Materials Research, 99(2016), 174181.</p><p></p><p>suriani, A.B. Muqoyyanah, A. Mohamed, M.H.Mamat, N. Hashim, I.M. Isa, M.F. Malek, M.I. Kairi, A.R.,</p><p>and M.K. Ahmad Mohamed. (2017). Improving the Photovoltaic Performance of DSSCs Using a Combination</p><p>of Mixed-Phase TiO Nanostructure Photoanode and Agglomerated Free Reduced Graphene Oxide Counter</p><p>Electrode Assisted with Hyperbranched Surfactant. Optik, 158(2010), 52234.</p><p></p><p>Suriani, A. B., Fatiatun, A. Mohamed, Muqoyyanah, N. Hashim, M. S. Rosmi, M. H. M.H.Mamat, M. F.</p><p>Malek, M. J. Salifairus, and H. P.S. Abdul Khalil. (2018). Reduced Graphene Oxide/platinum Hybrid</p><p>Counter Electrode Assisted by Custom-Made Triple-Tail Surfactant and Zinc Oxide/titanium Dioxide</p><p>Bilayer Nanocomposite Photoanode for Enhancement of DSSCs Photovoltaic Performance. Optik,</p><p>161(2), 7083.</p><p></p><p>Suriani, A. B., R. N. Safitri, A. Mohamed, S. Alfarisa, I. M. Isa, A. Kamari, N. Hashim, M. K.</p><p>Ahmad, M. F. Malek, and M. Rusop. (2015). Enhanced Field Electron Emission of Flower-like Zinc</p><p>Oxide on Zinc Oxide Nanorods Grown on Carbon Nanotubes. Materials Letters, 149(3), 6669.</p><p></p><p>Suriani, A.B., Muqoyyanah, A. Mohamed, M.H.Mamat, N. Hashim, I. M. Isa, M. F. Malek, M. I. Kairi,</p><p>A. R. Mohamed, & M. K. Ahmad. (2018). Improving the Photovoltaic Performance of DSSCs Using a</p><p>Combination of Mixed-Phase TiO nanostructure Photoanode and Agglomerated Free Reduced Graphene</p><p>Oxide Counter Electrode Assisted with Hyperbranched Surfactant. Optik, 158(2010), 522534.</p><p></p><p>Suriani, A.B., Nurhafizah M.D., A. Mohamed, M.H. M.H.Mamat, M.F. Malek, M.K. Ahmad, A. Pandikumar,</p><p>& N.M. Huang. (2017). Enhanced Photovoltaic Performance Using Reduced Graphene Oxide Assisted by</p><p>Triple-Tail Surfactant as an Efficient and Low-Cost Counter Electrode for Dye-Sensitized Solar</p><p>Cells. Optik, 139(2017), 291298.</p><p></p><p>Suriani, A B, M.D Nurha, A Mohamed, I Zainol, & A K Masrom. (2015). A Facile One-Step Method for</p><p>Graphene Oxide/Natural Rubber Latex Nanocomposite Production for Supercapacitor Applications.</p><p>Materials Letters, 161(9), 665-668.</p><p></p><p>Suriani, A B, A Mohamed, N Hashim, M H D Othman, M. H. Mamat, & M K Ahmad. (2018). Reduced Graphene</p><p>Oxide-Multiwalled Carbon Nanotubes Hybrid Film with Low Pt Loading as Counter Electrode for</p><p>Improved Photovoltaic Performance of Dye-Sensitised Solar Cells. Journal of Materials Science:</p><p>Materials in Electronics, 29(13), 10723-10743.</p><p></p><p>Suriani, A B, M D Nurhafizah, A Mohamed, and M.H.Mamat. 2017. Optik Enhanced Photovoltaic</p><p>Performance Using Reduced Graphene Oxide Assisted by Triple- Tail Surfactant as an Efficient and</p><p>Low-Cost Counter Electrode for Dye- Sensitized Solar Cells. Optik - International Journal for Light</p><p>and Electron Optics, 139(4), 291298.</p><p></p><p>Tang, H, K Prasad, R Sanjins, P E Schmid, & F Lvy. (1994). Electrical and Optical Properties of</p><p>TiO Anatase Thin Films Ellectrical and Optical Properties of Ti02</p><p></p><p>Anatase Thin Films. Journal of applied physics, 75(4), 2042-2047.</p><p></p><p>Tauc, J., & A. Menth. (1972). States in the Gap. Journal of Non-Crystalline Solids,10(6), 569585.</p><p></p><p>Tavakoli, Farnosh, Masoud Salavati-Niasari, Alireza Badiei, & Fatemeh Mohandes. (2015). Green</p><p>Synthesis and Characterization of Graphene Nanosheets. Materials Research Bulletin, 63(3),</p><p>5157.</p><p></p><p>Taziwa, Raymond, Luyolo Ntozakhe, and Meyer. Edson. (2017). Structural, Morphological and</p><p>Raman Scattering Studies of Carbon Doped ZnO Nanoparticles Fabricated by PSP Technique. J</p><p>Nanosci Nanotechnol Res, 1(13),1-8.</p><p></p><p>Terasako, Tomoaki, Nur Ashikyn, Nurul Azzyaty, Toshiya Wakisaka, Abdul Manaf, & Masakazu Yagi.</p><p>(2015). Shape Controlled Growth of ZnO Nanorods and Fabrication of ZnO/CuO Heterojunctions by</p><p>Chemical Bath Deposition Using Zinc Nitrate Hexahydrate and Copper (III) Nitrate Trihydrate. Thin</p><p>Solid Films, Thin Solid Films, 596(12), 201-208.</p><p></p><p>Ting, Chu Chi, Chang Hung Li, Chih You Kuo, Chia Chen Hsu, Hsiang Chen Wang, & Ming Hsun Yang.</p><p>(2010). Compact and Vertically-Aligned ZnO Nanorod Thin Films by the Low-Temperature Solution</p><p>Method. Thin Solid Films, 518 (15), 41564162.</p><p></p><p>Toh, Shaw Yong, Kee Shyuan Loh, Siti Kartom Kamarudin, Wan Ramli, & Wan Daud. (2014). Graphene</p><p>Production via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterisation.</p><p>Chemical Engineering Journal, 251(4), 422-434.</p><p></p><p>Tripathy, S, S J Chua, P Chen, Z L Miao, S Tripathy, S J Chua, P Chen, & Z L Miao. (2003).</p><p>Micro-Raman investigation of strain in GaN and Alx Ga 1x N/GaN heterostructures grown on Si (111).</p><p>Journal of applied physics, 92(7), 3503-3510.</p><p></p><p>Tuinstra, F., & J. L. Koenig. (1970). Raman Spectrum of Graphite. The Journal of Chemical Physics,</p><p>53(3), 11261130.</p><p></p><p>Uberlegung, Der. (1913). Interferenzerscheinungen bei Rntgenstrahlen. Annalen der Physik, 346(10),</p><p>971-988</p><p></p><p>Uddin, Elias, Tapas Kuila, Ganesh Chandra Nayak, Nam Hoon Kim, Cheol Ku, Joong Hee Lee, and Joong</p><p>Hee Lee. (2013). Effects of various surfactants on the dispersion stability and electrical</p><p>conductivity of surface modified graphene. Journal of Alloys and Compounds, 562(6), 134-142.</p><p></p><p>Meryl D Stoller, Sungjin Park, Yanwu Zhu, Jinho An, Rodney S Ruoff, Meryl D Stoller, et al. (2008).</p><p>Graphene-Based Ultracapacitors. Nano letters, 8(10), 34983502.</p><p></p><p>Ulyankina, Anna, Igor Leontyev, Marina Avramenko, Denis Zhigunov, and Nina Smirnova. (2018).</p><p>Large-Scale Synthesis of ZnO Nanostructures by Pulse Electrochemical Method and Their</p><p>Photocatalytic Properties. Materials Science in Semiconductor Processing, 76(8), 713.</p><p></p><p>Umar, A, S H Kim, Y Lee, K S Nahm, and Y B Hahn. (2005). Catalyst-Free Large- Quantity Synthesis</p><p>of ZnO Nanorods by a Vapor Solid Growth Mechanism : Structural and Optical Properties Journal of</p><p>Crystal Growth, 282(1-2), 131-136</p><p></p><p>V, Poornima Parvathi, Parimaladevi R, Vasant Sathe, and Umadevi Mahalingam. (2019). Graphene</p><p>Boosted Silver Nanoparticles as Surface Enhanced Raman Spectroscopic Sensors and Photocatalysts</p><p>for Removal of Standard and Industrial Dye Contaminants. Sensors and Actuators B:Chemical,</p><p>281(11), 679- 688.</p><p></p><p>Vasudevan, Arun, Soyoun Jung, & Taeksoo Ji. (2011). Synthesis and Characterization of Hydrolysis</p><p>Grown Zinc Oxide Nanorods. ISRN Nanotechnology, 2011(7),1-7.</p><p></p><p>W.Xia, H.Wang, X.Zeng, J.Han, J.Zhu, M.Zhou, & S.Wu. (2014). High Efficiency Photocatalytic</p><p>Activity of Type-II SnO/SnO Heterostructures via Interfacial Charge Transfer. CrystEngComm,</p><p>16(30), 68416847.</p><p></p><p>Wahid, Khairul Anuar, Wai Yee Lee, Hing Wah Lee, Aun Shin Teh, Daniel C.S. Bien, & Ishak Abd Azid.</p><p>(2013). Effect of Seed Annealing Temperature and Growth Duration on Hydrothermal ZnO Nanorod</p><p>Structures and Their Electrical Characteristics. Applied Surface Science, 283(6), 629635.</p><p></p><p>Wang, W., Ai, T., Li, W., Jing, R., Fei, Y., & Feng, X. (2017). Photoelectric and Electrochemical</p><p>Performance of Al-Doped ZnO Thin Films Hydrothermally Grown on PETGR Bilayer Flexible Substrates.</p><p>The Journal of Physical Chemistry, 43(11), 145.</p><p></p><p>Wang, Chang, Jianping Xu, Shaobo Shi, Yuzhu Zhang, Yanyan Gao, Zeming Liu, Xuguang Zhang, & Lan Li.</p><p>(2017). Optimizing Performance of CuO/ZnO Nanorods Heterojunction Based Self-Powered Photodetector</p><p>with ZnO Seed Layer. Journal of Physics and Chemistry of Solids, 103(4), 218223.</p><p></p><p>Wang, Guosheng, Xiaoguang San, Liang Bing, Yinmin Song, Shangyao Gao, Jinsong Zhang, & Fanli Meng.</p><p>(2015). Catalyst-Free Growth of One-Dimensional ZnO Nanostructures on SiO Substrate and in Situ</p><p>Investigation of Their H Sensing Properties. Journal of Alloys and Compounds, 622(2), 7378.</p><p></p><p>Wang, Hui, Yufang Wang, Xuewei Cao, Min Feng, & Guoxiang Lan. (2009). Vibrational Properties of</p><p>Graphene and Graphene Layers. Journal of Raman Spectroscopy, 40(12), 1791196.</p><p></p><p>Wang, Jing, Pengyang Ma, & Lan Xiang. (2015). Effects of NaOH on Formation of ZnO Nanorods from </p><p>-Zn(OH). Materials Letters, 141(2), 118121.</p><p></p><p>Wang, Qin, Linfeng Hu, Min Chen, & Limin Wu. (2015). Synthesis and Enhanced Photoelectric</p><p>Performance of Au/ZnO Hybrid Hollow Sphere. RSC Advances, 5 (125), 103636103642.</p><p></p><p>Wang, Yi. (2011). Green and Easy Synthesis of Biocompatible Graphene for Use as an Anticoagulant.</p><p>RSC Advances, 2(6), 2322-2328.</p><p></p><p>Wang, Yumin, Xia Zhang, and Chao Hou. (2018). Facile Synthesis of Al-Doping 1D ZnO Nanoneedles by</p><p>Co-Precipitation Method for Efficient Removal of Methylene Blue. Nano-Structures and Nano-Objects,</p><p>16(10), 250257.</p><p></p><p>Wang, Zhenxing, Xueying Zhan, Yajun Wang, Safdar Muhammad, Ying Huang, and Jun He. (2012). A</p><p>Flexible UV Nanosensor Based on Reduced Graphene Oxide Decorated ZnO Nanostructures. Nanoscale,</p><p>4(8), 26782684.</p><p></p><p>Wang, Zhong Lin. (2010). Piezopotential Gated Nanowire Devices:Piezotronics and Piezo-Phototronics.</p><p>Nano Today, 5(6), 540552.</p><p></p><p>Welderfael, Tesfay, Manjunatha Pattabi, Rani M Pattabi, & Arun Kumar Thilipan G. (2016).</p><p>Photocatalytic Activity of Ag-N Co-Doped ZnO Nanorods under Visible and Solar Light Irradiations</p><p>for MB Degradation. Journal of Water Process Engineering, 14(12), 117-123.</p><p></p><p>Wojewoda-Budka, Joanna, Katarzyna Stan, Rafal Nowak, & Natalia Sobczak. (2016). High-Temperature</p><p>Reactivity and Wetting Characteristics of Al/ZnO System Related to the Zinc Oxide Single Crystal</p><p>Orientation. Journal of Materials Science, 51(4), 16921700.</p><p></p><p>Wu, Jih-jen, & Sai-chang Liu. (2012). Low-Temperature Growth of Well-Aligned ZnO Nanorods by</p><p>Chemical Vapor Deposition. Advanced materials, 14(3), 215- 218.</p><p></p><p>Wu, Jili, Xiaoping Shen, Lei Jiang, Kun Wang, & Kangmin Chen. (2010). Solvothermal Synthesis and</p><p>Characterization of Sandwich-like graphene/ZnO Nanocomposites. Applied Surface Science, 256(9),</p><p>28262830.</p><p></p><p>Wu, Wei, Quanguo He, & Changzhong Jiang. (2008). Magnetic Iron Oxide Nanoparticles : Synthesis</p><p>and Surface Functionalization Strategies. Nanoscale Res Lett, 3(10), 397415.</p><p></p><p>Wu, Xiang, Huibo Chen, Lihong Gong, Fengyu Qu, & Yufeng Zheng. (2011). Low Temperature Growth and</p><p>Properties of ZnO Nanorod Arrays. Advances in Natural Sciences:Nanoscience and Nanotechnology,</p><p>2(3), 035006.</p><p></p><p>Xian, Fenglin, Gaige Zheng, Linhua Xu, Wenjian Kuang, & Shixin Pei. (2017). Temperature and</p><p>Excitation Power Dependence of Photoluminescence of ZnO Nanorods Synthesized by Pattern Assisted</p><p>Hydrothermal Method. Journal of Alloys and Compounds, 710(7), 695701.</p><p></p><p>Xie, Chao, Yi Wang, Zhi-xiang Zhang, Di Wang, & Lin-bao Luo. (2018). Graphene/Semiconductor Hybrid</p><p>Heterostructures for Optoelectronic Device Applications. Nano Today, 19(2), 41-83.</p><p></p><p>Xie, Xiang, Keke Zhao, Xiaodong Xu, Wenbo Zhao, Shujuan Liu, Zhiwei Zhu, Meixian Li, Zujin Shi, &</p><p>Yuanhua Shao. (2010). Study of Heterogeneous Electron Transfer on the Graphene/Self-Assembled</p><p>Monolayer Modified Gold Electrode by Electrochemical Approaches. The Journal of Physical Chemistry</p><p>C, 114(33), 14243-14250.</p><p></p><p>Xu, C H, Y F You, J Z Wang, S F Ge, W K Fong, K Leung, & C Surya. (2013). Growth Behavior of ZnO</p><p>Nanowires on Au-Seeded SiO 2 GaN Co-Substrate by Vapor Transport and Deposition. Superlattices</p><p>and Microstructures, 61(6), 97105.</p><p></p><p>Xu, Tongguang, Liwu Zhang, Hanyun Cheng, & Yongfa Zhu. (2011). Significantly Enhanced</p><p>Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study. Applied</p><p>Catalysis B:Environmental, 101(34), 382387.</p><p></p><p>Xu, Yuxi, & Gaoquan Shi. (2011). Assembly of Chemically Modified Graphene: Methods and</p><p>Applications. J. Mater. Chem, 21(10), 33113323.</p><p></p><p>Yadav, Raja R, Chandra S Rout, & Stanislav A Moshkalev. (2017). Synthesis of self- Assembled and</p><p>Hierarchical Palladiumcnts-Reduced Graphene Oxide Composites for Enhanced Field Emission</p><p>Properties. Materials & Design, 122(5), 110-117.</p><p></p><p>Yang, Kaikun, Congkang Xu, Liwei Huang, & Lianfeng Zou. (2011). Hybrid Nanostructure Heterojunction</p><p>Solar Cells Fabricated Using Vertically Aligned ZnO Nanotubes Grown on Reduced Graphene Oxide.</p><p>Nanotechnology, 22(40), 405401.</p><p></p><p>Yang, T L, D H Zhang, J Ma, H L Ma, & Y Chen. (1998). Transparent Conducting ZnO:Al Films Deposited</p><p>on Organic Substrates Deposited by R.F Magnetron- Sputtering. Thin Solid Film, 326(1-2), 6062.</p><p></p><p>Yang Yang, & Tianxi Liu. (2011). Applied Surface Science Fabrication and Characterization of</p><p>Graphene Oxide/Zinc Oxide Nanorods Hybrid. Applied Surface Science, 257(21), 89508954.</p><p></p><p>Yao, Tinghui, Xin Guo, Shengchun Qin, Fangyuan Xia, Qun Li, Yali Li, Qiang Chen, Junshuai Li, &</p><p>Deyan He. (2017). Effect of rGO Coating on Interconnected CoONanosheets and Improved</p><p>Supercapacitive Behavior of CoO/rGO/NF Architecture. Nano-Micro Letters, 9(4), 18.</p><p></p><p>Yazici, M. Suha, M. Akif Azder, & Omer Salihoglu. (2018). CVD Grown Graphene as Catalyst for Acid</p><p>Electrolytes. International Journal of Hydrogen Energy, 43 (23), 1071010716.</p><p></p><p>Yin, Perry T., Shreyas Shah, Manish Chhowalla, & Ki-Bum Lee. (2015). Design, Synthesis, and</p><p>Characterization of GrapheneNanoparticle Hybrid Materials for Bioapplications. Chemical Reviews,</p><p>115(7), 24832531.</p><p></p><p>Yin, Shengyan, Xiaoju Men, Hang Sun, Ping She, Wei Zhang, Changfeng Wu, Weiping Qin, & Xiaodong</p><p>Chen. (2015). Enhanced Photocurrent Generation of Bio-Inspired graphene/ZnO Composite Films.</p><p>Journal of Materials Chemistry A, 3(22), 1201612022.</p><p></p><p>Yu, Aifang, Peng Jiang, & Zhong Lin Wang. (2012). Nanogenerator as Self-Powered Vibration Sensor.</p><p>Nano Energy, 1(3), 418423.</p><p></p><p>Yung, K. C., H. Liem, & H. S. Choy. (2009). Enhanced Red Shift of the Optical Band Gap in Sn-Doped</p><p>ZnO Free Standing Films Using the Sol-Gel Method. Journal of Physics D:Applied Physics, 42(18),</p><p>185002.</p><p></p><p>Z. Khusaimi, M. H. Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, S Amizam, &</p><p>M. Rusop. (2010). Controlled Growth of Zinc Oxide Nanorods by Aqueous- Solution Method. Synthesis</p><p>and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(3), 190194.</p><p></p><p>Zamiri, Reza, Budhendra Singh, Michael Scott Belsley, and J. M.F. Ferreira. (2014). Structural &</p><p>Dielectric Properties of Al-Doped ZnO Nanostructures. Ceramics International, 40(4), 60316036.</p><p></p><p>Zavar, Salehe. (2017). A Novel Three Component Synthesis of 2-Amino-4H- Chromenes Derivatives</p><p>Using Nano ZnO Catalyst. Arabian Journal of Chemistry, 10(7), S67S70.</p><p></p><p>Zeng, By Qiong, Jinsheng Cheng, Longhua Tang, Xiaofei Liu, Yanzhe Liu, and Jinghong Li. (2010).</p><p>Self-Assembled GrapheneEnzyme Hierarchical Nanostructures for Electrochemical Biosensing.</p><p>Advanced Functional Materials, 20(19), 3366-3372.</p><p></p><p>Zhan, Zhaoyao, Lianxi Zheng, Yongzheng Pan, Gengzhi Sun, & Lin Li. (2012). Self- Powered,</p><p>Visible-Light Photodetector Based on Thermally Reduced Graphene Oxide-ZnO (rGO-ZnO) Hybrid</p><p>Nanostructure. Journal of Materials Chemistry, 22(6), 25892595.</p><p></p><p>Zhang, Guling, Chaoyue Deng, Honglong Shi, Bin Zou, Yongchao Li, Tengteng Liu, & Wenzhong Wang.</p><p>(2017). ZnO/Ag Composite Nanoflowers as Substrates for Surface-Enhanced Raman Scattering. Applied</p><p>Surface Science, 402(4), 154160.</p><p></p><p>Zhang, Jin, & Wenxiu Que. (2010). Preparation and Characterization of SolGel Al- Doped ZnO Thin</p><p>Films and ZnO Nanowire Arrays Grown on Al-Doped ZnO Seed Layer by Hydrothermal Method. Solar Energy</p><p>Materials and Solar Cells, 94(12), 21812186.</p><p></p><p>Zhang, Lixin, Na Li, Hongfang Jiu, Guisheng Qi, & Yunjie Huang. (2015). ZnO- Reduced Graphene Oxide</p><p>Nanocomposites as Efficient Photocatalysts for</p><p></p><p>Photocatalytic Reduction of CO. Ceramics International, 41(5), 62566262.</p><p></p><p>Zhang, Sheng, Yuyan Shao, Honggang Liao, Mark H Engelhard, Geping Yin, & Yuehe Lin. (2011).</p><p>Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide : A Facile Route to Synthesis of</p><p>Soluble Graphene. ACS nano, 5(3), 1785- 1791.</p><p></p><p>Zhang, Xian Fu, & Qian Xi. (2011). A Graphene Sheet as an Efficient Electron Acceptor and Conductor</p><p>for Photoinduced Charge Separation. Carbon, 49(12), 38423850.</p><p></p><p>Zhang, Yangyang, Manoj K. Ram, Elias K. Stefanakos, & D. Yogi Goswami. (2012). Synthesis,</p><p>Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012(4),1-22.</p><p></p><p>Zhang, Yanhui, Zi-rong Tang, Xianzhi Fu, & Yi-jun Xu. (2010). TiOGraphene Nanocomposites for</p><p>Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiOGraphene Truly</p><p>Different from Other TiOCarbon Composite Materials?. ACS Nano, 4(12), 73037314.</p><p></p><p>Zhang, Yijun, Ming Liu, Wei Ren, & Zuo-guang Ye. (2015). Well-Ordered ZnO Nanotube Arrays and</p><p>Networks Grown by Atomic Layer Deposition. Applied Surface Science, 340(6), 120125.</p><p></p><p>Zhao, J., Liu, L., Li, F. (2015). Graphene Oxide: Physics and Applications. London, UK: Springer,</p><p>161.</p><p></p><p>Zhao, Yanting, Lin Liu, Tingting Cui, Guoxiu Tong, & Wenhua Wu. (2017). Enhanced Photocatalytic</p><p>Properties of ZnO/reduced Graphene Oxide Sheets (rGO) Composites with Controllable Morphology and</p><p>Composition. Applied Surface Science, 412(3), 5868.</p><p></p><p>Zhou, Hai, Guojia Fang, Nishuang Liu, & Xingzhong Zhao. (2011). Ultraviolet Photodetectors Based on</p><p>ZnO Nanorods-Seed Layer Effect and Metal Oxide Modifying Layer Effect. Nanoscale Research Letters,</p><p>6(1), 16.</p><p></p><p>Zhou, Qiong. (2013). Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Applications as</p><p>Photocatalysts. Nanomaterials, 7(1), 1-13.</p><p></p><p>Zi-QiangXu, HongDeng, JuanXie, YanLi & Xiao-TaoZu. (2006). Ultraviolet Photoconductive</p><p>Detector Based on Al Doped ZnO Films Prepared by Solgel Method. Applied Surface Science, 253(11),</p><p>476479.</p><p></p><p>Zou, Yanan, Yue Zhang, Yongming Hu, and Haoshuang Gu. (2018). Ultraviolet Detectors Based on Wide</p><p>Bandgap Semiconductor Nanowire. Sensors, 2072 (18), 125.</p><p></p><p>Zu, Xihong, Huan Wang, Guobin Yi, Zheng Zhang, Xuemei Jiang, and Jian Gong. (2015). Self-Powered UV</p><p>Photodetector Based on Heterostructured TiO Nanowire Arrays and Polyaniline Nano Flower Arrays.</p><p>Synthetic Metals, 200(2), 865.</p><p></p> |