Hybrid ear recognition framework based on passive human identification

<p>Current identification of passive detection has been attention in the modern world due to the</p><p>system's robustness as an ear recognition framework based on a multiclassifier and attempt to</p><p>create user patterns v...

Full description

Saved in:
Bibliographic Details
Main Author: Alemran, Ahmed Ali
Format: thesis
Language:eng
Published: 2022
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=9579
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:9579
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QA Mathematics
spellingShingle QA Mathematics
Alemran, Ahmed Ali
Hybrid ear recognition framework based on passive human identification
description <p>Current identification of passive detection has been attention in the modern world due to the</p><p>system's robustness as an ear recognition framework based on a multiclassifier and attempt to</p><p>create user patterns via extracted features from ear images, which have unique individual</p><p>identities. The collected features from the ear intersection points and the angles bounded</p><p>between curves using different descriptors and classifiers are considered unique information</p><p>used to generate unique features. The proposed framework commenced with the extraction of</p><p>eight sets of features (LBP, BSIF, LPQ, RILPQ, POEM, HOG, DSIFT, and Gabor) from 2D</p><p>ear images. Subsequently, ELM and SVM classifiers were trained on each set of features.</p><p>Seven combination rules (MR, AR, GWAR, ICWAR, Borda, DS, and AV (GWAR, Borda,</p><p>DS)) were utilized to acquire a total of 16 classifiers. Also, two optimization rules; genetic</p><p>algorithm and brute force were proposed for accuracy enhancement. The AWE and the USTB</p><p>datasets were utilized in the development, evaluation, and validation of an ear recognition</p><p>framework dataset. So, some vulnerabilities are observed in datasets and all challenges for ear</p><p>biometrics. The research findings showed that combining classifiers using different sets of</p><p>features yields better performance compared to using individual classifiers. However, using</p><p>one classifier or limited number is not enough to solve the problem of ear recognition with</p><p>different challenges such as Pose, Occlusion, Illumination, Blurry image, Rotation, Lighting,</p><p>Scale, and Translation. The validation of such a framework using the AWE dataset showed that</p><p>the SVM and ELM in combination with modern descriptors managed to enhance the</p><p>recognition. Rank-1 accuracy also reached 99% with Genetic Algorithm optimization, and 98%</p><p>with brute-force AR and brute-force GWAR. These results are compared to other results in the</p><p>literature and found to be superior. In conclusion, the main findings showed that the proposed</p><p>framework consisting of two classifiers SVM and ELM trained with selected features and the</p><p>combination rules managed to attain higher accuracy in-ear recognition compared with</p><p>previous studies. This ear recognition framework is a major step towards the recognition of</p><p>individuals from ears in real-world conditions. This study implies that the proposed ear</p><p>recognition framework based on ELM and SVM classifiers with combination and optimization</p><p>rules can be utilized to improve the effectiveness of passive human recognition where security</p><p>is of utmost importance.</p>
format thesis
qualification_name
qualification_level Doctorate
author Alemran, Ahmed Ali
author_facet Alemran, Ahmed Ali
author_sort Alemran, Ahmed Ali
title Hybrid ear recognition framework based on passive human identification
title_short Hybrid ear recognition framework based on passive human identification
title_full Hybrid ear recognition framework based on passive human identification
title_fullStr Hybrid ear recognition framework based on passive human identification
title_full_unstemmed Hybrid ear recognition framework based on passive human identification
title_sort hybrid ear recognition framework based on passive human identification
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Seni, Komputeran dan Industri Kreatif
publishDate 2022
url https://ir.upsi.edu.my/detailsg.php?det=9579
_version_ 1783730283083726848
spelling oai:ir.upsi.edu.my:95792023-10-17 Hybrid ear recognition framework based on passive human identification 2022 Alemran, Ahmed Ali QA Mathematics <p>Current identification of passive detection has been attention in the modern world due to the</p><p>system's robustness as an ear recognition framework based on a multiclassifier and attempt to</p><p>create user patterns via extracted features from ear images, which have unique individual</p><p>identities. The collected features from the ear intersection points and the angles bounded</p><p>between curves using different descriptors and classifiers are considered unique information</p><p>used to generate unique features. The proposed framework commenced with the extraction of</p><p>eight sets of features (LBP, BSIF, LPQ, RILPQ, POEM, HOG, DSIFT, and Gabor) from 2D</p><p>ear images. Subsequently, ELM and SVM classifiers were trained on each set of features.</p><p>Seven combination rules (MR, AR, GWAR, ICWAR, Borda, DS, and AV (GWAR, Borda,</p><p>DS)) were utilized to acquire a total of 16 classifiers. Also, two optimization rules; genetic</p><p>algorithm and brute force were proposed for accuracy enhancement. The AWE and the USTB</p><p>datasets were utilized in the development, evaluation, and validation of an ear recognition</p><p>framework dataset. So, some vulnerabilities are observed in datasets and all challenges for ear</p><p>biometrics. The research findings showed that combining classifiers using different sets of</p><p>features yields better performance compared to using individual classifiers. However, using</p><p>one classifier or limited number is not enough to solve the problem of ear recognition with</p><p>different challenges such as Pose, Occlusion, Illumination, Blurry image, Rotation, Lighting,</p><p>Scale, and Translation. The validation of such a framework using the AWE dataset showed that</p><p>the SVM and ELM in combination with modern descriptors managed to enhance the</p><p>recognition. Rank-1 accuracy also reached 99% with Genetic Algorithm optimization, and 98%</p><p>with brute-force AR and brute-force GWAR. These results are compared to other results in the</p><p>literature and found to be superior. In conclusion, the main findings showed that the proposed</p><p>framework consisting of two classifiers SVM and ELM trained with selected features and the</p><p>combination rules managed to attain higher accuracy in-ear recognition compared with</p><p>previous studies. This ear recognition framework is a major step towards the recognition of</p><p>individuals from ears in real-world conditions. This study implies that the proposed ear</p><p>recognition framework based on ELM and SVM classifiers with combination and optimization</p><p>rules can be utilized to improve the effectiveness of passive human recognition where security</p><p>is of utmost importance.</p> 2022 thesis https://ir.upsi.edu.my/detailsg.php?det=9579 https://ir.upsi.edu.my/detailsg.php?det=9579 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif <p>Abate, A. F., Nappi, M., Riccio, D., & Ricciardi, S. (2006). Ear recognition by means of a rotation invariant descriptor. Proceedings - International Conference on Pattern Recognition, 4, 437440. https://doi.org/10.1109/ICPR.2006.465</p><p>Abaza, A., & Bourlai, T. (2012). Human ear detection in the thermal infrared spectrum. Thermosense: Thermal Infrared Applications XXXIV, 8354, 83540X. https://doi.org/10.1117/12.919285</p><p>Abaza, A., & Bourlai, T. (2013). On ear-based human identification in the mid-wave infrared spectrum. Image and Vision Computing, 31(9), 640648. https://doi.org/10.1016/j.imavis.2013.06.001</p><p>Abaza, A., Hebert, C., & Harrison, M. A. F. (2010). Fast learning ear detection for real-time surveillance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634486</p><p>Abaza, A., & Ross, A. (2010). Towards understanding the symmetry of human ears: A biometric perspective. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634535</p><p>Abaza, A., Ross, A., Hebert, C., Harrison, M. A. F., & Nixon, M. S. (2013). A survey on ear biometrics. ACM Computing Surveys, 45(2), 135. https://doi.org/10.1145/2431211.2431221</p><p>Abdel-Mottaleb, M. and Zhou, J. (2005). Human Ear Recognition from Face Profile Images. Journal of Physics A: Mathematical and Theoretical, 44(8), i. https://doi.org/10.1088/1751-8113/44/8/085201</p><p>Ahmad, A., Lemmond, D., & Boult, T. E. (2018). Chainlets: A new descriptor for detection and recognition. Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, 2018-Janua, 18971906. https://doi.org/10.1109/WACV.2018.00210</p><p>Alaraj, M., Hou, J., & Fukami, T. (2010). A neural network based human identification framework using ear images. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 15951600. https://doi.org/10.1109/TENCON.2010.5686043</p><p>Alberink, I., & Ruifrok, A. (2008). Repeatability and reproducibility of earprint acquisition. Journal of Forensic Sciences, 53(2), 325330. https://doi.org/10.1111/j.1556-4029.2008.00663.x</p><p>Almisreb, A. A., & Jamil, N. (2012). Automated ear segmentation in various illumination conditions. Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012, 199203. https://doi.org/10.1109/CSPA.2012.6194718</p><p>Almisreb, A. A., Tahir, N. M., & Jamil, N. (2013). Kernel graph cut for robust ear segmentation in various illuminations conditions. ISIEA 2013 - 2013 IEEE Symposium on Industrial Electronics and Applications, 7174. https://doi.org/10.1109/ISIEA.2013.6738970</p><p>Alqaralleh, E., & Toygar, . (2018). Ear Recognition Based on Fusion of Ear and Tragus Under Different Challenges. International Journal of Pattern Recognition and Artificial Intelligence, 32(9), 1856009. https://doi.org/10.1142/S0218001418560098</p><p>Alva, M., Srinivasaraghavan, A., & Sonawane, K. (2019). A Review on Techniques for Ear Biometrics. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019. https://doi.org/10.1109/ICECCT.2019.8869450</p><p>Ansari, S., & Gupta, P. (2007). Localization of Ear using Outher Helix Curve of the Ear. IEEE Proceedings of the International Conference on Computing: Theory and Applications (ICCTA07), 15.</p><p>Anwar, A. S., Ghany, K. K. A., & Elmahdy, H. (2015). Human Ear Recognition Using Geometrical Features Extraction. Procedia Computer Science, 65, 529537. https://doi.org/10.1016/j.procs.2015.09.126</p><p>Arbab-Zavar, B., & Nixon, M. S. (2008). Robust log-Gabor filter for ear biometrics. Proceedings - International Conference on Pattern Recognition, 14. https://doi.org/10.1109/icpr.2008.4761843</p><p>Arbab-Zavar, B., & Nixon, M. S. (2011a). On guided model-based analysis for ear biometrics. Computer Vision and Image Understanding, 115(4), 487502. https://doi.org/10.1016/j.cviu.2010.11.014</p><p>Arbab-Zavar, B., & Nixon, M. S. (2011b). On guided model-based analysis for ear biometrics. Computer Vision and Image Understanding, 115(4), 487502. https://doi.org/10.1016/j.cviu.2010.11.014</p><p>Arbab-Zavar, B., Nixon, M. S., & Hurley, D. J. (2007). On model-based analysis of ear biometrics. IEEE Conference on Biometrics: Theory, Applications and Systems, BTAS07. https://doi.org/10.1109/BTAS.2007.4401937</p><p>Ariffin, S. M. Z. S. Z., & Jamil, N. (2015). Cross-band ear recognition in low or variant illumination environments. Proceedings - 2014 International Symposium on Biometrics and Security Technologies, ISBAST 2014, 9094. https://doi.org/10.1109/ISBAST.2014.7013100</p><p>B, W. L., Li, C., & Sun, S. (2017). USTB-Helloear: A Large Database of Ear Images Photographed Under Uncontrolled Conditions. 1, 385394. https://doi.org/10.1007/978-3-319-71589-6</p><p>Badrinath, G. S., & Gupta, P. (2009). Feature level fused ear biometric system. Proceedings of the 7th International Conference on Advances in Pattern Recognition, ICAPR 2009, 197200. https://doi.org/10.1109/ICAPR.2009.27</p><p>Banerjee, S., & Chatterjee, A. (2016). Image set based ear recognition using novel dictionary learning and classification scheme. Engineering Applications of Artificial Intelligence, 55, 3746. https://doi.org/10.1016/j.engappai.2016.05.005</p><p>Basit, A., & Shoaib, M. (2014). A human ear recognition method using nonlinear curvelet feature subspace. International Journal of Computer Mathematics, 91(3), 616624. https://doi.org/10.1080/00207160.2013.800194</p><p>Battisti, F., Carli, M., De Natale, F. G. B., & Neri, A. (2012). Ear recognition based on edge potential function. Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II, 8295, 829508. https://doi.org/10.1117/12.909082</p><p>Benzaoui, A., Adjabi, I., & Boukrouche, A. (2017a). Experiments and improvements of ear recognition based on local texture descriptors. Optical Engineering, 56(4), 043109. https://doi.org/10.1117/1.oe.56.4.043109</p><p>Benzaoui, A., Adjabi, I., & Boukrouche, A. (2017b). Person identification based on ear morphology. ICAASE 2016 - Proceedings of the International Conference on Advanced Aspects of Software Engineering. https://doi.org/10.1109/ICAASE.2016.7843851</p><p>Benzaoui, A., & Boukrouche, A. (2017). Ear recognition using local color texture descriptors from one sample image per person. 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT 2017, 2017-Janua, 827832. https://doi.org/10.1109/CoDIT.2017.8102697</p><p>Benzaoui, A., & Boukrouche, A. (2019a). Ear biometric recognition in unconstrained conditions. Lecture Notes in Electrical Engineering, 504, 261269. https://doi.org/10.1007/978-981-13-0408-8_22</p><p>Benzaoui, A., & Boukrouche, A. (2019b). Ear biometric recognition in unconstrained conditions. In Lecture Notes in Electrical Engineering (Vol. 504). Springer Nature Singapore Pte Ltd. 2019. https://doi.org/10.1007/978-981-13-0408-8_22</p><p>Benzaoui, A., Hadid, A., & Boukrouche, A. (2014). Ear biometric recognition using local texture descriptors. Journal of Electronic Imaging, 23(5), 053008. https://doi.org/10.1117/1.jei.23.5.053008</p><p>Benzaoui, A., Hezil, N., & Boukrouche, A. (2015). Identity recognition based on the external shape of the human ear. 2015 1st International Conference on Applied Research in Computer Science and Engineering, ICAR 2015. https://doi.org/10.1109/ARCSE.2015.7338129</p><p>Benzaoui, A., Kheider, A., & Boukrouche, A. (2015). Ear description and recognition using ELBP and wavelets. 2015 1st International Conference on Applied Research in Computer Science and Engineering, ICAR 2015, 49. https://doi.org/10.1109/ARCSE.2015.7338146</p><p>Boodoo-Jahangeer, N. B., & Baichoo, S. (2013). LBP-based ear recognition. 13th IEEE International Conference on BioInformatics and BioEngineering, IEEE BIBE 2013. https://doi.org/10.1109/BIBE.2013.6701687</p><p>Burge, M., & Burger, W. (1998). Using Ear Biometrics for Passive Identification. 14th IIternational Conference on Information Security, 98, 139148.</p><p>Burge, Mark, & Burger, W. (2000). Ear biometrics in computer vision. Proceedings - International Conference on Pattern Recognition, 15(2), 822826. https://doi.org/10.1109/icpr.2000.906202</p><p>Bustard, J. D., & Nixon, M. S. (2008). Robust 2D ear registration and recognition based on SIFT point matching. BTAS 2008 - IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems, 00. https://doi.org/10.1109/BTAS.2008.4699373</p><p>Bustard, J. D., & Nixon, M. S. (2010). Toward unconstrained ear recognition from two-dimensional images. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, 40(3), 486494. https://doi.org/10.1109/TSMCA.2010.2041652</p><p>Cameriere, R., DeAngelis, D., & Ferrante, L. (2011). Ear identification: A pilot study. Journal of Forensic Sciences, 56(4), 10101014. https://doi.org/10.1111/j.1556-4029.2011.01778.x</p><p>Cao, J., & Lin, Z. (2015). Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey. In Mathematical Problems in Engineering (Vol. 2015, pp. 1618). https://doi.org/10.1155/2015/103796</p><p>Chan, T. S., & Kumar, A. (2012). Reliable ear identification using 2-D quadrature filters. Pattern Recognition Letters, 33(14), 18701881. https://doi.org/10.1016/j.patrec.2011.11.013</p><p>Chen, H., & Bhanu, B. (2009). Efficient recognition of highly similar 3D objects in range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 172179. https://doi.org/10.1109/TPAMI.2008.176</p><p>Chen, H., Bhanu, B., & Wang, R. (2005). Performance evaluation and prediction for 3D ear recognition. Lecture Notes in Computer Science, 3546, 748757. https://doi.org/10.1007/11527923_78</p><p>Chen, L., & Mu, Z. (2016). Partial Data Ear Recognition from One Sample per Person. IEEE Transactions on Human-Machine Systems, 46(6), 799809. https://doi.org/10.1109/THMS.2016.2598763</p><p>Chen, L., Mu, Z., Nan, B., Zhang, Y., & Yang, R. (2017). TDSIFT: a new descriptor for 2D and 3D ear recognition. Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 10225(Icgip 2016), 102250C. https://doi.org/10.1117/12.2266727</p><p>Chidananda, P., Srinivas, P., Manikantan, K., & Ramachandran, S. (2015). Entropy-cum-Hough-transform-based ear detection using ellipsoid particle swarm optimization. Machine Vision and Applications, 26(23), 185203. https://doi.org/10.1007/s00138-015-0669-y</p><p>Choras, M. (2005). Ear Biometrics in Passive Human Identification Systems. Foreign Affairs, 91(5), 13651367. https://doi.org/10.1017/CBO9781107415324.004</p><p>Choras, M. (2005). Ear Biometrics Based on Geometrical Feature Extraction. Interface Focus, 2(6), 708714. https://doi.org/10.1098/rsfs.2012.0021</p><p>Choras, M. (2007). Image feature extraction methods for ear biometrics - A survey. Proceedings - 6th International Conference on Computer Information Systems and Industrial Management Applications, CISIM 2007, 261265. https://doi.org/10.1109/CISIM.2007.40</p><p>Choras, M. (2008). Perspective methods of biometric human identification. New Trends in Audio and Video - Signal Processing: Algorithms, Architectures, Arrangements, and Applications, NTAV / SPA 2008 - Conference Proceedings, 16(1), 195200. https://doi.org/10.2478/s11772-007-0033-5</p><p>Choras, M., & Choras, R. S. (2006). Geometrical algorithms of ear contour shape representation and feature extraction. Proceedings - ISDA 2006: Sixth International Conference on Intelligent Systems Design and Applications, 2, 451456. https://doi.org/10.1109/ISDA.2006.253879</p><p>Chorowski, J., Wang, J., & Zurada, J. M. (2014). Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing, 128, 507516. https://doi.org/10.1016/j.neucom.2013.08.009</p><p>Chowdhury, D. P., Bakshi, S., Guo, G., & Sa, P. K. (2018). On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained. Journal of Medical Systems, 42(1). https://doi.org/10.1007/s10916-017-0855-8</p><p>Chowdhury, D. P., Bakshi, S., Sa, P. K., & Majhi, B. (2018a). Wavelet energy feature based source camera identification for ear biometric images. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.10.009</p><p>Chowdhury, D. P., Bakshi, S., Sa, P. K., & Majhi, B. (2018b). Wavelet Energy Feature Based Source Camera Identification for Ear Biometric Images. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.10.009</p><p>Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273297. https://doi.org/10.1023/A:1022627411411</p><p>Cummings, A. H., Nixon, M. S., & Carter, J. N. (2010). A novel ray analogy for enrolment of ear biometrics. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634468</p><p>De Marsico, M., Nappi, M., & Daniel, R. (2010). HERO: Human Ear Recognition against Occlusions. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW 2010, 178183. https://doi.org/10.1109/CVPRW.2010.5544623</p><p>Decann, B., & Ross, A. (2013). Relating ROC and CMC curves via the biometric menagerie. IEEE 6th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2013, September. https://doi.org/10.1109/BTAS.2013.6712705</p><p>Derawi, M. (2017). Biometric acoustic ear recognition. 2016 International Conference on Bio-Engineering for Smart Technologies, BioSMART 2016. https://doi.org/10.1109/BIOSMART.2016.7835597</p><p>Dinkar, A. D., & Sambyal, S. S. (2012). Person identification in Ethnic Indian Goans using ear biometrics and neural networks. Forensic Science International, 223(13), 373.e1-373.e13. https://doi.org/10.1016/j.forsciint.2012.08.032</p><p>Dodge, S., Mounsef, J., & Karam, L. (2018). Unconstrained ear recognition using deep neural networks. IET Biometrics, 7(3), 207214. https://doi.org/10.1049/iet-bmt.2017.0208</p><p>Doghmane, H., Boukrouche, A., & Boubchir, L. (2019). A novel discriminant multiscale representation for ear recognition. International Journal of Biometrics, 11(1), 5066. https://doi.org/10.1504/IJBM.2019.096568</p><p>Dong, J., & Mu, Z. (2008). Multi-pose ear recognition based on force field transformation. Proceedings - 2008 2nd International Symposium on Intelligent Information Technology Application, IITA 2008, 3(1), 771775. https://doi.org/10.1109/IITA.2008.325</p><p>Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1, 8186. https://doi.org/10.1109/cec.2001.934374</p><p>El-Naggar, S., Abaza, A., & Bourlai, T. (2016). On a taxonomy of ear features. 2016 IEEE Symposium on Technologies for Homeland Security, HST 2016. https://doi.org/10.1109/THS.2016.7568939</p><p>Emeric, ., Gabriel, L. L., truc, V., & Peer, P. (2018). Convolutional encoder-decoder networks for pixel-wise ear detection and segmentation. IET Biometrics, 7(3), 175184. https://doi.org/10.1049/iet-bmt.2017.0240</p><p>Emersic, Z., Meden, B., Peer, P., & Struc, V. (2017). Covariate analysis of descriptor-based ear recognition techniques. 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings. https://doi.org/10.1109/IWOBI.2017.7985520</p><p>Emeric, ., Meden, B., Peer, P., & truc, V. (2018a). Evaluation and analysis of ear recognition models: performance, complexity and resource requirements.</p><p>Neural Computing and Applications, 1, 116. https://doi.org/10.1007/s00521-018-3530-1</p><p>Emeric, ., Meden, B., Peer, P., & truc, V. (2018b). Evaluation and analysis of ear recognition models: performance, complexity and resource requirements. Neural Computing and Applications, 1, 116. https://doi.org/10.1007/s00521-018-3530-1</p><p>Emersic, Z., & Peer, P. (2015). Ear biometric database in the wild. IWOBI 2015 - 2015 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, Proceedings, d, 2732. https://doi.org/10.1109/IWOBI.2015.7160139</p><p>Emersic, Z., Stepec, D., Struc, V., & Peer, P. (2017). The Unconstrained Ear Recognition Challenge. IEEE International Joint Conference on Biometrics (IJCB), 715724.</p><p>Emeric, ., tepec, D., truc, V., Peer, P., George, A., Ahmad, A., Omar, E., Boult, T. E., Safdaii, R., Zhou, Y., Zafeiriou, S., Yaman, D., Eyiokur, F. I., & Ekenel, H. K. (2018). The unconstrained ear recognition challenge. IEEE International Joint Conference on Biometrics, IJCB 2017, 2018-Janua, 715724. https://doi.org/10.1109/BTAS.2017.8272761</p><p>Emeric, ., truc, V., & Peer, P. (2017). Ear recognition: More than a survey. Neurocomputing, 255, 2639. https://doi.org/10.1016/j.neucom.2016.08.139</p><p>Feng, J., & Mu, Z. (2009). Texture analysis for ear recognition using local feature descriptor and transform filter. MIPPR 2009: Pattern Recognition and Computer Vision, 7496, 74962P. https://doi.org/10.1117/12.832749</p><p>Fijani, E., Barzegar, R., Deo, R., Tziritis, E., & Konstantinos, S. (2019). Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Science of the Total Environment, 648, 839853. https://doi.org/10.1016/j.scitotenv.2018.08.221</p><p>Fontana, S., Thomas, M. K., Moldoveanu, M., Spaak, P., & Pomati, F. (2018). Ear verification under uncontrolled conditions. ISME Journal, 12(2), 356366. https://doi.org/10.1038/ismej.2017.160</p><p>Galdmez, P. L., Gonzlez Arrieta, A., & Ramn Ramn, M. (2016). A small look at the ear recognition process using a hybrid approach. Journal of Applied Logic, 17, 413. https://doi.org/10.1016/j.jal.2015.09.004</p><p>Galdmez, P. L., Raveane, W., & Gonzlez Arrieta, A. (2017). A brief review of the ear recognition process using deep neural networks. Journal of Applied Logic, 24, 6270. https://doi.org/10.1016/j.jal.2016.11.014</p><p>Ganesh, M. R., Krishna, R., Manikantan, K., & Ramachandran, S. (2014). Entropy based Binary Particle Swarm Optimization and classification for ear detection.</p><p>Engineering Applications of Artificial Intelligence, 27, 115128. https://doi.org/10.1016/j.engappai.2013.07.022</p><p>Ghoualmi, L., Draa, A., & Chikhi, S. (2015a). An efficient feature selection scheme based on genetic algorithm for ear biometrics authentication. 12th International Symposium on Programming and Systems, ISPS 2015, 234238. https://doi.org/10.1109/ISPS.2015.7244991</p><p>Ghoualmi, L., Draa, A., & Chikhi, S. (2015b). An efficient feature selection scheme based on genetic algorithm for ear biometrics authentication. 12th International Symposium on Programming and Systems, ISPS 2015, 234238. https://doi.org/10.1109/ISPS.2015.7244991</p><p>Ghoualmi, L., Draa, A., & Chikhi, S. (2016). An ear biometric system based on artificial bees and the scale invariant feature transform. Expert Systems with Applications, 57, 4961. https://doi.org/10.1016/j.eswa.2016.03.004</p><p>Godil, A., Grother, P., & Ressler, S. (2003). Human identification from body shape. Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 2003-Janua, 386392. https://doi.org/10.1109/IM.2003.1240273</p><p>Gonzalez, E., Alvarez, L., & Mazorra, L. (2012). Normalization and feature extraction on ear images. Proceedings - International Carnahan Conference on Security Technology, 97104. https://doi.org/10.1109/CCST.2012.6393543</p><p>Guermoui, M., Melaab, D., & Mekhalfi, M. L. (2016). Sparse coding joint decision rule for ear print recognition. Optical Engineering, 55(9), 093105. https://doi.org/10.1117/1.oe.55.9.093105</p><p>Guo, Y., & Xu, Z. (2008). Ear recognition using a new local matching approach. Proceedings - International Conference on Image Processing, ICIP, 289292. https://doi.org/10.1109/ICIP.2008.4711748</p><p>Gutierrez, L., Melin, P., & Lopez, M. (2010). Modular neural network integrator for human recognition from ear images. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN.2010.5596633</p><p>Hamdy, N., Ibrahim, H., & El-Habrouk, M. (2009). Personal identification using combined biometrics techniques. 2009 16th International Conference on Systems, Signals and Image Processing, IWSSIP 2009, 25. https://doi.org/10.1109/IWSSIP.2009.5367710</p><p>Hansley, E. E., Segundo, M. P., & Sarkar, S. (2018). Employing fusion of learned and handcrafted features for unconstrained ear recognition. IET Biometrics, 7(3), 215223. https://doi.org/10.1049/iet-bmt.2017.0210</p><p>Hassaballah, M., Alshazly, H. A., & Ali, A. A. (2019). Ear recognition using local binary patterns: A comparative experimental study. Expert Systems with Applications, 118, 182200. https://doi.org/10.1016/j.eswa.2018.10.007</p><p>Houcine, B., & Hakim, D. (2015). Ear recognition based on Multi- bags-of-features histogram. 3rd IEEE International Conference on Control, Engineering & Information Technology (CEIT15)At: Tlemcen (Algeria).</p><p>Huang, Guang Bin, Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107122. https://doi.org/10.1007/s13042-011-0019-y</p><p>Huang, C., Lu, G., & Liu, Y. (2009). Coordinate direction normalization using point cloud projection density for 3D ear. ICCIT 2009 - 4th International Conference on Computer Sciences and Convergence Information Technology, 511515. https://doi.org/10.1109/ICCIT.2009.56</p><p>Huang, Gao, Huang, G. Bin, Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 3248. https://doi.org/10.1016/j.neunet.2014.10.001</p><p>Huang, H., Liu, J., Feng, H., & He, T. (2011). Ear recognition based on uncorrelated local Fisher discriminant analysis. Neurocomputing, 74(17), 31033113. https://doi.org/10.1016/j.neucom.2011.04.022</p><p>Hurley, D. J., Nixon, M. S., & Carter, J. N. (2005). Force field feature extraction for ear biometrics. Computer Vision and Image Understanding, 98(3), 491512. https://doi.org/10.1016/j.cviu.2004.11.001</p><p>Indi, T. S., & Raut, S. D. (2013a). Person identification based on multi-biometric characteristics. 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology, ICE-CCN 2013, Iceccn, 4552. https://doi.org/10.1109/ICE-CCN.2013.6528611</p><p>Indi, T. S., & Raut, S. D. (2013b). Person unique identification based on ears biometric features. 2013 International Conference on Intelligent Systems and Signal Processing, ISSP 2013, 128133. https://doi.org/10.1109/ISSP.2013.6526888</p><p>Indola, R. P., & Ebecken, N. F. F. (2005). On extending F-measure and G-mean metrics to multi-class problems. WIT Transactions on Information and Communication Technologies, 35, 2534. www.witpress.com,</p><p>Isa, I. S., Saad, Z., Omar, S., Osman, M. K., Ahmad, K. A., & Sakim, H. A. M. (2010). Suitable MLP network activation functions for breast cancer and thyroid disease detection. Proceedings - 2nd International Conference on Computational Intelligence, Modelling and Simulation, CIMSim 2010, 3944. https://doi.org/10.1109/CIMSiM.2010.93</p><p>Islam, S. M.S., Bennamoun, M., & Davies, R. (2008). Fast and fully automatic ear detection using cascaded adaboost. 2008 IEEE Workshop on Applications of Computer Vision, WACV. https://doi.org/10.1109/WACV.2008.4544023</p><p>Islam, S. M.S., Bennamoun, M., Mian, A. S., & Davies, R. (2009). Score level fusion of ear and face local 3d features for fast and expression-invariant human</p><p>recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5627 LNCS, 387396. https://doi.org/10.1007/978-3-642-02611-9_39</p><p>Islam, S. M.S., Davies, R., Bennamoun, M., Owens, R. A., & Mian, A. S. (2013). Multibiometric human recognition using 3D ear and face features. Pattern Recognition, 46(3), 613627. https://doi.org/10.1016/j.patcog.2012.09.016</p><p>Islam, Syed M.S., Davies, R., Bennamoun, M., & Mian, A. S. (2011). Efficient detection and recognition of 3D ears. International Journal of Computer Vision, 95(1), 5273. https://doi.org/10.1007/s11263-011-0436-0</p><p>Iwano, K., Miyazaki, T., & Furui, S. (2005). Multimodal speaker verification using ear image features extracted by PCA and ICA. Lecture Notes in Computer Science, 3546, 588596. https://doi.org/10.1007/11527923_61</p><p>Iyyakutti Iyappan, G., & Prakash, S. (2016). False mapped feature removal in spin images based 3D ear recognition. 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016, 620623. https://doi.org/10.1109/SPIN.2016.7566771</p><p>Jain, A. K., Ross, A., & Prabhakar, S. (2004). An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 420. https://doi.org/10.1109/TCSVT.2003.818349</p><p>Jamil, N., AlMisreb, A., & Halin, A. A. (2014). Illumination-invariant ear authentication. Procedia Computer Science, 42(C), 271278. https://doi.org/10.1016/j.procs.2014.11.062</p><p>Jawale, J. B., & Bhalchandra, A. S. (2011). Ear based attendance monitoring system. 2011 International Conference on Emerging Trends in Electrical and Computer Technology, ICETECT 2011, 724727. https://doi.org/10.1109/ICETECT.2011.5760212</p><p>Jayaram, M., Prashanth, G., & Taj, S. (2015). Classification of Ear Biometric Data using Support Vector Machine. British Journal of Applied Science & Technology, 11(1), 110. https://doi.org/10.9734/bjast/2015/19509</p><p>Jeges, E., & Mat, L. (2007). Model-based human ear identification. 2006 World Automation Congress, WAC06. https://doi.org/10.1109/WAC.2006.375757</p><p>Jiang, J., Zhang, H., Zhang, Q., Lu, J., Ma, Z., & Xu, K. (2014). Ear feature region detection based on a combined image segmentation algorithm- KRM . Dynamics and Fluctuations in Biomedical Photonics XI, 8942, 89420Z. https://doi.org/10.1117/12.2036893</p><p>Jiang, J., Zhang, Q., Ma, C., Lu, J., & Xu, K. (2015). SIFT-based error compensation for ear feature matching and recognition system. Dynamics and Fluctuations in Biomedical Photonics XII, 9322, 932210. https://doi.org/10.1117/12.2077969</p><p>Kandgaonkar, T. V., Mente, R. S., Shinde, A. R., & Raut, S. D. (2015). Ear Biometrics: A Survey on Ear Image Databases and Techniques for Ear Detection and Recognition. IBMRDs Journal of Management & Research, 4(1), 92. https://doi.org/10.17697/ibmrd/2015/v4i1/60357</p><p>Khobragade, S., Mor, D. D., & Chhabra, A. (2016). A method of ear feature extraction for ear biometrics using MATLAB. 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 3. https://doi.org/10.1109/INDICON.2015.7443344</p><p>Khorsandi, R., & Abdel-Mottaleb, M. (2013). Gender classification using 2-D ear images and sparse representation. Proceedings of IEEE Workshop on Applications of Computer Vision, 461466. https://doi.org/10.1109/WACV.2013.6475055</p><p>Khorsandi, R., & Abdel-Mottaleb, M. (2014). Ear biometrics and sparse representation based on smoothed l0 norm. International Journal of Pattern Recognition and Artificial Intelligence, 28(8), 1456016. https://doi.org/10.1142/S0218001414560163</p><p>Khorsandi, R., Cadavid, S., & Abdel-Mottaleb, M. (2012). Ear recognition via sparse representation and Gabor filters. 2012 IEEE 5th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2012, 278282. https://doi.org/10.1109/BTAS.2012.6374589</p><p>Khorsandi, R., Taalimi, A., & Abdel-Mottaleb, M. (2015). Robust biometrics recognition using joint weighted dictionary learning and smoothed L0 norm. 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems, BTAS 2015. https://doi.org/10.1109/BTAS.2015.7358792</p><p>Kisku, D. R., Gupta, S., Gupta, P., & Sing, J. K. (2010). An efficient ear identification system. 2010 5th International Conference on Future Information Technology, FutureTech 2010 - Proceedings, 05. https://doi.org/10.1109/FUTURETECH.2010.5482749</p><p>Kocaman, B. (2009). ON EAR BIOMETRICS. Ieee, 327332.</p><p>Kumar, Ajay, & Chan, T. S. T. (2013). Robust ear identification using sparse representation of local texture descriptors. Pattern Recognition, 46(1), 7385. https://doi.org/10.1016/j.patcog.2012.06.020</p><p>Kumar, Ajay, & Wu, C. (2012). Automated human identification using ear imaging. Pattern Recognition, 45(3), 956968. https://doi.org/10.1016/j.patcog.2011.06.005</p><p>Kumar, Ajay, & Zhang, D. (2007). Ear authentication using Log-Gabor wavelets. Biometric Technology for Human Identification IV, 6539, 65390A. https://doi.org/10.1117/12.720244</p><p>Kumar, Amioy, Hanmandlu, M., Kuldeep, M., & Gupta, H. M. (2011). Automatic ear detection for online biometric applications. Proceedings - 2011 3rd National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG 2011, 146149. https://doi.org/10.1109/NCVPRIPG.2011.69</p><p>Kuncheva, L. I., Bezdek, J. C., & Duin, R. P. W. (2001). Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34(2), 299314. https://doi.org/10.1016/S0031-3203(99)00223-X</p><p>Kurniawan, F., Mohd. Rahim, M. S., & Khalil, M. S. (2015). Geometrical and eigenvector features for ear recognition. Proceedings - 2014 International Symposium on Biometrics and Security Technologies, ISBAST 2014, 5762. https://doi.org/10.1109/ISBAST.2014.7013094</p><p>Kurniawan, F., Shafry, M., & Rahim, M. (2012). A review on 2D ear recognition. Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012, 204209. https://doi.org/10.1109/CSPA.2012.6194719</p><p>Kus, M., Kacar, U., Kirci, M., & Gunes, E. O. (2013). ARM based ear recognition embedded system. IEEE EuroCon 2013, July, 20212028. https://doi.org/10.1109/EUROCON.2013.6625258</p><p>Lakshmanan, L. (2013). Efficient person authentication based on multi-level fusion of ear scores. IET Biometrics, 2(3), 97106. https://doi.org/10.1049/iet-bmt.2012.0049</p><p>Lammi, H. (2004). Ear biometrics. Tech. Rep. Lappeenranta University of Technology., 16.</p><p>Lei, J., You, X., & Abdel-Mottaleb, M. (2016). Automatic Ear Landmark Localization, Segmentation, and Pose Classification in Range Images. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(2), 165176. https://doi.org/10.1109/TSMC.2015.2452892</p><p>Lei, J., Zhou, J., & Abdel-Mottaleb, M. (2013). A novel shape-based interest point descriptor (SIP) for 3D ear recognition. 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings, 41764180. https://doi.org/10.1109/ICIP.2013.6738860</p><p>Lei, S., & Zhu, Q. (2012). Human ear recognition using hybrid filter and supervised locality preserving projection. Advanced Materials Research, 529, 271275. https://doi.org/10.4028/www.scientific.net/AMR.529.271</p><p>Lei, S., & Zhu, Q. (2013). Human ear recognition based on phase congruency and kernel discriminant analysis. Applied Mechanics and Materials, 241244, 16141617. https://doi.org/10.4028/www.scientific.net/AMM.241-244.1614</p><p>Li, C., Wei, W., & Mu, Z. (2015). Improved 3D ear reconstruction based on 3D EMM. 2015 IEEE International Conference on Information and Automation,</p><p>ICIA 2015 - In Conjunction with 2015 IEEE International Conference on Automation and Logistics, 61371142, 28422847. https://doi.org/10.1109/ICInfA.2015.7279771</p><p>Li, L., Zhang, L., & Li, H. (2015). 3D ear identification using LC-KSVD and local histograms of surface types. Proceedings - IEEE International Conference on Multimedia and Expo, 2015-Augus. https://doi.org/10.1109/ICME.2015.7177475</p><p>Li, Y., Mu, Z., & Zeng, H. (2013). A rotation invariant feature extraction for 3D ear recognition. 2013 25th Chinese Control and Decision Conference, CCDC 2013, 36713675. https://doi.org/10.1109/CCDC.2013.6561586</p><p>Li Yuan, F. Z. (2009). Ear Detection Based on Improved AdaBoost Algorithm. ICALIP 2018 - 6th International Conference on Audio, Language and Image Processing, 4(July), 148152. https://doi.org/10.1109/ICALIP.2018.8455226</p><p>Lin, Y., & Zhang, X. (2013). EAR RECOGNITON BASED ON GABOR SCALE INFORMATION. 1417.</p><p>Liu, H. (2011). Multi-view ear recognition by patrial least square discrimination. ICCRD2011 - 2011 3rd International Conference on Computer Research and Development, 4, 200204. https://doi.org/10.1109/ICCRD.2011.5763894</p><p>Liu, H. (2013). Fast 3D ear recognition based on local surface matching and ICP registration. Proceedings - 5th International Conference on Intelligent Networking and Collaborative Systems, INCoS 2013, 731735. https://doi.org/10.1109/INCoS.2013.141</p><p>Liu, H., & Yan, J. (2007). Multi-view ear shape feature extraction and reconstruction. Proceedings - International Conference on Signal Image Technologies and Internet Based Systems, SITIS 2007, 652658. https://doi.org/10.1109/SITIS.2007.42</p><p>Liu, H., & Zhang, D. (2011). Fast 3D point cloud ear identification by slice curve matching. ICCRD2011 - 2011 3rd International Conference on Computer Research and Development, 4, 224228. https://doi.org/10.1109/ICCRD.2011.5763900</p><p>Lu Lu, Xiaoxun Zhang, Youdong Zhao, & Yunde Jia. (2006). Ear Recognition Based on Statistical Shape Model. First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC06), 3, 353356. https://doi.org/10.1109/icicic.2006.445</p><p>Luciano, L., & Krzy, A. (2009). Automated Multimodal Biometrics Using Face and Ear. Springer-Verlag Berlin Heidelberg 2009, 451460.</p><p>Luo, J., Mu, Z., & Wang, Y. (2008). Ear recognition based on force field feature extraction and convergence feature extraction. SPIE, 7127(86), 71272E. https://doi.org/10.1117/12.806740</p><p>Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-Sanz, S., & Geem, Z. W. (2013). A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8), 18181831. https://doi.org/10.1016/j.engappai.2013.05.008</p><p>Mawloud, G., & Djamel, M. (2016). Weighted sparse representation for human ear recognition based on local descriptor. Journal of Electronic Imaging, 25(1), 013036. https://doi.org/10.1117/1.jei.25.1.013036</p><p>Meraoumia, A., Chitroub, S., & Bouridane, A. (2015). An automated ear identification system using Gabor filter responses. Conference Proceedings - 13th IEEE International NEW Circuits and Systems Conference, NEWCAS 2015, 25. https://doi.org/10.1109/NEWCAS.2015.7182085</p><p>Middendorff, C., & Bowyer, K. W. (2009). Ensemble training to improve recognition using 2D ear. Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI, 7306, 73061Z. https://doi.org/10.1117/12.818177</p><p>Mishra, J., & Mitra, S. (2014). Image Denoising using Brute Force Thresholding Algorithm. International Journal of Engineering Research & Technology (IJERT), 3(9), 830836.</p><p>Moghey, M., R. Ghadge, A., & J. Dalvi, S. (2015). Human Ear recognition Using Geometric Features. Iarjset, 2(5), 122125. https://doi.org/10.17148/iarjset.2015.2526</p><p>MohamedAbdel-Mottaleb, S. C. and. (2007). HUMAN IDENTIFICATION BASED ON 3D EAR MODELS. Ieee.</p><p>Morales, A., Ferrer, M. A., Diaz-Cabrera, M., & Gonzlez, E. (2014). Analysis of local descriptors features and its robustness applied to ear recognition. Proceedings - International Carnahan Conference on Security Technology. https://doi.org/10.1109/CCST.2013.6922040</p><p>Mujeeb-U-Rahman, M., Adalian, D., Chang, C.-F., & Scherer, A. (2015). Optical power transfer and communication methods for wireless implantable sensing platforms. Journal of Biomedical Optics, 20(9), 095012. https://doi.org/10.1117/1.jbo.20.9.095012</p><p>Murukesh, C., Parivazhagan, A., & Thanushkodi, K. (2012). A novel ear recognition process using appearance shape model, fisher linear discriminant analysis and contourlet transform. Procedia Engineering, 38, 771778. https://doi.org/10.1016/j.proeng.2012.06.097</p><p>Nanni, L., & Lumini, A. (2007). A multi-matcher for ear authentication. Pattern Recognition Letters, 28(16), 22192226. https://doi.org/10.1016/j.patrec.2007.07.004</p><p>Nanni, L., & Lumini, A. (2009). Fusion of color spaces for ear authentication. Pattern Recognition, 42(9), 19061913. https://doi.org/10.1016/j.patcog.2008.10.016</p><p>Naseem, I., Togneri, R., & Bennamoun, M. (2008). Sparse representation for ear biometrics. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5359 LNCS(PART 2), 336345. https://doi.org/10.1007/978-3-540-89646-3_33</p><p>Nosrati, M. S., Faez, K., & Faradji, F. (2007). Using 2D wavelet and principal component analysis for personal identification based on 2D ear structure. 2007 International Conference on Intelligent and Advanced Systems, ICIAS 2007, 616620. https://doi.org/10.1109/ICIAS.2007.4658461</p><p>Ojansivu, V., & Heikkil, J. (2008). Blur insensitive texture classification using local phase quantization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5099 LNCS, 236243. https://doi.org/10.1007/978-3-540-69905-7_27</p><p>Ojansivu, V., Rahtu, E., & Heikkil, J. (2008). Rotation invariant local phase quantization for blur insensitive texture analysis. Proceedings - International Conference on Pattern Recognition, 14. https://doi.org/10.1109/icpr.2008.4761377</p><p>Omara, I., Li, F., Zhang, H., & Zuo, W. (2016). A novel geometric feature extraction method for ear recognition. Expert Systems with Applications, 65, 127135. https://doi.org/10.1016/j.eswa.2016.08.035</p><p>Omara, I., Li, X., Xiao, G., Adil, K., & Zuo, W. (2018). Discriminative local feature fusion for ear recognition problem. ACM International Conference Proceeding Series, 139145. https://doi.org/10.1145/3180382.3180409</p><p>Omara, I., Wu, X., Zhang, H., Du, Y., & Zuo, W. (2018). Learning pairwise SVM on hierarchical deep features for ear recognition. IET Biometrics, 7(6), 557566. https://doi.org/10.1049/iet-bmt.2017.0087</p><p>Omara, I., Zhang, H., Wang, F., Hagag, A., Li, X., & Zuo, W. (2018). Metric learning with dynamically generated pairwise constraints for ear recognition. Information (Switzerland), 9(9), 114. https://doi.org/10.3390/info9090215</p><p>Pan, X., Cao, Y., Xu, X., Lu, Y., & Zhao, Y. (2008). Ear and face based multimodal recognition based on KFDA. ICALIP 2008 - 2008 International Conference on Audio, Language and Image Processing, Proceedings, 1, 965969. https://doi.org/10.1109/ICALIP.2008.4590072</p><p>Panchakshari, P., & Tale, S. (2017). Performance analysis of fusion methods for EAR biometrics. 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2016 - Proceedings, 11911194. https://doi.org/10.1109/RTEICT.2016.7808020</p><p>Pflug, A., & Busch, C. (2012). Ear biometrics: a survey of detection, feature extraction and recognition methods. IET Biometrics, 1(2), 114129. https://doi.org/10.1049/iet-bmt.2011.0003</p><p>Pflug, A., Wagner, J., Rathgeb, C., & Busch, C. (2014). Impact of severe signal degradation on ear recognition performance. 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2014 - Proceedings, May, 13421347. https://doi.org/10.1109/MIPRO.2014.6859776</p><p>Pflug, Anika, Busch, C., & Ross, A. (2014). 2D ear classification based on unsupervised clustering. IJCB 2014 - 2014 IEEE/IAPR International Joint Conference on Biometrics. https://doi.org/10.1109/BTAS.2014.6996239</p><p>Pflug, Anika, Paul, P. N., & Busch, C. (2014). A comparative study on texture and surface descriptors for ear biometrics. Proceedings - International Carnahan Conference on Security Technology, 2014-Octob(October). https://doi.org/10.1109/CCST.2014.6986993</p><p>Pflug, Anika, Rathgeb, C., Scherhag, U., & Busch, C. (2015). Binarization of spectral histogram models: An application to efficient biometric identification. Proceedings - 2015 IEEE 2nd International Conference on Cybernetics, CYBCONF 2015, 501506. https://doi.org/10.1109/CYBConf.2015.7175985</p><p>Ping Yan, & Bowyer, K. (2006). Empirical Evaluation of Advanced Ear Biometrics. Pro- Ceedings of International Conference on Computer Vision and Pattern Recognition-Workshop, 3, 4141. https://doi.org/10.1109/cvpr.2005.450</p><p>Polin, M. Z. H., Kabir, A. N. M. E., & Sadi, M. S. (2012). 2D human-ear recognition using geometric features. 2012 7th International Conference on Electrical and Computer Engineering, ICECE 2012, 912. https://doi.org/10.1109/ICECE.2012.6471471</p><p>Prakash, S., & Gupta, P. (2015). Ear Biometrics in 2D and 3D Augmented Vision and Reality (Vol. 10). https://doi.org/10.1007/978-981-287-375-0</p><p>Prakash, S., & Gupta, P. (2012). An efficient ear localization technique. Image and Vision Computing, 30(1), 3850. https://doi.org/10.1016/j.imavis.2011.11.005</p><p>Prakash, S., & Gupta, P. (2013). An efficient ear recognition technique invariant to illumination and pose. Telecommunication Systems, 52(3), 14351448. https://doi.org/10.1007/s11235-011-9621-2</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2008). Ear Localization from Side Face lmages using Distance Transform and Template Matching. Image (Rochester, N.Y.), c.</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2009a). A skin-color and template based technique for automatic ear detection. Proceedings of the 7th International Conference on Advances in Pattern Recognition, ICAPR 2009, 213216. https://doi.org/10.1109/ICAPR.2009.31</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2009b). Ear localization using hierarchical clustering. Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI, 7306, 730620. https://doi.org/10.1117/12.818371</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2009c). Connected component based technique for automatic ear detection. Building, 1(c), 27412744.</p><p>Deepak, R., Nayak, A. V., & Manikantan, K. (2016). Ear Detection using Active Contour Model. Cancer Gene Therapy, 7(7), 976984. https://doi.org/10.1038/sj.cgt.7700203</p><p>Raghavendra, R., Raja, K. B., & Busch, C. (2016). Ear recognition after ear lobe surgery: A preliminary study. ISBA 2016 - IEEE International Conference on Identity, Security and Behavior Analysis. https://doi.org/10.1109/ISBA.2016.7477249</p><p>Rahman, M. R., Islam, M. R., Bhuiyan, N. I., Ahmed, B., & Islam, M. A. (2007). Person identification using ear biometrics. International Journal of The Computer, the Internet and Management, 15, 18.</p><p>Ramesh Kumar, P., & Dhenakaran, S. S. (2012). Pixel based feature extraction for ear biometrics. 2012 International Conference on Machine Vision and Image Processing, MVIP 2012, 4043. https://doi.org/10.1109/MVIP.2012.6428756</p><p>Ramesh Kumar, P., & Nageswara Rao, K. (2009). Pattern extraction methods for ear biometrics - A survey. 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 16571660. https://doi.org/10.1109/NABIC.2009.5393639</p><p>Ramsay, B. (2011). Confusion Matrix-based Feature Selection. January.</p><p>Rastogi, S., & Choudhary, S. (2019). Ear Recognition By Using Neural Network. In Acta Informatica Malaysia (Vol. 3, Issue 2). https://doi.org/10.26480/aim.02.2019.07.09</p><p>Rathgeb, C., Pflug, A., Wagner, J., & Busch, C. (2016). Effects of image compression on ear biometrics. Optics and Lasers in Engineering, 39(4), 501506. https://doi.org/10.1016/S0143-8166(02)00032-5</p><p>Raya, J. M. (2011). The Effect of Time on Ear Biometrics. Applied Economics Letters, 18(13), 12011205. https://doi.org/10.1080/13504851.2010.532091</p><p>Said, E. H., Abaza, A., & Ammar, H. (2008). Ear segmentation in color facial images using mathematical morphology. 2008 Biometrics Symposium, BSYM, 2934. https://doi.org/10.1109/BSYM.2008.4655519</p><p>Saleh, F., Hamdy, A., & Zaki, F. (2009). Hybrid features of spatial domain and frequency domain for person identification through ear biometrics. Pattern Recognition and Image Analysis, 19(1), 3538. https://doi.org/10.1134/S1054661809010052</p><p>Snchez, D., & Melin, P. (2014). Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the earbiometric measure. Engineering Applications of Artificial Intelligence, 27, 4156. https://doi.org/10.1016/j.engappai.2013.09.014</p><p>Santra, A. K., & Christy, C. J. (2012). Genetic Algorithm and Confusion Matrix for Document Clustering. International Journal of Computer Science Issues, 9(1), 322328.</p><p>Saranya, M., Cyril, G. L. I., & Santhosh, R. R. (2016). An approach towards ear feature extraction for human identification. International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, 48244828. https://doi.org/10.1109/ICEEOT.2016.7755636</p><p>Schmittgen, T. D., Zakrajsek, B. A., Hill, R. E., Liu, Q., Reeves, J. J., Axford, P. D., Singer, M. J., & Reed, M. W. (2003). Improving the robustness of single-view ear-based recognition under a rotated in depth perspective. Prostate, 55(4), 308316. https://doi.org/10.1002/pros.10241</p><p>Shailaja, D., & Gupta, P. (2006). A simple geometric approach for ear recognition. Proceedings - 9th International Conference on Information Technology, ICIT 2006, 164167. https://doi.org/10.1109/ICIT.2006.20</p><p>Sheeba Rani, J., & Jangilla, S. (2017). Ear recognition using bilinear Probabilistic Principal Component analysis and sparse classifier. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1, 979983. https://doi.org/10.1109/TENCON.2016.7848151</p><p>Shih, H. C., Ho, C. C., Chang, H. T., & Wu, C. S. (2009). Ear detection based on arc-masking extraction and AdaBoost polling verification. IIH-MSP 2009 - 2009 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 669672. https://doi.org/10.1109/IIH-MSP.2009.75</p><p>Shoaib, M., Basit, A., & Faye, I. (2016). Multi-resolution analysis for ear recognition using wavelet features. AIP Conference Proceedings, 1787. https://doi.org/10.1063/1.4968150</p><p>Sibai, F. N., Nuaimi, A., Maamari, A., & Kuwair, R. (2013). Ear recognition with feed-forward artificial neural networks. Neural Computing and Applications, 23(5), 12651273. https://doi.org/10.1007/s00521-012-1068-1</p><p>Soni, K., Gupta, S. K., Kumar, U., & Agrwal, S. L. (2014). A new Gabor wavelet transform feature extraction technique for ear biometric recognition. Proceedings of 6th IEEE Power India International Conference, PIICON 2014, 4, 57. https://doi.org/10.1109/34084POWERI.2014.7117760</p><p>Srinivas, M., & Patnaik, L. M. (1994). Genetic Algorithms: A Survey. Computer, 27(6), 1726. https://doi.org/10.1109/2.294849</p><p>Sujuan Li, Jiangchuan Niu, J. F. I. (2010). Research Into 2D Ear Recognition Based on Isomap Algorithm. IEEE 2010 2nd International Conference on Industrial and Information Systems, 25.</p><p>Sun, X. P., Li, S. H., Han, F., & Wei, X. P. (2015). 3D Ear Shape Matching Using Joint a-Entropy. Journal of Computer Science and Technology, 30(3), 565577. https://doi.org/10.1007/s11390-015-1546-x</p><p>Sun, X., & Wang, G. (2013). 3D ear matching using local salient shape feature. Proceedings - 13th International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2013, 377378. https://doi.org/10.1109/CADGraphics.2013.55</p><p>Sun, X., Wang, G., Wang, L., Sun, H., & Wei, X. (2014). 3D ear recognition using local salience and principal manifold. Graphical Models, 76(5), 402412. https://doi.org/10.1016/j.gmod.2014.03.003</p><p>Surapong, P. (2013). Framework and estimation of ear biometrics detection for digital forensic applications. BMEiCON 2013 - 6th Biomedical Engineering International Conference. https://doi.org/10.1109/BMEiCon.2013.6687683</p><p>Taertulakarn, S., Tosranon, P., & Pintavirooj, C. (2015). Gaussian curvature-based geometric invariance for ear recognition. BMEiCON 2014 - 7th Biomedical Engineering International Conference, 1, 25. https://doi.org/10.1109/BMEiCON.2014.7017396</p><p>Taertulakarn, S., Tosranon, P., & Pintavirooj, C. (2016). 3D ear alignment based on geometry invariant. BMEiCON 2015 - 8th Biomedical Engineering International Conference, 25. https://doi.org/10.1109/BMEiCON.2015.7399545</p><p>Tahmasebi, A., Pourghassem, H., & Mahdavi-Nasab, H. (2011). An ear identification system using local-Gabor features and KNN classifier. 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 - Proceedings, 14. https://doi.org/10.1109/IranianMVIP.2011.6121570</p><p>Tamen, Z., Drias, H., & Boughaci, D. (2017). An efficient multiple classifier system for Arabic handwritten words recognition. Pattern Recognition Letters, 93, 123132. https://doi.org/10.1016/j.patrec.2017.01.020</p><p>Tariq, A., Anjum, M. A., & Akram, M. U. (2011). Personal identification using computerized human ear recognition system. Proceedings of 2011 International Conference on Computer Science and Network Technology, ICCSNT 2011, 1, 5054. https://doi.org/10.1109/ICCSNT.2011.6181906</p><p>Tharwat, A. (2015). Personal identification using ears based on statistical features. Electronic Letters on Computer Vision and Image Analysis, 14(3), 910. https://doi.org/10.5565/rev/elcvia.704</p><p>Theoharis, T., Passalis, G., Toderici, G., & Kakadiaris, I. A. (2008). Unified 3D face and ear recognition using wavelets on geometry images. Pattern Recognition, 41(3), 796804. https://doi.org/10.1016/j.patcog.2007.06.024</p><p>Tian, Y., & Zhang, D. Bin. (2013). Ear recognition based on point feature. Applied Mechanics and Materials, 380384, 38403845. https://doi.org/10.4028/www.scientific.net/AMM.380-384.3840</p><p>Tian, Y., Zhang, D., & Zhang, B. (2014). Ear recognition based on weighted wavelet transform and DCT. 26th Chinese Control and Decision Conference, CCDC 2014, 61202315, 44104414. https://doi.org/10.1109/CCDC.2014.6852957</p><p>Tiwari, S., Singh, A., & Singh, S. K. (2011). Newborns ear recognition: Can it be done? ICIIP 2011 - Proceedings: 2011 International Conference on Image Information Processing, Iciip, 914. https://doi.org/10.1109/ICIIP.2011.6108944</p><p>Tsai, C. H., Reddy, D. M., Hsieh, P. A., Liu, Y. C., Kandasamy, M., Lin, W. Y., & Lee, C. F. (2016). SIFT-based Ear Recognition by Fusion of Detected Keypoints from Color Similarity Slice Regions. Synthesis (Germany), 48(24), 44594464. https://doi.org/10.1055/s-0036-1588070</p><p>V. Sowmya, K. P. Soman, and M. H. (2019). Fundamentals and Advance. January, 3359. https://doi.org/10.1007/978-3-030-03000-1</p><p>Vlez, J. F., Snchez, ., Moreno, B., & Sural, S. (2013). Robust Ear Detection for Biometric Verification. IADIS International Journal on Computer Science and Information Systems, 8(1), 3146.</p><p>Veraldi, G. F., Mezzetto, L., Vaccher, F., Scorsone, L., Bonvini, S., Raunig, I., Wassermann, V., & Tasselli, S. (2018). Gabor Wavelets and General Discriminant Analysis for Ear Recognition. Annals of Vascular Surgery, 52(60672078), 5766. https://doi.org/10.1016/j.avsg.2018.03.025</p><p>Vu, N. S., & Caplier, A. (2010). Face recognition with patterns of oriented edge magnitudes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6311 LNCS(PART 1), 313326. https://doi.org/10.1007/978-3-642-15549-9_23</p><p>Wagner, J., Pflug, A., Rathgeb, C., & Busch, C. (2014). Effects of severe signal degradation on ear detection. 2nd International Workshop on Biometrics and Forensics, IWBF 2014, May, 2630. https://doi.org/10.1109/IWBF.2014.6914255</p><p>Wahab, N. K. A., Hemayed, E. E., & Fayek, M. B. (2012). HEARD: An automatic human EAR detection technique. International Conference on Engineering and Technology, ICET 2012 - Conference Booklet. https://doi.org/10.1109/ICEngTechnol.2012.6396118</p><p>Wang, J. G., Li, J., Yau, W. Y., & Sung, E. (2010). Boosting dense SIFT descriptors and shape contexts of face images for gender recognition. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW 2010, 96102. https://doi.org/10.1109/CVPRW.2010.5543238</p><p>Wang, X. Q., Xia, H. Y., & Wahg, Z. L. (2010). The research of ear identification based on improved algorithm of moment invariant. ICIC 2010 - 3rd International Conference on Information and Computing, 1, 5860. https://doi.org/10.1109/ICIC.2010.21</p><p>Wang, Y., Mu, Z. C., & Zeng, H. (2008). Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns. Proceedings - International Conference on Pattern Recognition, 03. https://doi.org/10.1109/icpr.2008.4761854</p><p>Wang, Z. Q., & Yan, X. D. (2011). Multi-scale feature extraction algorithm of ear image. 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings, 528531. https://doi.org/10.1109/ICEICE.2011.5777641</p><p>Wang, Z., Yang, J., & Zhu, Y. (2019). Review of Ear Biometrics. In Archives of Computational Methods in Engineering (Issue 0123456789). Springer Netherlands. https://doi.org/10.1007/s11831-019-09376-2</p><p>Watabe, D., Minamidani, T., Sai, H., & Cao, J. (2014). Comparison of ear recognition robustness of single-view-based images rotated in depth. Proceedings - 2014 International Conference on Emerging Security Technologies, EST 2014, 1923. https://doi.org/10.1109/EST.2014.16</p><p>Watabe, D., Minamidani, T., Zhao, W., Sai, H., & Cao, J. (2013). Effect of barrel distortion and super-resolution for single-view-based ear biometrics rotated in depth. Proceedings - 2013 International Conference on Biometrics and Kansei Engineering, ICBAKE 2013, 183188. https://doi.org/10.1109/ICBAKE.2013.49</p><p>Watabe, D., Sai, H., Sakai, K., & Nakamura, O. (2008). Ear biometrics using jet space similarity. Canadian Conference on Electrical and Computer Engineering, 1, 12591263. https://doi.org/10.1109/CCECE.2008.4564741</p><p>Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 48(9), 28392846. https://doi.org/10.1016/j.patcog.2015.03.009</p><p>Wu, H. L., Wang, Q., Shen, H. J., & Hu, L. Y. (2009). Ear identification based on KICA and SVM. Proceedings of the 2009 WRI Global Congress on Intelligent Systems, GCIS 2009, 4, 414417. https://doi.org/10.1109/GCIS.2009.278</p><p>Xiao, Y., & Zhu, S. (2010). Ear recognition based on supervised learning using gabor filters. Applied Mechanics and Materials, 2932, 11271132. https://doi.org/10.4028/www.scientific.net/AMM.29-32.1127</p><p>Xiaoxun, Z., & Yunde, J. (2007). Symmetrical null space LDA for face and ear recognition. Neurocomputing, 70(46), 842848. https://doi.org/10.1016/j.neucom.2006.10.016</p><p>Xiaoyun, W., Weiqi, Y., & Group, C. V. (2009). Human Ear Recognition Based on Block Segmentation 3 . Gray-scale Normalization of the Human Ea r Image. Image (Rochester, N.Y.), 262266.</p><p>Xie, Z., & Mu, Z. (2008). Ear recognition using LLE and IDLLE algorithm. Proceedings - International Conference on Pattern Recognition, 03. https://doi.org/10.1109/icpr.2008.4761861</p><p>Xie, Z., Mu, Z., Sun, D., & Hu, D. (2008). Multi-pose ear recognition using locally linear embedding and nearest feature line. 7127(2008), 71272A. https://doi.org/10.1117/12.806729</p><p>Xie, Z. X., & Mu, Z. C. (2008). Improved locally linear embedding and its application on multi-pose ear recognition. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 07, 3, 13671371. https://doi.org/10.1109/ICWAPR.2007.4421647</p><p>Xuhan, X., & Mu, Z. C. (2008). Multi-pose ear recognition based on improved Locally Linear Embedding. Proceedings - 1st International Congress on Image and Signal Processing, CISP 2008, 2, 3943. https://doi.org/10.1109/CISP.2008.472</p><p>Yan, P., & Bowyer, K. W. (2007). Biometric recognition using 3D ear shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 12971308. https://doi.org/10.1109/TPAMI.2007.1067</p><p>Yaqubi, M., Faez, K., & Motamed, S. (2008). Ear recognition using features inspired by visual cortex and support vector machine technique. Proceedings of the International Conference on Computer and Communication Engineering 2008, ICCCE08: Global Links for Human Development, 533537. https://doi.org/10.1109/ICCCE.2008.4580660</p><p>Yazdanpanah, A. P., & Faez, K. (2010). Ear recognition using bi-orthogonal and gabor wavelet-based region covariance matrices. Applied Artificial Intelligence, 24(9), 863879. https://doi.org/10.1080/08839514.2010.514228</p><p>Youbi, Z., Boubchir, L., Bounneche, M. D., Ali-Chrif, A., & Boukrouche, A. (2016). Human Ear recognition based on Multi-scale Local Binary Pattern descriptor and KL divergence. 2016 39th International Conference on Telecommunications and Signal Processing, TSP 2016, 685688. https://doi.org/10.1109/TSP.2016.7760971</p><p>Youssef, I. S., Abaza, A. A., Rasmy, M. E., & Badawi, A. M. (2014). Multimodal biometrics system based on face profile and ear. Biometric and Surveillance Technology for Human and Activity Identification XI, 9075, 907506. https://doi.org/10.1117/12.2050159</p><p>Yuan, L., Li, C., & Mu, Z. (2012). Ear recognition under partial occlusion based on sparse representation. Proceedings 2012 International Conference on System</p><p>Science and Engineering, ICSSE 2012, 1, 349352. https://doi.org/10.1109/ICSSE.2012.6257205</p><p>Yuan, L., Li, F., & Liu, W. (2016). Ear recognition with occlusion via discrimination dictionary and occlusion dictionary based sparse representation. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2016-Septe, 15561560. https://doi.org/10.1109/WCICA.2016.7578470</p><p>Yuan, L., Liu, W., & Li, Y. (2016). Non-negative dictionary based sparse representation classification for ear recognition with occlusion. Neurocomputing, 171, 540550. https://doi.org/10.1016/j.neucom.2015.06.074</p><p>Yuan, L., & Mu, Z. (2014a). Ear recognition based on gabor features and KFDA. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/702076</p><p>Yuan, L., & Mu, Z. (2014b). Ear recognition based on gabor features and KFDA. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/702076</p><p>Yuan, L., & Mu, Z. C. (2007a). Ear detection based on skin-color and contour information. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, ICMLC 2007, 4(August), 22132217. https://doi.org/10.1109/ICMLC.2007.4370513</p><p>Yuan, L., & Mu, Z. C. (2007b). Ear recognition based on 2D images. IEEE Conference on Biometrics: Theory, Applications and Systems, BTAS07, 1, 15. https://doi.org/10.1109/BTAS.2007.4401941</p><p>Yuan, L., & Mu, Z. C. (2012). Ear recognition based on local information fusion. Pattern Recognition Letters, 33(2), 182190. https://doi.org/10.1016/j.patrec.2011.09.041</p><p>Yuan, L., Mu, Z. C., Zhang, Y., & Liu, K. (2006). Ear recognition using improved non-negative matrix factorization. Proceedings - International Conference on Pattern Recognition, 4(2), 501504. https://doi.org/10.1109/ICPR.2006.1198</p><p>Yuan, L., Mu, Z., & Xu, Z. (2005). Using ear biometrics for personal recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3781 LNCS(60375002), 221228. https://doi.org/10.1007/11569947_28</p><p>Zeng, H., Mu, Z. C., & Yuan, L. (2009a). Contourlet transform based ear recognition. 2009 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2009, July, 391395. https://doi.org/10.1109/ICWAPR.2009.5207421</p><p>Zeng, H., Mu, Z. C., & Yuan, L. (2009b). Ear recognition based on multi-scale features. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 4(July), 24182422. https://doi.org/10.1109/ICMLC.2009.5212168</p><p>Zeng, H., Mu, Z. C., Yuan, L., & Wang, S. (2009). Ear recognition based on the SIFT descriptor with global context and the projective invariants. Proceedings of the</p><p>5th International Conference on Image and Graphics, ICIG 2009, 973977. https://doi.org/10.1109/ICIG.2009.23</p><p>Zeng, H., Zhang, R., Mu, Z., & Wang, X. (2014). Local feature descriptor based rapid 3D ear recognition. Proceedings of the 33rd Chinese Control Conference, CCC 2014, 61375010, 49424945. https://doi.org/10.1109/ChiCC.2014.6895778</p><p>Zhang, B., Mu, Z., Li, C., & Zeng, H. (2013). Robust classification for occluded ear via Gabor scale feature-based non-negative sparse representation. Optical Engineering, 53(6), 061702. https://doi.org/10.1117/1.oe.53.6.061702</p><p>Zhang, B., Mu, Z., Zeng, H., & Luo, S. (2014). Robust ear recognition via nonnegative sparse representation of gabor orientation information. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/131605</p><p>Zhang, H. J., & Mu, Z. C. (2008). Ear recognition method based on fusion features of global and local features. Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR, 1, 347351. https://doi.org/10.1109/ICWAPR.2008.4635802</p><p>Zhang, H. J., Mu, Z. C., Qu, W., Liu, L. M., & Zhang, C. Y. (2005). A novel approach for ear recognition based on ICA and RBF network. 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005, August, 45114515. https://doi.org/10.1109/icmlc.2005.1527733</p><p>Zhang, H., & Mu, Z. (2008a). Compound structure classifier system for ear recognition. Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2008, September, 23062309. https://doi.org/10.1109/ICAL.2008.4636551</p><p>Zhang, H., & Mu, Z. (2008b). Compound structure classifier system for ear recognition. Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2008, September, 23062309. https://doi.org/10.1109/ICAL.2008.4636551</p><p>Zhang, Y. J., Xiang, M., & Tian, Y. (2014). An efficient ear recognition method from two-dimensional images. Advanced Materials Research, 10491050, 15311535. https://doi.org/10.4028/www.scientific.net/AMR.1049-1050.1531</p><p>Zhang, Y., & Mu, Z. (2017). Ear detection under uncontrolled conditions with multiple scale faster Region-based convolutional neural networks. Symmetry, 9(4). https://doi.org/10.3390/sym9040053</p><p>Zhang, Z., & Liu, H. (2008). Multi-view ear recognition based on B-spline pose manifold construction. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 1, 24162421. https://doi.org/10.1109/WCICA.2008.4593302</p><p>Zhao, H. L., Mu, Z. C., Zhang, X., & Dun, W. J. (2008). Ear recognition based on wavelet transform and discriminative Common Vectors. Proceedings of 2008</p><p>3rd International Conference on Intelligent System and Knowledge Engineering, ISKE 2008, 713716. https://doi.org/10.1109/ISKE.2008.4731023</p><p>Zhou, J., Cadavid, S., & Abdel-Mottaleb, M. (2010). Histograms of categorized shapes for 3D ear detection. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634512</p><p>Zhou, J., Cadavid, S., & Abdel-Mottaleb, M. (2011). Exploiting color SIFT features for 2D ear recognition. Proceedings - International Conference on Image Processing, ICIP, 4, 553556. https://doi.org/10.1109/ICIP.2011.6116405</p><p>Zhou, J., Cadavid, S., & Abdel-Mottaleb, M. (2012). An efficient 3-D ear recognition system employing local and holistic features. IEEE Transactions on Information Forensics and Security, 7(3), 978991. https://doi.org/10.1109/TIFS.2012.2189005</p><p></p><p></p>