Hybrid ear recognition framework based on passive human identification
<p>Current identification of passive detection has been attention in the modern world due to the</p><p>system's robustness as an ear recognition framework based on a multiclassifier and attempt to</p><p>create user patterns v...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2022
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=9579 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:9579 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Alemran, Ahmed Ali Hybrid ear recognition framework based on passive human identification |
description |
<p>Current identification of passive detection has been attention in the modern world due to the</p><p>system's robustness as an ear recognition framework based on a multiclassifier and attempt to</p><p>create user patterns via extracted features from ear images, which have unique individual</p><p>identities. The collected features from the ear intersection points and the angles bounded</p><p>between curves using different descriptors and classifiers are considered unique information</p><p>used to generate unique features. The proposed framework commenced with the extraction of</p><p>eight sets of features (LBP, BSIF, LPQ, RILPQ, POEM, HOG, DSIFT, and Gabor) from 2D</p><p>ear images. Subsequently, ELM and SVM classifiers were trained on each set of features.</p><p>Seven combination rules (MR, AR, GWAR, ICWAR, Borda, DS, and AV (GWAR, Borda,</p><p>DS)) were utilized to acquire a total of 16 classifiers. Also, two optimization rules; genetic</p><p>algorithm and brute force were proposed for accuracy enhancement. The AWE and the USTB</p><p>datasets were utilized in the development, evaluation, and validation of an ear recognition</p><p>framework dataset. So, some vulnerabilities are observed in datasets and all challenges for ear</p><p>biometrics. The research findings showed that combining classifiers using different sets of</p><p>features yields better performance compared to using individual classifiers. However, using</p><p>one classifier or limited number is not enough to solve the problem of ear recognition with</p><p>different challenges such as Pose, Occlusion, Illumination, Blurry image, Rotation, Lighting,</p><p>Scale, and Translation. The validation of such a framework using the AWE dataset showed that</p><p>the SVM and ELM in combination with modern descriptors managed to enhance the</p><p>recognition. Rank-1 accuracy also reached 99% with Genetic Algorithm optimization, and 98%</p><p>with brute-force AR and brute-force GWAR. These results are compared to other results in the</p><p>literature and found to be superior. In conclusion, the main findings showed that the proposed</p><p>framework consisting of two classifiers SVM and ELM trained with selected features and the</p><p>combination rules managed to attain higher accuracy in-ear recognition compared with</p><p>previous studies. This ear recognition framework is a major step towards the recognition of</p><p>individuals from ears in real-world conditions. This study implies that the proposed ear</p><p>recognition framework based on ELM and SVM classifiers with combination and optimization</p><p>rules can be utilized to improve the effectiveness of passive human recognition where security</p><p>is of utmost importance.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Alemran, Ahmed Ali |
author_facet |
Alemran, Ahmed Ali |
author_sort |
Alemran, Ahmed Ali |
title |
Hybrid ear recognition framework based on passive human identification |
title_short |
Hybrid ear recognition framework based on passive human identification |
title_full |
Hybrid ear recognition framework based on passive human identification |
title_fullStr |
Hybrid ear recognition framework based on passive human identification |
title_full_unstemmed |
Hybrid ear recognition framework based on passive human identification |
title_sort |
hybrid ear recognition framework based on passive human identification |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Seni, Komputeran dan Industri Kreatif |
publishDate |
2022 |
url |
https://ir.upsi.edu.my/detailsg.php?det=9579 |
_version_ |
1783730283083726848 |
spelling |
oai:ir.upsi.edu.my:95792023-10-17 Hybrid ear recognition framework based on passive human identification 2022 Alemran, Ahmed Ali QA Mathematics <p>Current identification of passive detection has been attention in the modern world due to the</p><p>system's robustness as an ear recognition framework based on a multiclassifier and attempt to</p><p>create user patterns via extracted features from ear images, which have unique individual</p><p>identities. The collected features from the ear intersection points and the angles bounded</p><p>between curves using different descriptors and classifiers are considered unique information</p><p>used to generate unique features. The proposed framework commenced with the extraction of</p><p>eight sets of features (LBP, BSIF, LPQ, RILPQ, POEM, HOG, DSIFT, and Gabor) from 2D</p><p>ear images. Subsequently, ELM and SVM classifiers were trained on each set of features.</p><p>Seven combination rules (MR, AR, GWAR, ICWAR, Borda, DS, and AV (GWAR, Borda,</p><p>DS)) were utilized to acquire a total of 16 classifiers. Also, two optimization rules; genetic</p><p>algorithm and brute force were proposed for accuracy enhancement. The AWE and the USTB</p><p>datasets were utilized in the development, evaluation, and validation of an ear recognition</p><p>framework dataset. So, some vulnerabilities are observed in datasets and all challenges for ear</p><p>biometrics. The research findings showed that combining classifiers using different sets of</p><p>features yields better performance compared to using individual classifiers. However, using</p><p>one classifier or limited number is not enough to solve the problem of ear recognition with</p><p>different challenges such as Pose, Occlusion, Illumination, Blurry image, Rotation, Lighting,</p><p>Scale, and Translation. The validation of such a framework using the AWE dataset showed that</p><p>the SVM and ELM in combination with modern descriptors managed to enhance the</p><p>recognition. Rank-1 accuracy also reached 99% with Genetic Algorithm optimization, and 98%</p><p>with brute-force AR and brute-force GWAR. These results are compared to other results in the</p><p>literature and found to be superior. In conclusion, the main findings showed that the proposed</p><p>framework consisting of two classifiers SVM and ELM trained with selected features and the</p><p>combination rules managed to attain higher accuracy in-ear recognition compared with</p><p>previous studies. This ear recognition framework is a major step towards the recognition of</p><p>individuals from ears in real-world conditions. This study implies that the proposed ear</p><p>recognition framework based on ELM and SVM classifiers with combination and optimization</p><p>rules can be utilized to improve the effectiveness of passive human recognition where security</p><p>is of utmost importance.</p> 2022 thesis https://ir.upsi.edu.my/detailsg.php?det=9579 https://ir.upsi.edu.my/detailsg.php?det=9579 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif <p>Abate, A. F., Nappi, M., Riccio, D., & Ricciardi, S. (2006). Ear recognition by means of a rotation invariant descriptor. Proceedings - International Conference on Pattern Recognition, 4, 437440. https://doi.org/10.1109/ICPR.2006.465</p><p>Abaza, A., & Bourlai, T. (2012). Human ear detection in the thermal infrared spectrum. Thermosense: Thermal Infrared Applications XXXIV, 8354, 83540X. https://doi.org/10.1117/12.919285</p><p>Abaza, A., & Bourlai, T. (2013). On ear-based human identification in the mid-wave infrared spectrum. Image and Vision Computing, 31(9), 640648. https://doi.org/10.1016/j.imavis.2013.06.001</p><p>Abaza, A., Hebert, C., & Harrison, M. A. F. (2010). Fast learning ear detection for real-time surveillance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634486</p><p>Abaza, A., & Ross, A. (2010). Towards understanding the symmetry of human ears: A biometric perspective. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634535</p><p>Abaza, A., Ross, A., Hebert, C., Harrison, M. A. F., & Nixon, M. S. (2013). A survey on ear biometrics. ACM Computing Surveys, 45(2), 135. https://doi.org/10.1145/2431211.2431221</p><p>Abdel-Mottaleb, M. and Zhou, J. (2005). Human Ear Recognition from Face Profile Images. Journal of Physics A: Mathematical and Theoretical, 44(8), i. https://doi.org/10.1088/1751-8113/44/8/085201</p><p>Ahmad, A., Lemmond, D., & Boult, T. E. (2018). Chainlets: A new descriptor for detection and recognition. Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, 2018-Janua, 18971906. https://doi.org/10.1109/WACV.2018.00210</p><p>Alaraj, M., Hou, J., & Fukami, T. (2010). A neural network based human identification framework using ear images. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 15951600. https://doi.org/10.1109/TENCON.2010.5686043</p><p>Alberink, I., & Ruifrok, A. (2008). Repeatability and reproducibility of earprint acquisition. Journal of Forensic Sciences, 53(2), 325330. https://doi.org/10.1111/j.1556-4029.2008.00663.x</p><p>Almisreb, A. A., & Jamil, N. (2012). Automated ear segmentation in various illumination conditions. Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012, 199203. https://doi.org/10.1109/CSPA.2012.6194718</p><p>Almisreb, A. A., Tahir, N. M., & Jamil, N. (2013). Kernel graph cut for robust ear segmentation in various illuminations conditions. ISIEA 2013 - 2013 IEEE Symposium on Industrial Electronics and Applications, 7174. https://doi.org/10.1109/ISIEA.2013.6738970</p><p>Alqaralleh, E., & Toygar, . (2018). Ear Recognition Based on Fusion of Ear and Tragus Under Different Challenges. International Journal of Pattern Recognition and Artificial Intelligence, 32(9), 1856009. https://doi.org/10.1142/S0218001418560098</p><p>Alva, M., Srinivasaraghavan, A., & Sonawane, K. (2019). A Review on Techniques for Ear Biometrics. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019. https://doi.org/10.1109/ICECCT.2019.8869450</p><p>Ansari, S., & Gupta, P. (2007). Localization of Ear using Outher Helix Curve of the Ear. IEEE Proceedings of the International Conference on Computing: Theory and Applications (ICCTA07), 15.</p><p>Anwar, A. S., Ghany, K. K. A., & Elmahdy, H. (2015). Human Ear Recognition Using Geometrical Features Extraction. Procedia Computer Science, 65, 529537. https://doi.org/10.1016/j.procs.2015.09.126</p><p>Arbab-Zavar, B., & Nixon, M. S. (2008). Robust log-Gabor filter for ear biometrics. Proceedings - International Conference on Pattern Recognition, 14. https://doi.org/10.1109/icpr.2008.4761843</p><p>Arbab-Zavar, B., & Nixon, M. S. (2011a). On guided model-based analysis for ear biometrics. Computer Vision and Image Understanding, 115(4), 487502. https://doi.org/10.1016/j.cviu.2010.11.014</p><p>Arbab-Zavar, B., & Nixon, M. S. (2011b). On guided model-based analysis for ear biometrics. Computer Vision and Image Understanding, 115(4), 487502. https://doi.org/10.1016/j.cviu.2010.11.014</p><p>Arbab-Zavar, B., Nixon, M. S., & Hurley, D. J. (2007). On model-based analysis of ear biometrics. IEEE Conference on Biometrics: Theory, Applications and Systems, BTAS07. https://doi.org/10.1109/BTAS.2007.4401937</p><p>Ariffin, S. M. Z. S. Z., & Jamil, N. (2015). Cross-band ear recognition in low or variant illumination environments. Proceedings - 2014 International Symposium on Biometrics and Security Technologies, ISBAST 2014, 9094. https://doi.org/10.1109/ISBAST.2014.7013100</p><p>B, W. L., Li, C., & Sun, S. (2017). USTB-Helloear: A Large Database of Ear Images Photographed Under Uncontrolled Conditions. 1, 385394. https://doi.org/10.1007/978-3-319-71589-6</p><p>Badrinath, G. S., & Gupta, P. (2009). Feature level fused ear biometric system. Proceedings of the 7th International Conference on Advances in Pattern Recognition, ICAPR 2009, 197200. https://doi.org/10.1109/ICAPR.2009.27</p><p>Banerjee, S., & Chatterjee, A. (2016). Image set based ear recognition using novel dictionary learning and classification scheme. Engineering Applications of Artificial Intelligence, 55, 3746. https://doi.org/10.1016/j.engappai.2016.05.005</p><p>Basit, A., & Shoaib, M. (2014). A human ear recognition method using nonlinear curvelet feature subspace. International Journal of Computer Mathematics, 91(3), 616624. https://doi.org/10.1080/00207160.2013.800194</p><p>Battisti, F., Carli, M., De Natale, F. G. B., & Neri, A. (2012). Ear recognition based on edge potential function. Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II, 8295, 829508. https://doi.org/10.1117/12.909082</p><p>Benzaoui, A., Adjabi, I., & Boukrouche, A. (2017a). Experiments and improvements of ear recognition based on local texture descriptors. Optical Engineering, 56(4), 043109. https://doi.org/10.1117/1.oe.56.4.043109</p><p>Benzaoui, A., Adjabi, I., & Boukrouche, A. (2017b). Person identification based on ear morphology. ICAASE 2016 - Proceedings of the International Conference on Advanced Aspects of Software Engineering. https://doi.org/10.1109/ICAASE.2016.7843851</p><p>Benzaoui, A., & Boukrouche, A. (2017). Ear recognition using local color texture descriptors from one sample image per person. 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT 2017, 2017-Janua, 827832. https://doi.org/10.1109/CoDIT.2017.8102697</p><p>Benzaoui, A., & Boukrouche, A. (2019a). Ear biometric recognition in unconstrained conditions. Lecture Notes in Electrical Engineering, 504, 261269. https://doi.org/10.1007/978-981-13-0408-8_22</p><p>Benzaoui, A., & Boukrouche, A. (2019b). Ear biometric recognition in unconstrained conditions. In Lecture Notes in Electrical Engineering (Vol. 504). Springer Nature Singapore Pte Ltd. 2019. https://doi.org/10.1007/978-981-13-0408-8_22</p><p>Benzaoui, A., Hadid, A., & Boukrouche, A. (2014). Ear biometric recognition using local texture descriptors. Journal of Electronic Imaging, 23(5), 053008. https://doi.org/10.1117/1.jei.23.5.053008</p><p>Benzaoui, A., Hezil, N., & Boukrouche, A. (2015). Identity recognition based on the external shape of the human ear. 2015 1st International Conference on Applied Research in Computer Science and Engineering, ICAR 2015. https://doi.org/10.1109/ARCSE.2015.7338129</p><p>Benzaoui, A., Kheider, A., & Boukrouche, A. (2015). Ear description and recognition using ELBP and wavelets. 2015 1st International Conference on Applied Research in Computer Science and Engineering, ICAR 2015, 49. https://doi.org/10.1109/ARCSE.2015.7338146</p><p>Boodoo-Jahangeer, N. B., & Baichoo, S. (2013). LBP-based ear recognition. 13th IEEE International Conference on BioInformatics and BioEngineering, IEEE BIBE 2013. https://doi.org/10.1109/BIBE.2013.6701687</p><p>Burge, M., & Burger, W. (1998). Using Ear Biometrics for Passive Identification. 14th IIternational Conference on Information Security, 98, 139148.</p><p>Burge, Mark, & Burger, W. (2000). Ear biometrics in computer vision. Proceedings - International Conference on Pattern Recognition, 15(2), 822826. https://doi.org/10.1109/icpr.2000.906202</p><p>Bustard, J. D., & Nixon, M. S. (2008). Robust 2D ear registration and recognition based on SIFT point matching. BTAS 2008 - IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems, 00. https://doi.org/10.1109/BTAS.2008.4699373</p><p>Bustard, J. D., & Nixon, M. S. (2010). Toward unconstrained ear recognition from two-dimensional images. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, 40(3), 486494. https://doi.org/10.1109/TSMCA.2010.2041652</p><p>Cameriere, R., DeAngelis, D., & Ferrante, L. (2011). Ear identification: A pilot study. Journal of Forensic Sciences, 56(4), 10101014. https://doi.org/10.1111/j.1556-4029.2011.01778.x</p><p>Cao, J., & Lin, Z. (2015). Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey. In Mathematical Problems in Engineering (Vol. 2015, pp. 1618). https://doi.org/10.1155/2015/103796</p><p>Chan, T. S., & Kumar, A. (2012). Reliable ear identification using 2-D quadrature filters. Pattern Recognition Letters, 33(14), 18701881. https://doi.org/10.1016/j.patrec.2011.11.013</p><p>Chen, H., & Bhanu, B. (2009). Efficient recognition of highly similar 3D objects in range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 172179. https://doi.org/10.1109/TPAMI.2008.176</p><p>Chen, H., Bhanu, B., & Wang, R. (2005). Performance evaluation and prediction for 3D ear recognition. Lecture Notes in Computer Science, 3546, 748757. https://doi.org/10.1007/11527923_78</p><p>Chen, L., & Mu, Z. (2016). Partial Data Ear Recognition from One Sample per Person. IEEE Transactions on Human-Machine Systems, 46(6), 799809. https://doi.org/10.1109/THMS.2016.2598763</p><p>Chen, L., Mu, Z., Nan, B., Zhang, Y., & Yang, R. (2017). TDSIFT: a new descriptor for 2D and 3D ear recognition. Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 10225(Icgip 2016), 102250C. https://doi.org/10.1117/12.2266727</p><p>Chidananda, P., Srinivas, P., Manikantan, K., & Ramachandran, S. (2015). Entropy-cum-Hough-transform-based ear detection using ellipsoid particle swarm optimization. Machine Vision and Applications, 26(23), 185203. https://doi.org/10.1007/s00138-015-0669-y</p><p>Choras, M. (2005). Ear Biometrics in Passive Human Identification Systems. Foreign Affairs, 91(5), 13651367. https://doi.org/10.1017/CBO9781107415324.004</p><p>Choras, M. (2005). Ear Biometrics Based on Geometrical Feature Extraction. Interface Focus, 2(6), 708714. https://doi.org/10.1098/rsfs.2012.0021</p><p>Choras, M. (2007). Image feature extraction methods for ear biometrics - A survey. Proceedings - 6th International Conference on Computer Information Systems and Industrial Management Applications, CISIM 2007, 261265. https://doi.org/10.1109/CISIM.2007.40</p><p>Choras, M. (2008). Perspective methods of biometric human identification. New Trends in Audio and Video - Signal Processing: Algorithms, Architectures, Arrangements, and Applications, NTAV / SPA 2008 - Conference Proceedings, 16(1), 195200. https://doi.org/10.2478/s11772-007-0033-5</p><p>Choras, M., & Choras, R. S. (2006). Geometrical algorithms of ear contour shape representation and feature extraction. Proceedings - ISDA 2006: Sixth International Conference on Intelligent Systems Design and Applications, 2, 451456. https://doi.org/10.1109/ISDA.2006.253879</p><p>Chorowski, J., Wang, J., & Zurada, J. M. (2014). Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing, 128, 507516. https://doi.org/10.1016/j.neucom.2013.08.009</p><p>Chowdhury, D. P., Bakshi, S., Guo, G., & Sa, P. K. (2018). On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained. Journal of Medical Systems, 42(1). https://doi.org/10.1007/s10916-017-0855-8</p><p>Chowdhury, D. P., Bakshi, S., Sa, P. K., & Majhi, B. (2018a). Wavelet energy feature based source camera identification for ear biometric images. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.10.009</p><p>Chowdhury, D. P., Bakshi, S., Sa, P. K., & Majhi, B. (2018b). Wavelet Energy Feature Based Source Camera Identification for Ear Biometric Images. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.10.009</p><p>Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273297. https://doi.org/10.1023/A:1022627411411</p><p>Cummings, A. H., Nixon, M. S., & Carter, J. N. (2010). A novel ray analogy for enrolment of ear biometrics. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634468</p><p>De Marsico, M., Nappi, M., & Daniel, R. (2010). HERO: Human Ear Recognition against Occlusions. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW 2010, 178183. https://doi.org/10.1109/CVPRW.2010.5544623</p><p>Decann, B., & Ross, A. (2013). Relating ROC and CMC curves via the biometric menagerie. IEEE 6th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2013, September. https://doi.org/10.1109/BTAS.2013.6712705</p><p>Derawi, M. (2017). Biometric acoustic ear recognition. 2016 International Conference on Bio-Engineering for Smart Technologies, BioSMART 2016. https://doi.org/10.1109/BIOSMART.2016.7835597</p><p>Dinkar, A. D., & Sambyal, S. S. (2012). Person identification in Ethnic Indian Goans using ear biometrics and neural networks. Forensic Science International, 223(13), 373.e1-373.e13. https://doi.org/10.1016/j.forsciint.2012.08.032</p><p>Dodge, S., Mounsef, J., & Karam, L. (2018). Unconstrained ear recognition using deep neural networks. IET Biometrics, 7(3), 207214. https://doi.org/10.1049/iet-bmt.2017.0208</p><p>Doghmane, H., Boukrouche, A., & Boubchir, L. (2019). A novel discriminant multiscale representation for ear recognition. International Journal of Biometrics, 11(1), 5066. https://doi.org/10.1504/IJBM.2019.096568</p><p>Dong, J., & Mu, Z. (2008). Multi-pose ear recognition based on force field transformation. Proceedings - 2008 2nd International Symposium on Intelligent Information Technology Application, IITA 2008, 3(1), 771775. https://doi.org/10.1109/IITA.2008.325</p><p>Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1, 8186. https://doi.org/10.1109/cec.2001.934374</p><p>El-Naggar, S., Abaza, A., & Bourlai, T. (2016). On a taxonomy of ear features. 2016 IEEE Symposium on Technologies for Homeland Security, HST 2016. https://doi.org/10.1109/THS.2016.7568939</p><p>Emeric, ., Gabriel, L. L., truc, V., & Peer, P. (2018). Convolutional encoder-decoder networks for pixel-wise ear detection and segmentation. IET Biometrics, 7(3), 175184. https://doi.org/10.1049/iet-bmt.2017.0240</p><p>Emersic, Z., Meden, B., Peer, P., & Struc, V. (2017). Covariate analysis of descriptor-based ear recognition techniques. 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings. https://doi.org/10.1109/IWOBI.2017.7985520</p><p>Emeric, ., Meden, B., Peer, P., & truc, V. (2018a). Evaluation and analysis of ear recognition models: performance, complexity and resource requirements.</p><p>Neural Computing and Applications, 1, 116. https://doi.org/10.1007/s00521-018-3530-1</p><p>Emeric, ., Meden, B., Peer, P., & truc, V. (2018b). Evaluation and analysis of ear recognition models: performance, complexity and resource requirements. Neural Computing and Applications, 1, 116. https://doi.org/10.1007/s00521-018-3530-1</p><p>Emersic, Z., & Peer, P. (2015). Ear biometric database in the wild. IWOBI 2015 - 2015 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, Proceedings, d, 2732. https://doi.org/10.1109/IWOBI.2015.7160139</p><p>Emersic, Z., Stepec, D., Struc, V., & Peer, P. (2017). The Unconstrained Ear Recognition Challenge. IEEE International Joint Conference on Biometrics (IJCB), 715724.</p><p>Emeric, ., tepec, D., truc, V., Peer, P., George, A., Ahmad, A., Omar, E., Boult, T. E., Safdaii, R., Zhou, Y., Zafeiriou, S., Yaman, D., Eyiokur, F. I., & Ekenel, H. K. (2018). The unconstrained ear recognition challenge. IEEE International Joint Conference on Biometrics, IJCB 2017, 2018-Janua, 715724. https://doi.org/10.1109/BTAS.2017.8272761</p><p>Emeric, ., truc, V., & Peer, P. (2017). Ear recognition: More than a survey. Neurocomputing, 255, 2639. https://doi.org/10.1016/j.neucom.2016.08.139</p><p>Feng, J., & Mu, Z. (2009). Texture analysis for ear recognition using local feature descriptor and transform filter. MIPPR 2009: Pattern Recognition and Computer Vision, 7496, 74962P. https://doi.org/10.1117/12.832749</p><p>Fijani, E., Barzegar, R., Deo, R., Tziritis, E., & Konstantinos, S. (2019). Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Science of the Total Environment, 648, 839853. https://doi.org/10.1016/j.scitotenv.2018.08.221</p><p>Fontana, S., Thomas, M. K., Moldoveanu, M., Spaak, P., & Pomati, F. (2018). Ear verification under uncontrolled conditions. ISME Journal, 12(2), 356366. https://doi.org/10.1038/ismej.2017.160</p><p>Galdmez, P. L., Gonzlez Arrieta, A., & Ramn Ramn, M. (2016). A small look at the ear recognition process using a hybrid approach. Journal of Applied Logic, 17, 413. https://doi.org/10.1016/j.jal.2015.09.004</p><p>Galdmez, P. L., Raveane, W., & Gonzlez Arrieta, A. (2017). A brief review of the ear recognition process using deep neural networks. Journal of Applied Logic, 24, 6270. https://doi.org/10.1016/j.jal.2016.11.014</p><p>Ganesh, M. R., Krishna, R., Manikantan, K., & Ramachandran, S. (2014). Entropy based Binary Particle Swarm Optimization and classification for ear detection.</p><p>Engineering Applications of Artificial Intelligence, 27, 115128. https://doi.org/10.1016/j.engappai.2013.07.022</p><p>Ghoualmi, L., Draa, A., & Chikhi, S. (2015a). An efficient feature selection scheme based on genetic algorithm for ear biometrics authentication. 12th International Symposium on Programming and Systems, ISPS 2015, 234238. https://doi.org/10.1109/ISPS.2015.7244991</p><p>Ghoualmi, L., Draa, A., & Chikhi, S. (2015b). An efficient feature selection scheme based on genetic algorithm for ear biometrics authentication. 12th International Symposium on Programming and Systems, ISPS 2015, 234238. https://doi.org/10.1109/ISPS.2015.7244991</p><p>Ghoualmi, L., Draa, A., & Chikhi, S. (2016). An ear biometric system based on artificial bees and the scale invariant feature transform. Expert Systems with Applications, 57, 4961. https://doi.org/10.1016/j.eswa.2016.03.004</p><p>Godil, A., Grother, P., & Ressler, S. (2003). Human identification from body shape. Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 2003-Janua, 386392. https://doi.org/10.1109/IM.2003.1240273</p><p>Gonzalez, E., Alvarez, L., & Mazorra, L. (2012). Normalization and feature extraction on ear images. Proceedings - International Carnahan Conference on Security Technology, 97104. https://doi.org/10.1109/CCST.2012.6393543</p><p>Guermoui, M., Melaab, D., & Mekhalfi, M. L. (2016). Sparse coding joint decision rule for ear print recognition. Optical Engineering, 55(9), 093105. https://doi.org/10.1117/1.oe.55.9.093105</p><p>Guo, Y., & Xu, Z. (2008). Ear recognition using a new local matching approach. Proceedings - International Conference on Image Processing, ICIP, 289292. https://doi.org/10.1109/ICIP.2008.4711748</p><p>Gutierrez, L., Melin, P., & Lopez, M. (2010). Modular neural network integrator for human recognition from ear images. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN.2010.5596633</p><p>Hamdy, N., Ibrahim, H., & El-Habrouk, M. (2009). Personal identification using combined biometrics techniques. 2009 16th International Conference on Systems, Signals and Image Processing, IWSSIP 2009, 25. https://doi.org/10.1109/IWSSIP.2009.5367710</p><p>Hansley, E. E., Segundo, M. P., & Sarkar, S. (2018). Employing fusion of learned and handcrafted features for unconstrained ear recognition. IET Biometrics, 7(3), 215223. https://doi.org/10.1049/iet-bmt.2017.0210</p><p>Hassaballah, M., Alshazly, H. A., & Ali, A. A. (2019). Ear recognition using local binary patterns: A comparative experimental study. Expert Systems with Applications, 118, 182200. https://doi.org/10.1016/j.eswa.2018.10.007</p><p>Houcine, B., & Hakim, D. (2015). Ear recognition based on Multi- bags-of-features histogram. 3rd IEEE International Conference on Control, Engineering & Information Technology (CEIT15)At: Tlemcen (Algeria).</p><p>Huang, Guang Bin, Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107122. https://doi.org/10.1007/s13042-011-0019-y</p><p>Huang, C., Lu, G., & Liu, Y. (2009). Coordinate direction normalization using point cloud projection density for 3D ear. ICCIT 2009 - 4th International Conference on Computer Sciences and Convergence Information Technology, 511515. https://doi.org/10.1109/ICCIT.2009.56</p><p>Huang, Gao, Huang, G. Bin, Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 3248. https://doi.org/10.1016/j.neunet.2014.10.001</p><p>Huang, H., Liu, J., Feng, H., & He, T. (2011). Ear recognition based on uncorrelated local Fisher discriminant analysis. Neurocomputing, 74(17), 31033113. https://doi.org/10.1016/j.neucom.2011.04.022</p><p>Hurley, D. J., Nixon, M. S., & Carter, J. N. (2005). Force field feature extraction for ear biometrics. Computer Vision and Image Understanding, 98(3), 491512. https://doi.org/10.1016/j.cviu.2004.11.001</p><p>Indi, T. S., & Raut, S. D. (2013a). Person identification based on multi-biometric characteristics. 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology, ICE-CCN 2013, Iceccn, 4552. https://doi.org/10.1109/ICE-CCN.2013.6528611</p><p>Indi, T. S., & Raut, S. D. (2013b). Person unique identification based on ears biometric features. 2013 International Conference on Intelligent Systems and Signal Processing, ISSP 2013, 128133. https://doi.org/10.1109/ISSP.2013.6526888</p><p>Indola, R. P., & Ebecken, N. F. F. (2005). On extending F-measure and G-mean metrics to multi-class problems. WIT Transactions on Information and Communication Technologies, 35, 2534. www.witpress.com,</p><p>Isa, I. S., Saad, Z., Omar, S., Osman, M. K., Ahmad, K. A., & Sakim, H. A. M. (2010). Suitable MLP network activation functions for breast cancer and thyroid disease detection. Proceedings - 2nd International Conference on Computational Intelligence, Modelling and Simulation, CIMSim 2010, 3944. https://doi.org/10.1109/CIMSiM.2010.93</p><p>Islam, S. M.S., Bennamoun, M., & Davies, R. (2008). Fast and fully automatic ear detection using cascaded adaboost. 2008 IEEE Workshop on Applications of Computer Vision, WACV. https://doi.org/10.1109/WACV.2008.4544023</p><p>Islam, S. M.S., Bennamoun, M., Mian, A. S., & Davies, R. (2009). Score level fusion of ear and face local 3d features for fast and expression-invariant human</p><p>recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5627 LNCS, 387396. https://doi.org/10.1007/978-3-642-02611-9_39</p><p>Islam, S. M.S., Davies, R., Bennamoun, M., Owens, R. A., & Mian, A. S. (2013). Multibiometric human recognition using 3D ear and face features. Pattern Recognition, 46(3), 613627. https://doi.org/10.1016/j.patcog.2012.09.016</p><p>Islam, Syed M.S., Davies, R., Bennamoun, M., & Mian, A. S. (2011). Efficient detection and recognition of 3D ears. International Journal of Computer Vision, 95(1), 5273. https://doi.org/10.1007/s11263-011-0436-0</p><p>Iwano, K., Miyazaki, T., & Furui, S. (2005). Multimodal speaker verification using ear image features extracted by PCA and ICA. Lecture Notes in Computer Science, 3546, 588596. https://doi.org/10.1007/11527923_61</p><p>Iyyakutti Iyappan, G., & Prakash, S. (2016). False mapped feature removal in spin images based 3D ear recognition. 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016, 620623. https://doi.org/10.1109/SPIN.2016.7566771</p><p>Jain, A. K., Ross, A., & Prabhakar, S. (2004). An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 420. https://doi.org/10.1109/TCSVT.2003.818349</p><p>Jamil, N., AlMisreb, A., & Halin, A. A. (2014). Illumination-invariant ear authentication. Procedia Computer Science, 42(C), 271278. https://doi.org/10.1016/j.procs.2014.11.062</p><p>Jawale, J. B., & Bhalchandra, A. S. (2011). Ear based attendance monitoring system. 2011 International Conference on Emerging Trends in Electrical and Computer Technology, ICETECT 2011, 724727. https://doi.org/10.1109/ICETECT.2011.5760212</p><p>Jayaram, M., Prashanth, G., & Taj, S. (2015). Classification of Ear Biometric Data using Support Vector Machine. British Journal of Applied Science & Technology, 11(1), 110. https://doi.org/10.9734/bjast/2015/19509</p><p>Jeges, E., & Mat, L. (2007). Model-based human ear identification. 2006 World Automation Congress, WAC06. https://doi.org/10.1109/WAC.2006.375757</p><p>Jiang, J., Zhang, H., Zhang, Q., Lu, J., Ma, Z., & Xu, K. (2014). Ear feature region detection based on a combined image segmentation algorithm- KRM . Dynamics and Fluctuations in Biomedical Photonics XI, 8942, 89420Z. https://doi.org/10.1117/12.2036893</p><p>Jiang, J., Zhang, Q., Ma, C., Lu, J., & Xu, K. (2015). SIFT-based error compensation for ear feature matching and recognition system. Dynamics and Fluctuations in Biomedical Photonics XII, 9322, 932210. https://doi.org/10.1117/12.2077969</p><p>Kandgaonkar, T. V., Mente, R. S., Shinde, A. R., & Raut, S. D. (2015). Ear Biometrics: A Survey on Ear Image Databases and Techniques for Ear Detection and Recognition. IBMRDs Journal of Management & Research, 4(1), 92. https://doi.org/10.17697/ibmrd/2015/v4i1/60357</p><p>Khobragade, S., Mor, D. D., & Chhabra, A. (2016). A method of ear feature extraction for ear biometrics using MATLAB. 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 3. https://doi.org/10.1109/INDICON.2015.7443344</p><p>Khorsandi, R., & Abdel-Mottaleb, M. (2013). Gender classification using 2-D ear images and sparse representation. Proceedings of IEEE Workshop on Applications of Computer Vision, 461466. https://doi.org/10.1109/WACV.2013.6475055</p><p>Khorsandi, R., & Abdel-Mottaleb, M. (2014). Ear biometrics and sparse representation based on smoothed l0 norm. International Journal of Pattern Recognition and Artificial Intelligence, 28(8), 1456016. https://doi.org/10.1142/S0218001414560163</p><p>Khorsandi, R., Cadavid, S., & Abdel-Mottaleb, M. (2012). Ear recognition via sparse representation and Gabor filters. 2012 IEEE 5th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2012, 278282. https://doi.org/10.1109/BTAS.2012.6374589</p><p>Khorsandi, R., Taalimi, A., & Abdel-Mottaleb, M. (2015). Robust biometrics recognition using joint weighted dictionary learning and smoothed L0 norm. 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems, BTAS 2015. https://doi.org/10.1109/BTAS.2015.7358792</p><p>Kisku, D. R., Gupta, S., Gupta, P., & Sing, J. K. (2010). An efficient ear identification system. 2010 5th International Conference on Future Information Technology, FutureTech 2010 - Proceedings, 05. https://doi.org/10.1109/FUTURETECH.2010.5482749</p><p>Kocaman, B. (2009). ON EAR BIOMETRICS. Ieee, 327332.</p><p>Kumar, Ajay, & Chan, T. S. T. (2013). Robust ear identification using sparse representation of local texture descriptors. Pattern Recognition, 46(1), 7385. https://doi.org/10.1016/j.patcog.2012.06.020</p><p>Kumar, Ajay, & Wu, C. (2012). Automated human identification using ear imaging. Pattern Recognition, 45(3), 956968. https://doi.org/10.1016/j.patcog.2011.06.005</p><p>Kumar, Ajay, & Zhang, D. (2007). Ear authentication using Log-Gabor wavelets. Biometric Technology for Human Identification IV, 6539, 65390A. https://doi.org/10.1117/12.720244</p><p>Kumar, Amioy, Hanmandlu, M., Kuldeep, M., & Gupta, H. M. (2011). Automatic ear detection for online biometric applications. Proceedings - 2011 3rd National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG 2011, 146149. https://doi.org/10.1109/NCVPRIPG.2011.69</p><p>Kuncheva, L. I., Bezdek, J. C., & Duin, R. P. W. (2001). Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34(2), 299314. https://doi.org/10.1016/S0031-3203(99)00223-X</p><p>Kurniawan, F., Mohd. Rahim, M. S., & Khalil, M. S. (2015). Geometrical and eigenvector features for ear recognition. Proceedings - 2014 International Symposium on Biometrics and Security Technologies, ISBAST 2014, 5762. https://doi.org/10.1109/ISBAST.2014.7013094</p><p>Kurniawan, F., Shafry, M., & Rahim, M. (2012). A review on 2D ear recognition. Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012, 204209. https://doi.org/10.1109/CSPA.2012.6194719</p><p>Kus, M., Kacar, U., Kirci, M., & Gunes, E. O. (2013). ARM based ear recognition embedded system. IEEE EuroCon 2013, July, 20212028. https://doi.org/10.1109/EUROCON.2013.6625258</p><p>Lakshmanan, L. (2013). Efficient person authentication based on multi-level fusion of ear scores. IET Biometrics, 2(3), 97106. https://doi.org/10.1049/iet-bmt.2012.0049</p><p>Lammi, H. (2004). Ear biometrics. Tech. Rep. Lappeenranta University of Technology., 16.</p><p>Lei, J., You, X., & Abdel-Mottaleb, M. (2016). Automatic Ear Landmark Localization, Segmentation, and Pose Classification in Range Images. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(2), 165176. https://doi.org/10.1109/TSMC.2015.2452892</p><p>Lei, J., Zhou, J., & Abdel-Mottaleb, M. (2013). A novel shape-based interest point descriptor (SIP) for 3D ear recognition. 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings, 41764180. https://doi.org/10.1109/ICIP.2013.6738860</p><p>Lei, S., & Zhu, Q. (2012). Human ear recognition using hybrid filter and supervised locality preserving projection. Advanced Materials Research, 529, 271275. https://doi.org/10.4028/www.scientific.net/AMR.529.271</p><p>Lei, S., & Zhu, Q. (2013). Human ear recognition based on phase congruency and kernel discriminant analysis. Applied Mechanics and Materials, 241244, 16141617. https://doi.org/10.4028/www.scientific.net/AMM.241-244.1614</p><p>Li, C., Wei, W., & Mu, Z. (2015). Improved 3D ear reconstruction based on 3D EMM. 2015 IEEE International Conference on Information and Automation,</p><p>ICIA 2015 - In Conjunction with 2015 IEEE International Conference on Automation and Logistics, 61371142, 28422847. https://doi.org/10.1109/ICInfA.2015.7279771</p><p>Li, L., Zhang, L., & Li, H. (2015). 3D ear identification using LC-KSVD and local histograms of surface types. Proceedings - IEEE International Conference on Multimedia and Expo, 2015-Augus. https://doi.org/10.1109/ICME.2015.7177475</p><p>Li, Y., Mu, Z., & Zeng, H. (2013). A rotation invariant feature extraction for 3D ear recognition. 2013 25th Chinese Control and Decision Conference, CCDC 2013, 36713675. https://doi.org/10.1109/CCDC.2013.6561586</p><p>Li Yuan, F. Z. (2009). Ear Detection Based on Improved AdaBoost Algorithm. ICALIP 2018 - 6th International Conference on Audio, Language and Image Processing, 4(July), 148152. https://doi.org/10.1109/ICALIP.2018.8455226</p><p>Lin, Y., & Zhang, X. (2013). EAR RECOGNITON BASED ON GABOR SCALE INFORMATION. 1417.</p><p>Liu, H. (2011). Multi-view ear recognition by patrial least square discrimination. ICCRD2011 - 2011 3rd International Conference on Computer Research and Development, 4, 200204. https://doi.org/10.1109/ICCRD.2011.5763894</p><p>Liu, H. (2013). Fast 3D ear recognition based on local surface matching and ICP registration. Proceedings - 5th International Conference on Intelligent Networking and Collaborative Systems, INCoS 2013, 731735. https://doi.org/10.1109/INCoS.2013.141</p><p>Liu, H., & Yan, J. (2007). Multi-view ear shape feature extraction and reconstruction. Proceedings - International Conference on Signal Image Technologies and Internet Based Systems, SITIS 2007, 652658. https://doi.org/10.1109/SITIS.2007.42</p><p>Liu, H., & Zhang, D. (2011). Fast 3D point cloud ear identification by slice curve matching. ICCRD2011 - 2011 3rd International Conference on Computer Research and Development, 4, 224228. https://doi.org/10.1109/ICCRD.2011.5763900</p><p>Lu Lu, Xiaoxun Zhang, Youdong Zhao, & Yunde Jia. (2006). Ear Recognition Based on Statistical Shape Model. First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC06), 3, 353356. https://doi.org/10.1109/icicic.2006.445</p><p>Luciano, L., & Krzy, A. (2009). Automated Multimodal Biometrics Using Face and Ear. Springer-Verlag Berlin Heidelberg 2009, 451460.</p><p>Luo, J., Mu, Z., & Wang, Y. (2008). Ear recognition based on force field feature extraction and convergence feature extraction. SPIE, 7127(86), 71272E. https://doi.org/10.1117/12.806740</p><p>Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-Sanz, S., & Geem, Z. W. (2013). A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8), 18181831. https://doi.org/10.1016/j.engappai.2013.05.008</p><p>Mawloud, G., & Djamel, M. (2016). Weighted sparse representation for human ear recognition based on local descriptor. Journal of Electronic Imaging, 25(1), 013036. https://doi.org/10.1117/1.jei.25.1.013036</p><p>Meraoumia, A., Chitroub, S., & Bouridane, A. (2015). An automated ear identification system using Gabor filter responses. Conference Proceedings - 13th IEEE International NEW Circuits and Systems Conference, NEWCAS 2015, 25. https://doi.org/10.1109/NEWCAS.2015.7182085</p><p>Middendorff, C., & Bowyer, K. W. (2009). Ensemble training to improve recognition using 2D ear. Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI, 7306, 73061Z. https://doi.org/10.1117/12.818177</p><p>Mishra, J., & Mitra, S. (2014). Image Denoising using Brute Force Thresholding Algorithm. International Journal of Engineering Research & Technology (IJERT), 3(9), 830836.</p><p>Moghey, M., R. Ghadge, A., & J. Dalvi, S. (2015). Human Ear recognition Using Geometric Features. Iarjset, 2(5), 122125. https://doi.org/10.17148/iarjset.2015.2526</p><p>MohamedAbdel-Mottaleb, S. C. and. (2007). HUMAN IDENTIFICATION BASED ON 3D EAR MODELS. Ieee.</p><p>Morales, A., Ferrer, M. A., Diaz-Cabrera, M., & Gonzlez, E. (2014). Analysis of local descriptors features and its robustness applied to ear recognition. Proceedings - International Carnahan Conference on Security Technology. https://doi.org/10.1109/CCST.2013.6922040</p><p>Mujeeb-U-Rahman, M., Adalian, D., Chang, C.-F., & Scherer, A. (2015). Optical power transfer and communication methods for wireless implantable sensing platforms. Journal of Biomedical Optics, 20(9), 095012. https://doi.org/10.1117/1.jbo.20.9.095012</p><p>Murukesh, C., Parivazhagan, A., & Thanushkodi, K. (2012). A novel ear recognition process using appearance shape model, fisher linear discriminant analysis and contourlet transform. Procedia Engineering, 38, 771778. https://doi.org/10.1016/j.proeng.2012.06.097</p><p>Nanni, L., & Lumini, A. (2007). A multi-matcher for ear authentication. Pattern Recognition Letters, 28(16), 22192226. https://doi.org/10.1016/j.patrec.2007.07.004</p><p>Nanni, L., & Lumini, A. (2009). Fusion of color spaces for ear authentication. Pattern Recognition, 42(9), 19061913. https://doi.org/10.1016/j.patcog.2008.10.016</p><p>Naseem, I., Togneri, R., & Bennamoun, M. (2008). Sparse representation for ear biometrics. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5359 LNCS(PART 2), 336345. https://doi.org/10.1007/978-3-540-89646-3_33</p><p>Nosrati, M. S., Faez, K., & Faradji, F. (2007). Using 2D wavelet and principal component analysis for personal identification based on 2D ear structure. 2007 International Conference on Intelligent and Advanced Systems, ICIAS 2007, 616620. https://doi.org/10.1109/ICIAS.2007.4658461</p><p>Ojansivu, V., & Heikkil, J. (2008). Blur insensitive texture classification using local phase quantization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5099 LNCS, 236243. https://doi.org/10.1007/978-3-540-69905-7_27</p><p>Ojansivu, V., Rahtu, E., & Heikkil, J. (2008). Rotation invariant local phase quantization for blur insensitive texture analysis. Proceedings - International Conference on Pattern Recognition, 14. https://doi.org/10.1109/icpr.2008.4761377</p><p>Omara, I., Li, F., Zhang, H., & Zuo, W. (2016). A novel geometric feature extraction method for ear recognition. Expert Systems with Applications, 65, 127135. https://doi.org/10.1016/j.eswa.2016.08.035</p><p>Omara, I., Li, X., Xiao, G., Adil, K., & Zuo, W. (2018). Discriminative local feature fusion for ear recognition problem. ACM International Conference Proceeding Series, 139145. https://doi.org/10.1145/3180382.3180409</p><p>Omara, I., Wu, X., Zhang, H., Du, Y., & Zuo, W. (2018). Learning pairwise SVM on hierarchical deep features for ear recognition. IET Biometrics, 7(6), 557566. https://doi.org/10.1049/iet-bmt.2017.0087</p><p>Omara, I., Zhang, H., Wang, F., Hagag, A., Li, X., & Zuo, W. (2018). Metric learning with dynamically generated pairwise constraints for ear recognition. Information (Switzerland), 9(9), 114. https://doi.org/10.3390/info9090215</p><p>Pan, X., Cao, Y., Xu, X., Lu, Y., & Zhao, Y. (2008). Ear and face based multimodal recognition based on KFDA. ICALIP 2008 - 2008 International Conference on Audio, Language and Image Processing, Proceedings, 1, 965969. https://doi.org/10.1109/ICALIP.2008.4590072</p><p>Panchakshari, P., & Tale, S. (2017). Performance analysis of fusion methods for EAR biometrics. 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2016 - Proceedings, 11911194. https://doi.org/10.1109/RTEICT.2016.7808020</p><p>Pflug, A., & Busch, C. (2012). Ear biometrics: a survey of detection, feature extraction and recognition methods. IET Biometrics, 1(2), 114129. https://doi.org/10.1049/iet-bmt.2011.0003</p><p>Pflug, A., Wagner, J., Rathgeb, C., & Busch, C. (2014). Impact of severe signal degradation on ear recognition performance. 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2014 - Proceedings, May, 13421347. https://doi.org/10.1109/MIPRO.2014.6859776</p><p>Pflug, Anika, Busch, C., & Ross, A. (2014). 2D ear classification based on unsupervised clustering. IJCB 2014 - 2014 IEEE/IAPR International Joint Conference on Biometrics. https://doi.org/10.1109/BTAS.2014.6996239</p><p>Pflug, Anika, Paul, P. N., & Busch, C. (2014). A comparative study on texture and surface descriptors for ear biometrics. Proceedings - International Carnahan Conference on Security Technology, 2014-Octob(October). https://doi.org/10.1109/CCST.2014.6986993</p><p>Pflug, Anika, Rathgeb, C., Scherhag, U., & Busch, C. (2015). Binarization of spectral histogram models: An application to efficient biometric identification. Proceedings - 2015 IEEE 2nd International Conference on Cybernetics, CYBCONF 2015, 501506. https://doi.org/10.1109/CYBConf.2015.7175985</p><p>Ping Yan, & Bowyer, K. (2006). Empirical Evaluation of Advanced Ear Biometrics. Pro- Ceedings of International Conference on Computer Vision and Pattern Recognition-Workshop, 3, 4141. https://doi.org/10.1109/cvpr.2005.450</p><p>Polin, M. Z. H., Kabir, A. N. M. E., & Sadi, M. S. (2012). 2D human-ear recognition using geometric features. 2012 7th International Conference on Electrical and Computer Engineering, ICECE 2012, 912. https://doi.org/10.1109/ICECE.2012.6471471</p><p>Prakash, S., & Gupta, P. (2015). Ear Biometrics in 2D and 3D Augmented Vision and Reality (Vol. 10). https://doi.org/10.1007/978-981-287-375-0</p><p>Prakash, S., & Gupta, P. (2012). An efficient ear localization technique. Image and Vision Computing, 30(1), 3850. https://doi.org/10.1016/j.imavis.2011.11.005</p><p>Prakash, S., & Gupta, P. (2013). An efficient ear recognition technique invariant to illumination and pose. Telecommunication Systems, 52(3), 14351448. https://doi.org/10.1007/s11235-011-9621-2</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2008). Ear Localization from Side Face lmages using Distance Transform and Template Matching. Image (Rochester, N.Y.), c.</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2009a). A skin-color and template based technique for automatic ear detection. Proceedings of the 7th International Conference on Advances in Pattern Recognition, ICAPR 2009, 213216. https://doi.org/10.1109/ICAPR.2009.31</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2009b). Ear localization using hierarchical clustering. Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI, 7306, 730620. https://doi.org/10.1117/12.818371</p><p>Prakash, S., Jayaraman, U., & Gupta, P. (2009c). Connected component based technique for automatic ear detection. Building, 1(c), 27412744.</p><p>Deepak, R., Nayak, A. V., & Manikantan, K. (2016). Ear Detection using Active Contour Model. Cancer Gene Therapy, 7(7), 976984. https://doi.org/10.1038/sj.cgt.7700203</p><p>Raghavendra, R., Raja, K. B., & Busch, C. (2016). Ear recognition after ear lobe surgery: A preliminary study. ISBA 2016 - IEEE International Conference on Identity, Security and Behavior Analysis. https://doi.org/10.1109/ISBA.2016.7477249</p><p>Rahman, M. R., Islam, M. R., Bhuiyan, N. I., Ahmed, B., & Islam, M. A. (2007). Person identification using ear biometrics. International Journal of The Computer, the Internet and Management, 15, 18.</p><p>Ramesh Kumar, P., & Dhenakaran, S. S. (2012). Pixel based feature extraction for ear biometrics. 2012 International Conference on Machine Vision and Image Processing, MVIP 2012, 4043. https://doi.org/10.1109/MVIP.2012.6428756</p><p>Ramesh Kumar, P., & Nageswara Rao, K. (2009). Pattern extraction methods for ear biometrics - A survey. 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 16571660. https://doi.org/10.1109/NABIC.2009.5393639</p><p>Ramsay, B. (2011). Confusion Matrix-based Feature Selection. January.</p><p>Rastogi, S., & Choudhary, S. (2019). Ear Recognition By Using Neural Network. In Acta Informatica Malaysia (Vol. 3, Issue 2). https://doi.org/10.26480/aim.02.2019.07.09</p><p>Rathgeb, C., Pflug, A., Wagner, J., & Busch, C. (2016). Effects of image compression on ear biometrics. Optics and Lasers in Engineering, 39(4), 501506. https://doi.org/10.1016/S0143-8166(02)00032-5</p><p>Raya, J. M. (2011). The Effect of Time on Ear Biometrics. Applied Economics Letters, 18(13), 12011205. https://doi.org/10.1080/13504851.2010.532091</p><p>Said, E. H., Abaza, A., & Ammar, H. (2008). Ear segmentation in color facial images using mathematical morphology. 2008 Biometrics Symposium, BSYM, 2934. https://doi.org/10.1109/BSYM.2008.4655519</p><p>Saleh, F., Hamdy, A., & Zaki, F. (2009). Hybrid features of spatial domain and frequency domain for person identification through ear biometrics. Pattern Recognition and Image Analysis, 19(1), 3538. https://doi.org/10.1134/S1054661809010052</p><p>Snchez, D., & Melin, P. (2014). Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the earbiometric measure. Engineering Applications of Artificial Intelligence, 27, 4156. https://doi.org/10.1016/j.engappai.2013.09.014</p><p>Santra, A. K., & Christy, C. J. (2012). Genetic Algorithm and Confusion Matrix for Document Clustering. International Journal of Computer Science Issues, 9(1), 322328.</p><p>Saranya, M., Cyril, G. L. I., & Santhosh, R. R. (2016). An approach towards ear feature extraction for human identification. International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, 48244828. https://doi.org/10.1109/ICEEOT.2016.7755636</p><p>Schmittgen, T. D., Zakrajsek, B. A., Hill, R. E., Liu, Q., Reeves, J. J., Axford, P. D., Singer, M. J., & Reed, M. W. (2003). Improving the robustness of single-view ear-based recognition under a rotated in depth perspective. Prostate, 55(4), 308316. https://doi.org/10.1002/pros.10241</p><p>Shailaja, D., & Gupta, P. (2006). A simple geometric approach for ear recognition. Proceedings - 9th International Conference on Information Technology, ICIT 2006, 164167. https://doi.org/10.1109/ICIT.2006.20</p><p>Sheeba Rani, J., & Jangilla, S. (2017). Ear recognition using bilinear Probabilistic Principal Component analysis and sparse classifier. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1, 979983. https://doi.org/10.1109/TENCON.2016.7848151</p><p>Shih, H. C., Ho, C. C., Chang, H. T., & Wu, C. S. (2009). Ear detection based on arc-masking extraction and AdaBoost polling verification. IIH-MSP 2009 - 2009 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 669672. https://doi.org/10.1109/IIH-MSP.2009.75</p><p>Shoaib, M., Basit, A., & Faye, I. (2016). Multi-resolution analysis for ear recognition using wavelet features. AIP Conference Proceedings, 1787. https://doi.org/10.1063/1.4968150</p><p>Sibai, F. N., Nuaimi, A., Maamari, A., & Kuwair, R. (2013). Ear recognition with feed-forward artificial neural networks. Neural Computing and Applications, 23(5), 12651273. https://doi.org/10.1007/s00521-012-1068-1</p><p>Soni, K., Gupta, S. K., Kumar, U., & Agrwal, S. L. (2014). A new Gabor wavelet transform feature extraction technique for ear biometric recognition. Proceedings of 6th IEEE Power India International Conference, PIICON 2014, 4, 57. https://doi.org/10.1109/34084POWERI.2014.7117760</p><p>Srinivas, M., & Patnaik, L. M. (1994). Genetic Algorithms: A Survey. Computer, 27(6), 1726. https://doi.org/10.1109/2.294849</p><p>Sujuan Li, Jiangchuan Niu, J. F. I. (2010). Research Into 2D Ear Recognition Based on Isomap Algorithm. IEEE 2010 2nd International Conference on Industrial and Information Systems, 25.</p><p>Sun, X. P., Li, S. H., Han, F., & Wei, X. P. (2015). 3D Ear Shape Matching Using Joint a-Entropy. Journal of Computer Science and Technology, 30(3), 565577. https://doi.org/10.1007/s11390-015-1546-x</p><p>Sun, X., & Wang, G. (2013). 3D ear matching using local salient shape feature. Proceedings - 13th International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2013, 377378. https://doi.org/10.1109/CADGraphics.2013.55</p><p>Sun, X., Wang, G., Wang, L., Sun, H., & Wei, X. (2014). 3D ear recognition using local salience and principal manifold. Graphical Models, 76(5), 402412. https://doi.org/10.1016/j.gmod.2014.03.003</p><p>Surapong, P. (2013). Framework and estimation of ear biometrics detection for digital forensic applications. BMEiCON 2013 - 6th Biomedical Engineering International Conference. https://doi.org/10.1109/BMEiCon.2013.6687683</p><p>Taertulakarn, S., Tosranon, P., & Pintavirooj, C. (2015). Gaussian curvature-based geometric invariance for ear recognition. BMEiCON 2014 - 7th Biomedical Engineering International Conference, 1, 25. https://doi.org/10.1109/BMEiCON.2014.7017396</p><p>Taertulakarn, S., Tosranon, P., & Pintavirooj, C. (2016). 3D ear alignment based on geometry invariant. BMEiCON 2015 - 8th Biomedical Engineering International Conference, 25. https://doi.org/10.1109/BMEiCON.2015.7399545</p><p>Tahmasebi, A., Pourghassem, H., & Mahdavi-Nasab, H. (2011). An ear identification system using local-Gabor features and KNN classifier. 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 - Proceedings, 14. https://doi.org/10.1109/IranianMVIP.2011.6121570</p><p>Tamen, Z., Drias, H., & Boughaci, D. (2017). An efficient multiple classifier system for Arabic handwritten words recognition. Pattern Recognition Letters, 93, 123132. https://doi.org/10.1016/j.patrec.2017.01.020</p><p>Tariq, A., Anjum, M. A., & Akram, M. U. (2011). Personal identification using computerized human ear recognition system. Proceedings of 2011 International Conference on Computer Science and Network Technology, ICCSNT 2011, 1, 5054. https://doi.org/10.1109/ICCSNT.2011.6181906</p><p>Tharwat, A. (2015). Personal identification using ears based on statistical features. Electronic Letters on Computer Vision and Image Analysis, 14(3), 910. https://doi.org/10.5565/rev/elcvia.704</p><p>Theoharis, T., Passalis, G., Toderici, G., & Kakadiaris, I. A. (2008). Unified 3D face and ear recognition using wavelets on geometry images. Pattern Recognition, 41(3), 796804. https://doi.org/10.1016/j.patcog.2007.06.024</p><p>Tian, Y., & Zhang, D. Bin. (2013). Ear recognition based on point feature. Applied Mechanics and Materials, 380384, 38403845. https://doi.org/10.4028/www.scientific.net/AMM.380-384.3840</p><p>Tian, Y., Zhang, D., & Zhang, B. (2014). Ear recognition based on weighted wavelet transform and DCT. 26th Chinese Control and Decision Conference, CCDC 2014, 61202315, 44104414. https://doi.org/10.1109/CCDC.2014.6852957</p><p>Tiwari, S., Singh, A., & Singh, S. K. (2011). Newborns ear recognition: Can it be done? ICIIP 2011 - Proceedings: 2011 International Conference on Image Information Processing, Iciip, 914. https://doi.org/10.1109/ICIIP.2011.6108944</p><p>Tsai, C. H., Reddy, D. M., Hsieh, P. A., Liu, Y. C., Kandasamy, M., Lin, W. Y., & Lee, C. F. (2016). SIFT-based Ear Recognition by Fusion of Detected Keypoints from Color Similarity Slice Regions. Synthesis (Germany), 48(24), 44594464. https://doi.org/10.1055/s-0036-1588070</p><p>V. Sowmya, K. P. Soman, and M. H. (2019). Fundamentals and Advance. January, 3359. https://doi.org/10.1007/978-3-030-03000-1</p><p>Vlez, J. F., Snchez, ., Moreno, B., & Sural, S. (2013). Robust Ear Detection for Biometric Verification. IADIS International Journal on Computer Science and Information Systems, 8(1), 3146.</p><p>Veraldi, G. F., Mezzetto, L., Vaccher, F., Scorsone, L., Bonvini, S., Raunig, I., Wassermann, V., & Tasselli, S. (2018). Gabor Wavelets and General Discriminant Analysis for Ear Recognition. Annals of Vascular Surgery, 52(60672078), 5766. https://doi.org/10.1016/j.avsg.2018.03.025</p><p>Vu, N. S., & Caplier, A. (2010). Face recognition with patterns of oriented edge magnitudes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6311 LNCS(PART 1), 313326. https://doi.org/10.1007/978-3-642-15549-9_23</p><p>Wagner, J., Pflug, A., Rathgeb, C., & Busch, C. (2014). Effects of severe signal degradation on ear detection. 2nd International Workshop on Biometrics and Forensics, IWBF 2014, May, 2630. https://doi.org/10.1109/IWBF.2014.6914255</p><p>Wahab, N. K. A., Hemayed, E. E., & Fayek, M. B. (2012). HEARD: An automatic human EAR detection technique. International Conference on Engineering and Technology, ICET 2012 - Conference Booklet. https://doi.org/10.1109/ICEngTechnol.2012.6396118</p><p>Wang, J. G., Li, J., Yau, W. Y., & Sung, E. (2010). Boosting dense SIFT descriptors and shape contexts of face images for gender recognition. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW 2010, 96102. https://doi.org/10.1109/CVPRW.2010.5543238</p><p>Wang, X. Q., Xia, H. Y., & Wahg, Z. L. (2010). The research of ear identification based on improved algorithm of moment invariant. ICIC 2010 - 3rd International Conference on Information and Computing, 1, 5860. https://doi.org/10.1109/ICIC.2010.21</p><p>Wang, Y., Mu, Z. C., & Zeng, H. (2008). Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns. Proceedings - International Conference on Pattern Recognition, 03. https://doi.org/10.1109/icpr.2008.4761854</p><p>Wang, Z. Q., & Yan, X. D. (2011). Multi-scale feature extraction algorithm of ear image. 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings, 528531. https://doi.org/10.1109/ICEICE.2011.5777641</p><p>Wang, Z., Yang, J., & Zhu, Y. (2019). Review of Ear Biometrics. In Archives of Computational Methods in Engineering (Issue 0123456789). Springer Netherlands. https://doi.org/10.1007/s11831-019-09376-2</p><p>Watabe, D., Minamidani, T., Sai, H., & Cao, J. (2014). Comparison of ear recognition robustness of single-view-based images rotated in depth. Proceedings - 2014 International Conference on Emerging Security Technologies, EST 2014, 1923. https://doi.org/10.1109/EST.2014.16</p><p>Watabe, D., Minamidani, T., Zhao, W., Sai, H., & Cao, J. (2013). Effect of barrel distortion and super-resolution for single-view-based ear biometrics rotated in depth. Proceedings - 2013 International Conference on Biometrics and Kansei Engineering, ICBAKE 2013, 183188. https://doi.org/10.1109/ICBAKE.2013.49</p><p>Watabe, D., Sai, H., Sakai, K., & Nakamura, O. (2008). Ear biometrics using jet space similarity. Canadian Conference on Electrical and Computer Engineering, 1, 12591263. https://doi.org/10.1109/CCECE.2008.4564741</p><p>Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 48(9), 28392846. https://doi.org/10.1016/j.patcog.2015.03.009</p><p>Wu, H. L., Wang, Q., Shen, H. J., & Hu, L. Y. (2009). Ear identification based on KICA and SVM. Proceedings of the 2009 WRI Global Congress on Intelligent Systems, GCIS 2009, 4, 414417. https://doi.org/10.1109/GCIS.2009.278</p><p>Xiao, Y., & Zhu, S. (2010). Ear recognition based on supervised learning using gabor filters. Applied Mechanics and Materials, 2932, 11271132. https://doi.org/10.4028/www.scientific.net/AMM.29-32.1127</p><p>Xiaoxun, Z., & Yunde, J. (2007). Symmetrical null space LDA for face and ear recognition. Neurocomputing, 70(46), 842848. https://doi.org/10.1016/j.neucom.2006.10.016</p><p>Xiaoyun, W., Weiqi, Y., & Group, C. V. (2009). Human Ear Recognition Based on Block Segmentation 3 . Gray-scale Normalization of the Human Ea r Image. Image (Rochester, N.Y.), 262266.</p><p>Xie, Z., & Mu, Z. (2008). Ear recognition using LLE and IDLLE algorithm. Proceedings - International Conference on Pattern Recognition, 03. https://doi.org/10.1109/icpr.2008.4761861</p><p>Xie, Z., Mu, Z., Sun, D., & Hu, D. (2008). Multi-pose ear recognition using locally linear embedding and nearest feature line. 7127(2008), 71272A. https://doi.org/10.1117/12.806729</p><p>Xie, Z. X., & Mu, Z. C. (2008). Improved locally linear embedding and its application on multi-pose ear recognition. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 07, 3, 13671371. https://doi.org/10.1109/ICWAPR.2007.4421647</p><p>Xuhan, X., & Mu, Z. C. (2008). Multi-pose ear recognition based on improved Locally Linear Embedding. Proceedings - 1st International Congress on Image and Signal Processing, CISP 2008, 2, 3943. https://doi.org/10.1109/CISP.2008.472</p><p>Yan, P., & Bowyer, K. W. (2007). Biometric recognition using 3D ear shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 12971308. https://doi.org/10.1109/TPAMI.2007.1067</p><p>Yaqubi, M., Faez, K., & Motamed, S. (2008). Ear recognition using features inspired by visual cortex and support vector machine technique. Proceedings of the International Conference on Computer and Communication Engineering 2008, ICCCE08: Global Links for Human Development, 533537. https://doi.org/10.1109/ICCCE.2008.4580660</p><p>Yazdanpanah, A. P., & Faez, K. (2010). Ear recognition using bi-orthogonal and gabor wavelet-based region covariance matrices. Applied Artificial Intelligence, 24(9), 863879. https://doi.org/10.1080/08839514.2010.514228</p><p>Youbi, Z., Boubchir, L., Bounneche, M. D., Ali-Chrif, A., & Boukrouche, A. (2016). Human Ear recognition based on Multi-scale Local Binary Pattern descriptor and KL divergence. 2016 39th International Conference on Telecommunications and Signal Processing, TSP 2016, 685688. https://doi.org/10.1109/TSP.2016.7760971</p><p>Youssef, I. S., Abaza, A. A., Rasmy, M. E., & Badawi, A. M. (2014). Multimodal biometrics system based on face profile and ear. Biometric and Surveillance Technology for Human and Activity Identification XI, 9075, 907506. https://doi.org/10.1117/12.2050159</p><p>Yuan, L., Li, C., & Mu, Z. (2012). Ear recognition under partial occlusion based on sparse representation. Proceedings 2012 International Conference on System</p><p>Science and Engineering, ICSSE 2012, 1, 349352. https://doi.org/10.1109/ICSSE.2012.6257205</p><p>Yuan, L., Li, F., & Liu, W. (2016). Ear recognition with occlusion via discrimination dictionary and occlusion dictionary based sparse representation. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2016-Septe, 15561560. https://doi.org/10.1109/WCICA.2016.7578470</p><p>Yuan, L., Liu, W., & Li, Y. (2016). Non-negative dictionary based sparse representation classification for ear recognition with occlusion. Neurocomputing, 171, 540550. https://doi.org/10.1016/j.neucom.2015.06.074</p><p>Yuan, L., & Mu, Z. (2014a). Ear recognition based on gabor features and KFDA. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/702076</p><p>Yuan, L., & Mu, Z. (2014b). Ear recognition based on gabor features and KFDA. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/702076</p><p>Yuan, L., & Mu, Z. C. (2007a). Ear detection based on skin-color and contour information. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, ICMLC 2007, 4(August), 22132217. https://doi.org/10.1109/ICMLC.2007.4370513</p><p>Yuan, L., & Mu, Z. C. (2007b). Ear recognition based on 2D images. IEEE Conference on Biometrics: Theory, Applications and Systems, BTAS07, 1, 15. https://doi.org/10.1109/BTAS.2007.4401941</p><p>Yuan, L., & Mu, Z. C. (2012). Ear recognition based on local information fusion. Pattern Recognition Letters, 33(2), 182190. https://doi.org/10.1016/j.patrec.2011.09.041</p><p>Yuan, L., Mu, Z. C., Zhang, Y., & Liu, K. (2006). Ear recognition using improved non-negative matrix factorization. Proceedings - International Conference on Pattern Recognition, 4(2), 501504. https://doi.org/10.1109/ICPR.2006.1198</p><p>Yuan, L., Mu, Z., & Xu, Z. (2005). Using ear biometrics for personal recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3781 LNCS(60375002), 221228. https://doi.org/10.1007/11569947_28</p><p>Zeng, H., Mu, Z. C., & Yuan, L. (2009a). Contourlet transform based ear recognition. 2009 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2009, July, 391395. https://doi.org/10.1109/ICWAPR.2009.5207421</p><p>Zeng, H., Mu, Z. C., & Yuan, L. (2009b). Ear recognition based on multi-scale features. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 4(July), 24182422. https://doi.org/10.1109/ICMLC.2009.5212168</p><p>Zeng, H., Mu, Z. C., Yuan, L., & Wang, S. (2009). Ear recognition based on the SIFT descriptor with global context and the projective invariants. Proceedings of the</p><p>5th International Conference on Image and Graphics, ICIG 2009, 973977. https://doi.org/10.1109/ICIG.2009.23</p><p>Zeng, H., Zhang, R., Mu, Z., & Wang, X. (2014). Local feature descriptor based rapid 3D ear recognition. Proceedings of the 33rd Chinese Control Conference, CCC 2014, 61375010, 49424945. https://doi.org/10.1109/ChiCC.2014.6895778</p><p>Zhang, B., Mu, Z., Li, C., & Zeng, H. (2013). Robust classification for occluded ear via Gabor scale feature-based non-negative sparse representation. Optical Engineering, 53(6), 061702. https://doi.org/10.1117/1.oe.53.6.061702</p><p>Zhang, B., Mu, Z., Zeng, H., & Luo, S. (2014). Robust ear recognition via nonnegative sparse representation of gabor orientation information. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/131605</p><p>Zhang, H. J., & Mu, Z. C. (2008). Ear recognition method based on fusion features of global and local features. Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR, 1, 347351. https://doi.org/10.1109/ICWAPR.2008.4635802</p><p>Zhang, H. J., Mu, Z. C., Qu, W., Liu, L. M., & Zhang, C. Y. (2005). A novel approach for ear recognition based on ICA and RBF network. 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005, August, 45114515. https://doi.org/10.1109/icmlc.2005.1527733</p><p>Zhang, H., & Mu, Z. (2008a). Compound structure classifier system for ear recognition. Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2008, September, 23062309. https://doi.org/10.1109/ICAL.2008.4636551</p><p>Zhang, H., & Mu, Z. (2008b). Compound structure classifier system for ear recognition. Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2008, September, 23062309. https://doi.org/10.1109/ICAL.2008.4636551</p><p>Zhang, Y. J., Xiang, M., & Tian, Y. (2014). An efficient ear recognition method from two-dimensional images. Advanced Materials Research, 10491050, 15311535. https://doi.org/10.4028/www.scientific.net/AMR.1049-1050.1531</p><p>Zhang, Y., & Mu, Z. (2017). Ear detection under uncontrolled conditions with multiple scale faster Region-based convolutional neural networks. Symmetry, 9(4). https://doi.org/10.3390/sym9040053</p><p>Zhang, Z., & Liu, H. (2008). Multi-view ear recognition based on B-spline pose manifold construction. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 1, 24162421. https://doi.org/10.1109/WCICA.2008.4593302</p><p>Zhao, H. L., Mu, Z. C., Zhang, X., & Dun, W. J. (2008). Ear recognition based on wavelet transform and discriminative Common Vectors. Proceedings of 2008</p><p>3rd International Conference on Intelligent System and Knowledge Engineering, ISKE 2008, 713716. https://doi.org/10.1109/ISKE.2008.4731023</p><p>Zhou, J., Cadavid, S., & Abdel-Mottaleb, M. (2010). Histograms of categorized shapes for 3D ear detection. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634512</p><p>Zhou, J., Cadavid, S., & Abdel-Mottaleb, M. (2011). Exploiting color SIFT features for 2D ear recognition. Proceedings - International Conference on Image Processing, ICIP, 4, 553556. https://doi.org/10.1109/ICIP.2011.6116405</p><p>Zhou, J., Cadavid, S., & Abdel-Mottaleb, M. (2012). An efficient 3-D ear recognition system employing local and holistic features. IEEE Transactions on Information Forensics and Security, 7(3), 978991. https://doi.org/10.1109/TIFS.2012.2189005</p><p></p><p></p> |