Optical trapping and manipulation of a single calix[4] arene microcluster in water

<p>This research aimed to optically trap and manipulate a single calix[4]arene</p><p>microcluster in water. The optically trapped microclusters were evaluated in terms of</p><p>their optical stiffness and rotatability with respect...

Full description

Saved in:
Bibliographic Details
Main Author: Nur Izzati Mahadi
Format: thesis
Language:eng
Published: 2022
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=9786
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:9786
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QC Physics
spellingShingle QC Physics
Nur Izzati Mahadi
Optical trapping and manipulation of a single calix[4] arene microcluster in water
description <p>This research aimed to optically trap and manipulate a single calix[4]arene</p><p>microcluster in water. The optically trapped microclusters were evaluated in terms of</p><p>their optical stiffness and rotatability with respect to the variation of microclusters'</p><p>effective radius and laser power density. The calixarene microclusters contained</p><p>solution was prepared by sonicating a vial containing a mixture of 1.7 mg of</p><p>calix[4]arene powder in 1 ml of deionised water for three minutes. Calix[4]arene</p><p>microclusters in the effective radius range between 0.5 and 3.5 m were optically</p><p>trapped using a 976 nm laser at laser power densities between 0.67 and 2.30 MW/cm2</p><p>with laser sport size 1.1 m. A quadrant photodiode (QPD) collected the scattered</p><p>light from a single trapped microcluster. The QPD signal was analysed using a</p><p>custom-made program named OSCal to determine the corner frequency of the optical</p><p>trap. A quarter waveplate was introduced to the laser path to change the laser</p><p>polarisation state and induce microcluster rotation. The rotatability of the trapped</p><p>microcluster was determined by analysing the QPD signal and particle tracking</p><p>method. Results showed that as the laser power density increases, the corner</p><p>frequency of the trapped microcluster also increases. Furthermore, the trapped</p><p>microcluster rotated faster as the laser power density increased regardless of the</p><p>microcluster's effective radius. To conclude, calix[4]arene in the form of a</p><p>microcluster can be optically trapped and respond to the circularly polarised light. The</p><p>strength of the optical stiffness and the magnitude of the rotatability of a trapped</p><p>calix[4]arene microcluster depend on the laser power density. This research implies</p><p>the broadening potential of light-manipulated calix[4]arene as a microprobe or</p><p>microactuator in a liquid.</p>
format thesis
qualification_name
qualification_level Master's degree
author Nur Izzati Mahadi
author_facet Nur Izzati Mahadi
author_sort Nur Izzati Mahadi
title Optical trapping and manipulation of a single calix[4] arene microcluster in water
title_short Optical trapping and manipulation of a single calix[4] arene microcluster in water
title_full Optical trapping and manipulation of a single calix[4] arene microcluster in water
title_fullStr Optical trapping and manipulation of a single calix[4] arene microcluster in water
title_full_unstemmed Optical trapping and manipulation of a single calix[4] arene microcluster in water
title_sort optical trapping and manipulation of a single calix[4] arene microcluster in water
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2022
url https://ir.upsi.edu.my/detailsg.php?det=9786
_version_ 1794025746291752960
spelling oai:ir.upsi.edu.my:97862024-01-08 Optical trapping and manipulation of a single calix[4] arene microcluster in water 2022 Nur Izzati Mahadi QC Physics <p>This research aimed to optically trap and manipulate a single calix[4]arene</p><p>microcluster in water. The optically trapped microclusters were evaluated in terms of</p><p>their optical stiffness and rotatability with respect to the variation of microclusters'</p><p>effective radius and laser power density. The calixarene microclusters contained</p><p>solution was prepared by sonicating a vial containing a mixture of 1.7 mg of</p><p>calix[4]arene powder in 1 ml of deionised water for three minutes. Calix[4]arene</p><p>microclusters in the effective radius range between 0.5 and 3.5 m were optically</p><p>trapped using a 976 nm laser at laser power densities between 0.67 and 2.30 MW/cm2</p><p>with laser sport size 1.1 m. A quadrant photodiode (QPD) collected the scattered</p><p>light from a single trapped microcluster. The QPD signal was analysed using a</p><p>custom-made program named OSCal to determine the corner frequency of the optical</p><p>trap. A quarter waveplate was introduced to the laser path to change the laser</p><p>polarisation state and induce microcluster rotation. The rotatability of the trapped</p><p>microcluster was determined by analysing the QPD signal and particle tracking</p><p>method. Results showed that as the laser power density increases, the corner</p><p>frequency of the trapped microcluster also increases. Furthermore, the trapped</p><p>microcluster rotated faster as the laser power density increased regardless of the</p><p>microcluster's effective radius. To conclude, calix[4]arene in the form of a</p><p>microcluster can be optically trapped and respond to the circularly polarised light. The</p><p>strength of the optical stiffness and the magnitude of the rotatability of a trapped</p><p>calix[4]arene microcluster depend on the laser power density. This research implies</p><p>the broadening potential of light-manipulated calix[4]arene as a microprobe or</p><p>microactuator in a liquid.</p> 2022 thesis https://ir.upsi.edu.my/detailsg.php?det=9786 https://ir.upsi.edu.my/detailsg.php?det=9786 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Agayan, R. R., Horvath, T., McNaughton, B. H., Anker, J. N., & Kopelman, R. (2004). Optical manipulation of metal-silica hybrid nanoparticles. In K. Dholakia & G. C. Spalding (Eds.), Optical Trapping and Optical Micromanipulation (Vol. 5514, p. 502). SPIE.</p><p>Agrawal, R., Smart, T., Nobre-Cardoso, J., Richards, C., Bhatnagar, R., Tufail, A., Shima, D., H. Jones, P., & Pavesio, C. (2016). Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Scientific Reports, 6(1), 15873.</p><p>An, L., Wang, C., Han, L., Liu, J., Huang, T., Zheng, Y., Yan, C., & Sun, J. (2019). Structural Design, Synthesis, and Preliminary Biological Evaluation of Novel Dihomooxacalix[4]arene-Based Anti-tumor Agents. Frontiers in Chemistry, 7, 856.</p><p>Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156159.</p><p>Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569582.</p><p>Ashkin, A., & Dziedzic, J. M. (1975). Optical Levitation of Liquid Drops by Radiation Pressure. Science, 187(4181), 10731075.</p><p>Augustyn, A. (2019). Refractive index. Encyclopedia Britannica. Encyclopaedia Britannica, Inc.</p><p>Ayop, S. K. (2018). Working Principles of Optical Tweezers. In A. H. Ali, N. A. Awang, & A. S. Ameruddin (Eds.), Optical Fiber Laser Technology: Series 1 (1st ed., Vol. 1, pp. 105116). Penerbit UTHM.</p><p>Baldini, L., Sansone, F., & Casnati, A. (2013). Cation Complexation by Calixarenes. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier.</p><p>Berg-Srensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594612.</p><p>Blzquez-Castro, A. (2019). Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. Micromachines, 10(8), 507.</p><p>Bormuth, V., Jannasch, A., Ander, M., van Kats, C. M., van Blaaderen, A., Howard, J., & Schffer, E. (2008). Optical trapping of coated microspheres. Optics Express, 16(18), 13831.</p><p>Bruce, G. D., Rodrguez-Sevilla, P., & Dholakia, K. (2021). Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Advances in Physics: X, 6(1).</p><p>Bustamante, C. J., Chemla, Y. R., Liu, S., & Wang, M. D. (2021). Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers, 1(1), 25.</p><p>Castberg, R. C. (2008). Characterisation and calibration of Optical tweezers.</p><p>Chang, Y.-R., Hsu, L., & Chi, S. (2006). Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells. Applied Optics, 45(16), 3885.</p><p>Cheng, Y. (2001). Optical Isolators, Circulators (pp. 381394). JDS Uniphase Inc.</p><p>Conteduca, D., Brunetti, G., DellOlio, F., Armenise, M. N., Krauss, T. F., & Ciminelli, C. (2019). Monitoring of individual bacteria using electro-photonic traps. Biomedical Optics Express, 10(7), 34633471.</p><p>Corradini, M. G., & Julian McClements, D. (2017). Food .. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Vol. 3, pp. 4756). Elsevier.</p><p>Crick, A. J., Theron, M., Tiffert, T., Lew, V. L., Cicuta, P., & Rayner, J. C. (2014). Quantitation of Malaria Parasite-Erythrocyte Cell-Cell Interactions Using Optical Tweezers. Biophysical Journal, 107(4), 846853.</p><p>de Fatima, A., Fernandes, S., & Sabino, A. (2009). Calixarenes as New Platforms for Drug Design. Current Drug Discovery Technologies, 6(2), 151170.</p><p>Dholakia, K., & Lee, W. M. (2008). Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular and Optical Physics (Vol. 56, pp. 261337).</p><p>Dienerowitz, M. (2008). Optical manipulation of nanoparticles: a review. Journal of Nanophotonics, 2(1), 021875.</p><p>Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M.-E. (2019). Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization. ACS Applied Materials & Interfaces, 11(37), 3362033627.</p><p>Dong, Z., Yang, T., Wu, H., Brooks, J., Yang, R., Huang, Y., & Chang, L. (2021). Advanced microfluidic devices for cell electroporation and manipulation. In Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms (pp. 105 123). Elsevier.</p><p>Douplik, A., Saiko, G., Schelkanova, I., & Tuchin, V. V. (2013). The response of tissue to laser light. Lasers for Medical Applications (pp. 47109). Elsevier.</p><p>Espaol, E., & Villamil, M. (2019). Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules, 9(3), 90.</p><p>Farrow, R. E., Fielden, J. C., Knight, A. E., & Molloy, J. E. (2009). Single Molecule Studies of Myosins. Single Molecule Biology (pp. 133). Elsevier.</p><p>Florin, E.-L., Pralle, A., Stelzer, E. H. K., & Hrber, J. K. H. (1998). Photonic force microscope calibration by thermal noise analysis. Applied Physics A: Materials Science & Processing, 66(7), S75S78.</p><p>Gao, X., Wang, Y., He, X., Xu, M., Zhu, J., Hu, X., Hu, X., Li, H., & Hu, C. (2020). Angular Trapping of Spherical Janus Particles. Small Methods, 4(12), 2000565.</p><p>Goldner, L. S., Jofre, A. M., & Tang, J. (2010). Droplet Confinement and Fluorescence Measurement of Single Molecules. Methods in Enzymology (Vol. 472, pp. 61 88). Academic Press Inc.</p><p>Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810816.</p><p>Gumpu, M. B., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2015). A review on detection of heavy metal ions in water An electrochemical approach. Sensors and Actuators B: Chemical, 213, 515533.</p><p>Gutsche, C. D., & Bauer, L. J. (1985). Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes. Journal of the American Chemical Society, 107(21), 60526059.</p><p>Han, F., Armstrong, T., Andres-Arroyo, A., Bennett, D., Soeriyadi, A., Alinezhad Chamazketi, A., Bakthavathsalam, P., Tilley, R. D., Gooding, J. J., & Reece, P. J. (2020). Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale, 12(3), 16801687.</p><p>Hawes, C., Osterrieder, A., Sparkes, I. A., & Ketelaar, T. (2010). Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Current Opinion in Plant Biology, 13(6), 731735.</p><p>He, Q., Chen, X., He, Y., Guan, T., Feng, G., Lu, B., Wang, B., Zhou, X., Hu, L., & Cao, D. (2019). Spectral-optical-tweezer-assisted fluorescence multiplexing system for QDs-encoded bead-array bioassay. Biosensors and Bioelectronics, 129(December 2018), 107117.</p><p>Hegner, M., Gerber, C., Arntz, Y., Zhang, J., Bertoncini, P., Husale, S., Lang, H. P., & Grange, W. (2003). Biological Single Molecule Applications and Advanced Biosensing.</p><p>Herranen, J., Markkanen, J., Videen, G., & Muinonen, K. (2019). Non-spherical particles in optical tweezers: A numerical solution. PLOS ONE, 14(12), e0225773.</p><p>Hindi, S. S. Z. (2016). Birefringence of bio-based liquid crystals. BioCrystals Journal, 1, 1325. https://www.researchgate.net/publication/299200951</p><p>Hiroyuki Fujiwara. (2007). Spectroscopic Ellipsometry: Principles and Applications. Wiley.</p><p>Jauffred, L., Taheri, S. M.-R., Schmitt, R., Linke, H., & Oddershede, L. B. (2015). Optical Trapping of Gold Nanoparticles in Air. Nano Letters, 15(7), 47134719.</p><p>Jin Mei, C., & Ainliah Alang Ahmad, S. (2021). A review on the determination heavy metals ions using calixarene-based electrochemical sensors. In Arabian Journal of Chemistry (Vol. 14, Issue 9, p. 103303). Elsevier B.V.</p><p>Jurado, A., & Kiggins, J. (2010). Polystyrene Bead Size Behavior in Optical Trapping Introduction.</p><p>Kato, Y., & Teraji, T. (2018). Key technologies for device fabrications and materials characterizations. Power Electronics Device Applications of Diamond Semiconductors (pp. 219294). Elsevier.</p><p>Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single cell isolation using optical tweezers. Micromachines, 9(9), 434.</p><p>Konyshev, I., Byvalov, A., Ananchenko, B., Fakhrullin, R., Danilushkina, A., & Dudina, L. (2020). Force interactions between Yersiniae lipopolysaccharides and monoclonal antibodies: An optical tweezers study. Journal of Biomechanics, 99, 109504.</p><p>Kress, H., Stelzer, E. H. K., & Rohrbach, A. (2014). Measuring and adjusting the trapping position in optical tweezers. https://www.researchgate.net/publication/237114378</p><p>Landri, J., & Wrger, A. (2013). Trapping energy of a spherical particle on a curved liquid interface. Journal of Colloid and Interface Science, 405, 249255.</p><p>Li, H., Zhang, Y., Wang, X., Xiong, D., & Bai, Y. (2007). Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Materials Letters, 61(7), 14741477.</p><p>Li, X., & Sun, D. (2019). Automated transportation of microparticles in vivo. Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications (pp. 281328). Elsevier Inc.</p><p>Lin, J., & Li, Y. (2014). Optical trapping and rotation of airborne absorbing particles with a single focused laser beam. Applied Physics Letters, 104(10), 101909.</p><p>Liu, T. H., Chiang, W. Y., Usman, A., & Masuhara, H. (2016). Optical Trapping Dynamics of a Single Polystyrene Sphere: Continuous Wave versus Femtosecond Lasers. Journal of Physical Chemistry C, 120(4), 23922399.</p><p>Lockwood, D. J. (2016). Encyclopedia of Color Science and Technology. In M. R. Luo (Ed.), Encyclopedia of Color Science and Technology. Springer, New York.</p><p>Lokesh, M., Vaippully, R., Bhallamudi, V. P., Prabhakar, A., & Roy, B. (2021). Realization of pitch-rotational torque wrench in two-beam optical tweezers. Journal of Physics Communications, 5(11), 115016.</p><p>Lv, X.-J., Chen, Z., Ma, J.-B., & Zhang, Y.-H. (2020). Evaporation of mixed citric acid/(NH4)2SO4/H2O particles: Volatility of organic aerosol by using optical tweezers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117552.</p><p>Ma, G., Hu, C., Li, S., Gao, X., Li, H., & Hu, X. (2019). Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2(4), 145156.</p><p>Mahadi, N. I., Ayop, S. K., Safuan, M., & Yeng, M. (2022). Power Density Limit for Stable Optical Trapping of a Single Microcluster of Calix[4]arene in Water. Central Asia and The Caucasus, 23(1), 30003007.</p><p>Mas, J., Farre, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding Optical Trapping Phenomena: A Simulation for Undergraduates. IEEE Transactions on Education, 54(1), 133140.</p><p>Matvieiev, Y., Solovyov, A., Shishkina, S., Shishkin, O., Katz, A., Boiko, V., & Kalchenko, V. (2014). Upper-rim calixarene phosphines consisting of multiple lower-rim OH functional groups: synthesis and characterisation. Supramolecular Chemistry, 26(1012), 825835.</p><p>McIntyre, J. A., Watts, T. L., & Jones, F. C. (1963). Characteristics of a heavy-ion detection system. Nuclear Instruments and Methods, 21, 281295.</p><p>MIT Department of Physics. (2017). Optical Trapping. http://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdf</p><p>Mohanty, S. K., Mohanty, K. S., & Gupta, P. K. (2005). Dynamics of Interaction of RBC with optical tweezers. Optics Express, 13(12), 4745.</p><p>Mokhtari, B., & Pourabdollah, K. (2013). Calorimetric Investigation of Nano-Baskets Binding. Asian Journal of Chemistry, 25(1), 1318.</p><p>Mondal, D., Bandyopadhyay, S. N., & Goswami, D. (2019). Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers. PLOS ONE, 14(10), e0223688.</p><p>Mondal, D., Dinda, S., Bandyopadhyay, S. N., & Goswami, D. (2019). Polarization induced control of optical trap potentials in binary liquids. Scientific Reports, 9(1), 700.</p><p>Mondal, D., & Goswami, D. (2015). Controlling local temperature in water using femtosecond optical tweezer. Biomedical Optics Express, 6(9), 3190.</p><p>Morales, A., Santana, A., Althoff, G., & Melendez, E. (2011). Hostguest interactions between calixarenes and Cp2NbCl2. Journal of Organometallic Chemistry, 696(13), 25192527.</p><p>Murphy, D. B., Spring, K. R., Fellers, T. J., & Davidson, M. W. (2022). Principles of Birefringence. Nikon Instruments Inc. Retrieved February 4, 2022, from https://www.microscopyu.com/techniques/polarized-light/principles-of- birefringence</p><p>Naseer, M. M., Ahmed, M., & Hameed, S. (2017). Functionalized calix[4]arenes as potential therapeutic agents. Chemical Biology & Drug Design, 89(2), 243256.</p><p>Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75(9), 27872809.</p><p>Nieminen, T. A., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (2000). Laser trapping of non-spherical particles. 5th Conference on Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, 15.</p><p>Nrrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers. Review of Scientific Instruments, 81(7), 075103.</p><p>ONeil, A. T., & Padgett, M. J. (2002). Rotational control within optical tweezers by use of a rotating aperture. Optics Letters, 27(9), 743.</p><p>Osterman, N. (2010). TweezPal Optical tweezers analysis and calibration software. Computer Physics Communications, 181(11), 19111916.</p><p>Pan, Y., Hu, X., & Guo, D. (2021). Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angewandte Chemie International Edition, 60(6), 2768 2794.</p><p>Pan, Y.-L., Hill, S. C., & Coleman, M. (2012). Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Optics Express, 20(5), 5325.</p><p>Parker, D., & Butler, S. J. (2011). Macrocycles. Construction, Chemistry and Nanotechnology Applications. By Frank Davis and Samus Higson. Angewandte Chemie International Edition, 50(50), 1184211842.</p><p>Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using change in properties of optically trapped red blood cells. Biomedical Journal, 40(2), 101105.</p><p>Paul, A., Pallavi, R., Tatu, U. S., & Natarajan, V. (2013). The bystander effect in optically trapped red blood cells due to Plasmodium falciparum infection. Transactions of The Royal Society of Tropical Medicine and Hygiene, 107(4), 220223.</p><p>Pesce, G., Jones, P. H., Marag, O. M., & Volpe, G. (2020). Optical tweezers: theory and practice. The European Physical Journal Plus, 135(12), 949.</p><p>Qureshi, I., Qazi, M. A., & Memon, S. (2009). A versatile calixarene derivative for transportation systems and sensor technology. Sensors and Actuators, B: Chemical, 141(1), 4549.</p><p>Rahman, M. R. U., Kwak, T. J., Woehl, J. C., & Chang, W. (2021). Quantitative analysis of the three-dimensional trap stiffness of a dielectrophoretic corral trap. Electrophoresis, 42(5), 644655.</p><p>Ranaweera, A., & Bamieh, B. (2005). Modelling, identification, and control of a spherical particle trapped in an optical tweezer. International Journal of Robust and Nonlinear Control, 15(16), 747768.</p><p>Ranha Neves, A. A., & Cesar, C. L. (2019). Analytical calculation of optical forces on spherical particles in optical tweezers: tutorial. Journal of the Optical Society of America B, 36(6), 1525.</p><p>Redding, B., & Pan, Y.-L. (2015). Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Optics Letters, 40(12), 2798.</p><p>Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. Journal of Biomedical Optics, 19(11), 115001.</p><p>Satheeshkumar, K. S., Vasu, G., Vishalakshi, V., Moni, M. S., & Jayakumar, R. (2004). Calix[8]arene-mediated self-assembly of tetrapeptide H-Leu-Leu-Ile-Leu-OMe. Journal of Molecular Recognition, 17(1), 6775.</p><p>Shindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezer microrheometer by sequential impulse response. Rheologica Acta, 52(5), 455 465.</p><p>Singh, D. (2015). Birefringence or Double Refraction. Fundamentals of Optics (2nd ed., pp. 492493). PHI Learning Pvt. Ltd.</p><p>Singh, M., & Vinodh Kumar, S. (2018). Mineralogical, Chemical, and Thermal Characterizations of Historic Lime Plasters of ThirteenthSixteenth-century Daulatabad Fort, India. Studies in Conservation, 63(8), 482496.</p><p>Soler, J. M. (2008). Force calibration of a plurality of optical traps by video-based methods. Master Science Thesis</p><p>Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACS Photonics, 3(5), 719736.</p><p>Suarez, R. A. B., Neves, A. A. R., & Gesualdi, M. R. R. (2021). Optical trapping with non-diffracting Airy beams array using a holographic optical tweezers. Optics & Laser Technology, 135(June 2020), 106678.</p><p>Supian, F. L., Kheng, D. L. C., & Razali, A. S. (2017). Conductivity Comparison of Calix [ 8 ] arene- MWCNT s Through Spin Coating Technique. Sains Malaysiana, 46(1), 9196.</p><p>Supian, F. L., Richardson, T. H., Deasy, M., KElleher, F., Ward, J. P., & McKee, V. (2010). A Surface Potential Study of Ion-Uptake by 5,11,17,23-Tetra-Tert-Butyl- 25,27-Diethoxycarbonyl Methyleneoxy-26,28,Dihydroxycalix[4]Arene and 5,17- (3-Nitrobenzylideneamino)-11,23-Di-Tert-Butyl-25,27-Diethoxycarbonyl Methyleneoxy-26,28-Dihydroxycalix[4]Are. Sains Malaysiana, 39(3), 423433.</p><p>Supian, F. L., Richardson, T. H., Deasy, M., Kelleher, F., Ward, J. P., & McKee, V. (2010). Interaction between Langmuir and Langmuir-Blodgett films of two calix[4]arenes with aqueous copper and lithium ions. Langmuir, 26(13), 10906 10912.</p><p>Tolic-Nrrelykke, S. F., Schffer, E., Howard, J., Pavone, F. S., Jlicher, F., & Flyvbjerg, H. (2006). Calibration of optical tweezers with positional detection in the back focal plane. Review of Scientific Instruments, 77(10), 103101.</p><p>Toutianoush, A., Schnepf, J., el Hashani, A., & Tieke, B. (2005). Selective Ion Transport and Complexation in Layer-by-Layer Assemblies of p-Sulfonato-calix[n]arenes and Cationic Polyelectrolytes. Advanced Functional Materials, 15(4), 700708.</p><p>Townes-Anderson, E., St Jules, R. S., Sherry, D. M., Lichtenberger, J., & Hassanain, M. (1998). Micromanipulation of retinal neurons by optical tweezers. Molecular Vision, 4, 12. http://www.ncbi.nlm.nih.gov/pubmed/9701608</p><p>Wang, L., Liang, P., Liu, Z., Zhou, A., & Yuan, L. (2011). An optical trapping based microfiber vibration sensor. 21st International Conference on Optical Fiber Sensors, 7753, 77530F.</p><p>Wang, M. D., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1997). Stretching DNA with optical tweezers. Biophysical Journal, 72(3), 13351346.</p><p>Wasserman, M. R., & Liu, S. (2019). A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry, 58(47), 46674676.</p><p>Wenzel, T. J. (2012). 8.28 Spectroscopic Analysis: NMR and Shift Reagents. Comprehensive Chirality (Vol. 8, pp. 545570). Elsevier Ltd.</p><p>Whitley, K. D., Comstock, M. J., & Chemla, Y. R. (2017). High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy. Methods in Enzymology (Vol. 582, pp. 137169). Academic Press Inc.</p><p>Wu, M., Ling, D., Ling, L., Li, W., & Li, Y. (2017). Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers. Scientific Reports, 7(1), 42930.</p><p>Xie, M. (2021). Principle of optical tweezers trapping. Autonomous Robot-Aided Optical Manipulation for Biological Cells (pp. 313). Elsevier.</p><p>Yoshida, T. (2015). Stimuli-sensitive polymers for drug delivery and diagnostic systems interacting with biosurfaces. Switchable and Responsive Surfaces and Materials for Biomedical Applications (pp. 235258). Elsevier.</p><p>Yousaf, A., Abd Hamid, S., M Bunnori, N., & Adekunle, I. A. (2015). Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Design, Development and Therapy, 9, 2831.</p><p>Yunus Hamid, M. (2018). The Development of Optical Stiffness Calibration Software Based on Equipartition Theorem, Boltzmann Statistics and Power Spectrum Density.</p><p>Yusof, M. F. M., Ayop, S. K., Supian, F. L., & Juahir, Y. (2020). Optical trapping of organic solvents in the form of microdroplets in water. Chemical Physics Letters, 749(April), 137407.</p><p>Zaltron, A., Merano, M., Mistura, G., Sada, C., & Seno, F. (2020). Optical tweezers in single-molecule experiments. The European Physical Journal Plus, 135(11), 896.</p><p>Zhang, Z., Kimkes, T. E. P., & Heinemann, M. (2019). Manipulating rod-shaped bacteria with optical tweezers. Scientific Reports, 9(19086), 19.</p><p>Zhou, Y., Li, H., & Yang, Y.-W. (2015). Controlled drug delivery systems based on calixarenes. Chinese Chemical Letters, 26(7), 825828.</p><p></p>