Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali
<p>Kajian ini bertujuan untuk mengekstrak dan mencirikan hidroksiaptit (HA) daripada</p><p>tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali pada kepekatan yang</p><p>berbeza. Spektroskopi inframerah (FTIR) dan analisi...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | zsm |
Published: |
2018
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=9946 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:9946 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
zsm |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Nur Hidayah Adenan Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
description |
<p>Kajian ini bertujuan untuk mengekstrak dan mencirikan hidroksiaptit (HA) daripada</p><p>tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali pada kepekatan yang</p><p>berbeza. Spektroskopi inframerah (FTIR) dan analisis pembelauan sinar-X (XRD) telah</p><p>digunakan untuk mencirikan bahan HA daripada tulang lembu (HATL) dan sisik ikan</p><p>(HASI). Analisis FTIR terhadap sampel HATL dan HASI membuktikan kewujudan</p><p>kumpulan berfungsi fosfat dan hidroksil di dalam kedua-dua sample. Keputusan XRD</p><p>menunjukkan difragtogram HA tulang lembu dan HA sisik ikan sepadan dengan</p><p>difragtogram HA piawai. Keputusan XRD mengesahkan kehadiran fasa kedua iaitu beta</p><p>trikalsium fosfat (-TCP) daripada HASI selepas disinter pada suhu 1200 C. Analisis</p><p>termogravimetri (TGA) menunjukkan tulang lembu dan sisik ikan yang dirawat dengan</p><p>5M NaOH berjaya menyingkirkan bahan organik yang paling tinggi. Mikroskop</p><p>imbasan elektron (SEM) telah digunakan untuk mengkaji morfologi apatit yang</p><p>diperolehi. Analisis SEM menunjukkan size zarah HATL selepas rawatan alkali adalah</p><p>sekitar 53 nm manakala untuk HASI adalah sekitar 36 nm. Analisis tenaga serakan sinar</p><p>X (EDX) menunjukkan nisbah Ca/P adalah 1.75 dan 1.83 untuk tulang lembu dan sisik</p><p>ikan masing-masing. Ujian kelarutan menunjukkan kelarutan bahan HASI adalah lebih</p><p>tinggi berbanding dengan HATL. Kedua-dua bahan HA daripada tulang lembu dan sisik</p><p>ikan adalah berpotensi digunakan sebagai sumber kalsium untuk makanan tambahan</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Nur Hidayah Adenan |
author_facet |
Nur Hidayah Adenan |
author_sort |
Nur Hidayah Adenan |
title |
Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
title_short |
Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
title_full |
Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
title_fullStr |
Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
title_full_unstemmed |
Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
title_sort |
pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2018 |
url |
https://ir.upsi.edu.my/detailsg.php?det=9946 |
_version_ |
1804890528604487680 |
spelling |
oai:ir.upsi.edu.my:99462024-03-21 Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali 2018 Nur Hidayah Adenan QD Chemistry <p>Kajian ini bertujuan untuk mengekstrak dan mencirikan hidroksiaptit (HA) daripada</p><p>tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali pada kepekatan yang</p><p>berbeza. Spektroskopi inframerah (FTIR) dan analisis pembelauan sinar-X (XRD) telah</p><p>digunakan untuk mencirikan bahan HA daripada tulang lembu (HATL) dan sisik ikan</p><p>(HASI). Analisis FTIR terhadap sampel HATL dan HASI membuktikan kewujudan</p><p>kumpulan berfungsi fosfat dan hidroksil di dalam kedua-dua sample. Keputusan XRD</p><p>menunjukkan difragtogram HA tulang lembu dan HA sisik ikan sepadan dengan</p><p>difragtogram HA piawai. Keputusan XRD mengesahkan kehadiran fasa kedua iaitu beta</p><p>trikalsium fosfat (-TCP) daripada HASI selepas disinter pada suhu 1200 C. Analisis</p><p>termogravimetri (TGA) menunjukkan tulang lembu dan sisik ikan yang dirawat dengan</p><p>5M NaOH berjaya menyingkirkan bahan organik yang paling tinggi. Mikroskop</p><p>imbasan elektron (SEM) telah digunakan untuk mengkaji morfologi apatit yang</p><p>diperolehi. Analisis SEM menunjukkan size zarah HATL selepas rawatan alkali adalah</p><p>sekitar 53 nm manakala untuk HASI adalah sekitar 36 nm. Analisis tenaga serakan sinar</p><p>X (EDX) menunjukkan nisbah Ca/P adalah 1.75 dan 1.83 untuk tulang lembu dan sisik</p><p>ikan masing-masing. Ujian kelarutan menunjukkan kelarutan bahan HASI adalah lebih</p><p>tinggi berbanding dengan HATL. Kedua-dua bahan HA daripada tulang lembu dan sisik</p><p>ikan adalah berpotensi digunakan sebagai sumber kalsium untuk makanan tambahan</p> 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=9946 https://ir.upsi.edu.my/detailsg.php?det=9946 text zsm closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abidi, S. S. A., & Murtaza, Q. (2014). Synthesis and characterization of nano-</p><p>hydroxyapatite powder using wet chemical precipitation reaction. Journal of</p><p>Materials Science and Technology, 30(4), 307310.</p><p>Agrawal, K., Singh, G., Puri, D., & Prakash, S. (2011). Synthesis and Characterization</p><p>of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application.</p><p>Journal of Minerals and Materials Characterization and Engineering, 10(8), 727</p><p>734.</p><p>Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extracting</p><p>hydroxyapatite and its precursors from natural resources. Journal of Materials</p><p>Science, 49(4), 14611475.</p><p>Baco, S., Bambang, L., Joseph, N., & Basri, N. F. (2013). Structural and Composition</p><p>of Natural Hydroxyapatite (HA) at Different Sintering Temperatures. Malaysian</p><p>Journal of Fundamental and Applied Sciences, 220224.</p><p>Bahrololoom, M. E., Javidi, M., Javadpour, S., & Ma, J. (2009). Characterisation of</p><p>natural hydroxyapatite extracted from bovine cortical bone ash. Journal of</p><p>Ceramic Processing Research, 10(2), 129138.</p><p>Balamurugan, A., Michel, J., Faur, J., Benhayoune, H., Wortham, L., Sockalingum, G.,</p><p>Balossier, G. (2006). Synthesis and structural analysis of SOL gel derived</p><p>stoichiometric monophasic hydroxyapatite. Ceramics - Silikaty, 50(1), 2731.</p><p>Balamurugan, A. , Kannan, S., & Rajeswari, S. (2002). Bioactive sol-gel hydroxyapatite</p><p>surface for biomedical applications - in vitro study. Trends Biomater. Artif.</p><p>Organs, 16(1), 1820.</p><p>Barakat, N. A. M., Seob, M., Omran, A. M., Sheikh, F. A., & Yong, H. (2008).</p><p>Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three</p><p>different methods. Materials Processing Technology, 9(209), 34083415.</p><p>Barakat, N. A M., Khil, M. S., Omran, A. M., Sheikh, F. A., & Kim, H. Y. (2009).</p><p>Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three</p><p>different methods. Journal of Materials Processing Technology, 209(7), 3408</p><p>3415.</p><p>Boskey, A. L. (2013). Natural and Synthetic Hydroxyapatites. Biomaterials Science:</p><p>An Introduction to Materials: Third Edition (pp. 151161). Elsevier Inc.</p><p>Brzeziska-Miecznik, J., Haberko, K., Sitarz, M., Buko, M. M., & Macherzyska, B.</p><p>(2015). Hydroxyapatite from animal bones Extraction and properties. Ceramics</p><p>International, 41(3), 48414846.</p><p>Catros, S., Guillemot, F., Lebraud, E., Chanseau, C., Perez, S., Bareille, R., Fricain, J.</p><p>C. (2010). Physico-chemical and biological properties of a nano-hydroxyapatite</p><p>powder synthesized at room temperature. Irbm, 31(4), 226233.</p><p>Chakraborty, R., & Roy Chowdhury, D. (2013a). Fish bone derived natural</p><p>hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch</p><p>oleic acid esterification. Chemical Engineering Journal, 215216, 491499.</p><p>Chakraborty, R., & Roy Chowdhury, D. (2013b). Fish bone derived natural</p><p>hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch</p><p>oleic acid esterification. Chemical Engineering Journal, 215216, 491499.</p><p>Chavan, P. N., Bahir, M. M., Mene, R. U., Mahabole, M. P., & Khairnar, R. S. (2010).</p><p>Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and</p><p>growth of apatite. Materials Science and Engineering B: Solid-State Materials for</p><p>Advanced Technology, 168(1), 224230.</p><p>Chetty, A., Wepener, I., Marei, M. K., Kamary, Y. E., & Moussa, R. M. (2012).</p><p>Hydroxyapatite : Synthesis, properties and applications. Nova SciencePublishers</p><p>(pp. 91132).</p><p>Dorozhkin, S. V. (2010). Calcium Orthophosphates as Bioceramics: State of the Art.</p><p>Journal of Functional Biomaterials, 1(1), 22107.</p><p>Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H.</p><p>(2010a). Effect of the calcination temperature on the composition and</p><p>microstructure of hydroxyapatite derived from human and animal bone. Ceramics</p><p>International, 36(8), 23832393.</p><p>Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H.</p><p>(2010b). Effect of the calcination temperature on the composition and</p><p>microstructure of hydroxyapatite derived from human and animal bone. Ceramics</p><p>International, 36(8), 23832393.</p><p>Figueiredo, M. M., Gamelas, J. A. F., & Martins, A. G. (2010). Characterization of</p><p>Bone and Bone-Based Graft Materials Using FTIR Spectroscopy. Ceramics</p><p>International, 36, 23832393.</p><p>Fulmer, M. T., Ison, I. C., Hankermayer, C. R., Constantz, B. R., & Ross, J. (2002).</p><p>Measurements of the solubilities and dissolution rates of several hydroxyapatites.</p><p>Biomaterials, 23(3), 751755.</p><p>Giraldo-betancur, A. L., Espinosa-arbelaez, D. G., Real-lpez, A., & Millan-malo, B.</p><p>M. (2013). Comparison of physicochemical properties of bio and commercial</p><p>hydroxyapatite. Current Applied Physics, 18.</p><p>Gumisiriza, R., Mshandete, A. M., Thomas, M. S., Kansiime, F., & Kivaisi, A. K.</p><p>(2009). Nile perch fish processing waste along Lake Victoria in East Africa :</p><p>Auditing and characterization. African Journal of Environmental Science and</p><p>Technology, 3(January), 1320.</p><p>Huang, Y. C., Hsiao, P. C., & Chai, H. J. (2011). Hydroxyapatite extracted from fish</p><p>scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), 1825</p><p>1831.</p><p>Ishihara, K., Arai, J., Nakabayashi, N., Morita, S., & Furuya, K. (1992). Adhesive bone</p><p>cement containing hydroxyapatite particle as bone compatible filler. Journal of</p><p>Biomedical Materials Research, 26(7), 937945.</p><p>Jadalannagari, S., More, S., Kowshik, M., & Ramanan, S. R. (2011). Low temperature</p><p>synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Materials</p><p>Science and Engineering C, 31(7), 15341538.</p><p>Janus, A. M., Faryna, M., Haberko, K., Rakowska, A., & Panz, T. (2008). Chemical</p><p>and microstructural characterization of natural hydroxyapatite derived from pig</p><p>bones. In Microchimica Acta (Vol. 161, pp. 349353).</p><p>Joschek, S., Nies, B., Krotz, R., & Gpferich, A. (2000). Chemical and physicochemical</p><p>characterization of porous hydroxyapatite ceramics made of natural bone.</p><p>Biomaterials, 21(16), 16451658.</p><p>Kamalanathan, P., Ramesh, S., Bang, L. T., Niakan, a., Tan, C. Y., Purbolaksono, J.,</p><p>Teng, W. D. (2014). Synthesis and sintering of hydroxyapatite derived from</p><p>eggshells as a calcium precursor. Ceramics International, 40(10), 1634916359.</p><p>Yousif, A. E., & M.Kareem, M. (2011). Extraction of Hydroxyapatite from Bovine</p><p>Femur Bone by Thermal Decomposition Method. I-Managers Journal on Future</p><p>Engineering & Technology, 7(2), 1317.</p><p>Kim, S.-S., Sun Park, M., Jeon, O., Yong Choi, C., & Kim, B.-S. (2006). Poly(lactide-</p><p>co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.</p><p>Biomaterials, 27(8), 13991409.</p><p>Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013).</p><p>Nanocrystalline hydroxyapatite from fish scale waste: Preparation,</p><p>characterization and application for selenium adsorption in aqueous solution.</p><p>Chemical Engineering Journal, 215216, 522532.</p><p>Kim, J. H., Kim, S. H., Kim, H. K., Akaike, T., & Kim, S. C. (2002). Synthesis and</p><p>characterization of hydroxyapatite crystals: A review study on the analytical</p><p>methods. Journal of Biomedical Materials Research, 62(4), 600612.</p><p>Krisanapiboon, A, Buranapanitkit, B., & Oungbho, K. (2006). Biocompatability of</p><p>hydroxyapatite composite as a local drug delivery system. Journal of Orthopaedic</p><p>Surgery (Hong Kong), 14(3), 3158.</p><p>Kusrini, E., Pudjiastuti, A. R., Astuningsih, S., & Harjanto, S. (2012a). Preparation of</p><p>Hydroxyapatite from Bovine Bone by Combination Methods of Ultrasonic and</p><p>Spray Drying. International Conference on Chemical, Bio-Chemical and</p><p>Environmental Sciences (ICBEE2012), 4751</p><p>Kusrini, E., & Sontang, M. (2012). Characterization of x-ray diffraction and electron</p><p>spin resonance: Effects of sintering time and temperature on bovine</p><p>hydroxyapatite. Radiation Physics and Chemistry, 81(2), 118125.</p><p>Landi, E., Celotti, G., Logroscino, G., & Tampieri, A. (2003). Carbonated</p><p>hydroxyapatite as bone substitute. Journal of the European Ceramic Society,</p><p>23(15), 29312937.</p><p>Lim, H. N., Kassim, A., & Huang, N. M. (2010). Preparation and characterization of</p><p>calcium phosphate nanorods using reverse microemulsion and hydrothermal</p><p>processing routes. Sains Malaysiana, 39(2), 267273.</p><p>Lombardi, M., Palmero, P., Haberko, K., Pyda, W., & Montanaro, L. (2011). Processing</p><p>of a natural hydroxyapatite powder: From powder optimization to porous bodies</p><p>development. Journal of the European Ceramic Society, 31(14), 25132518.</p><p>Mobasherpour, I., Heshajin, M. S., Kazemzadeh, a., & Zakeri, M. (2007). Synthesis of</p><p>nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys</p><p>and Compounds, 430(12), 330333.</p><p>Mohandes, F., Salavati-niasari, M., Fereshteh, Z., & Fathi, M. (2014). Novel</p><p>preparation of hydroxyapatite nanoparticles and nanorods with the aid of</p><p>complexing agents. Ceramics International, 40(8), 1222712233.</p><p>Mondal, S., Bardhan, R., Mondal, B., & Dey, A. (2012). Synthesis , characterization</p><p>and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources</p><p>for tissue engineering application. Bulletin of Materials Science, 35(4), 683691.</p><p>Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S. S., Roy, S., Roy, K.</p><p>(2012). Synthesis, characterization and in vitro cytotoxicity assessment of</p><p>hydroxyapatite from different bioresources for tissue engineering application.</p><p>Bulletin of Materials Science, 35(4), 683691.</p><p>Mondal, S., Mahata, S., Kundu, S., & Mondal, B. (2010). Processing of natural</p><p>resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics,</p><p>109(4), 234.</p><p>Mondal, S., Mondal, A., Mandal, N., Mondal, B., Mukhopadhyay, S. S., Dey, A., &</p><p>Singh, S. (2014). Physico-chemical characterization and biological response of</p><p>Labeo rohita-derived hydroxyapatite scaffold. Bioprocess and Biosystems</p><p>Engineering, 37(7), 12331240.</p><p>Mondal, S., Mondal, B., Dey, A., & Mukhopadhyay, S. S. (2012). Studies on Processing</p><p>and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes.</p><p>Journal of Minerals and Materials Characterization & Engineering, 11(1), 5567.</p><p>Muralithran, G., & Ramesh, S. (2000). Effects of sintering temperature on the properties</p><p>of hydroxyapatite. Ceramics International, 26(2), 221230.</p><p>Nath, N., & Krishna, P. (2014). Extraction and characterization of biocompatible</p><p>hydroxyapatite from fresh water fish scales for tissue engineering scaffold.</p><p>Biomaterials, 37, 433440.</p><p>Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies: An overview.</p><p>International Journal of ChemTech Research, 2(2), 903907.</p><p>Niakan, A., Ramesh, S., Ganesan, P., Tan, C. Y., Purbolaksono, J., Chandran, H., Teng,</p><p>W. D. (2015). Sintering behaviour of natural porous hydroxyapatite derived from</p><p>bovine bone. Ceramics International, 41(2), 30243029.</p><p>Nirmala, R., Sheikh, F. a., Kanjwal, M. a., Lee, J. H., Park, S. J., Navamathavan, R., &</p><p>Kim, H. Y. (2011). Synthesis and characterization of bovine femur bone</p><p>hydroxyapatite containing silver nanoparticles for the biomedical applications.</p><p>Journal of Nanoparticle Research, 13(5), 19171927.</p><p>Ooi, C. Y., Hamdi, M., & Ramesh, S. (2007). Properties of hydroxyapatite produced by</p><p>annealing of bovine bone. Ceramics International, 33(7), 11711177.</p><p>Orlovskii, V. P., Komlev, V. S., & Barinov, S. M. (2002). Hydroxyapatite and</p><p>hydroxyapatite-based ceramics. Inorganic Materials, 38(10), 973984.</p><p>Panda, N. N., Pramanik, K., & Sukla, L. B. (2013). Extraction and characterization of</p><p>biocompatible hydroxyapatite from fresh water fish scales for tissue engineering</p><p>scaffold. Bioprocess and Biosystems Engineering, 37(3), 433440.</p><p>Prabakaran, K., & Rajeswari, S. (2006). Development of hydroxyapatite from natural</p><p>fish bone through heat treatment. In Trends in Biomaterials and Artificial Organs</p><p>(Vol. 20, pp. 2023).</p><p>Prakash Parthiban, S., Elayaraja, K., Girija, E. K., Yokogawa, Y., Kesavamoorthy, R.,</p><p>Palanichamy, M., Narayana Kalkura, S. (2009). Preparation of thermally stable</p><p>nanocrystalline hydroxyapatite by hydrothermal method. In Journal of Materials</p><p>Science: Materials in Medicine (Vol. 20).</p><p>Pramanik, S., Agarwal, A. K., & Rai, K. N. (2005). Development of high strength</p><p>hydroxyapatite for hard tissue replacement. Trends in Biomaterials and Artificial</p><p>Organs, 19(1), 4651.</p><p>Queiroz, A. C., Santos, J. D., Monteiro, F. J., & Prado da Silva, M. H. (2003).</p><p>Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite</p><p>ceramics. In Materials Characterization(Vol. 50, pp. 197202).</p><p>Ramesh, S., Aw, K. L., Tolouei, R., Amiriyan, M., Tan, C. Y., Hamdi, M., Teng, W.</p><p>D. (2012). Sintering properties of hydroxyapatite powders prepared using different</p><p>methods. Ceramics International, 39, 111119.</p><p>Rigo, E. C. S., Boschi, A. O., Yoshimoto, M., Allegrini, S., Konig, B., & Carbonari, M.</p><p>J. (2004). Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on</p><p>titanium dental implants. In Materials Science and Engineering C (Vol. 24, pp.</p><p>647651).</p><p>Ripamonti, U., Crooks, J., Khoali, L., & Roden, L. (2009). Biomaterials The induction</p><p>of bone formation by coral-derived calcium carbonate / hydroxyapatite constructs.</p><p>Biomaterials, 30(7), 14281439.</p><p>Rujitanapanich, S., Kumpapan, P., & Wanjanoi, P. (2014). Synthesis of Hydroxyapatite</p><p>from Oyster Shell via Precipitation. Energy Procedia, 56, 112114)</p><p>Ruksudjarit, A., Pengpat, K., Rujijanagul, G., & Tunkasiri, T. (2008). Synthesis and</p><p>characterization of nanocrystalline hydroxyapatite from natural bovine bone.</p><p>Current Applied Physics, 8(34), 270272.</p><p>Sadat-Shojai, M., Khorasani, M. T., & Jamshidi, A. (2012). Hydrothermal processing</p><p>of hydroxyapatite nanoparticles - A Taguchi experimental design approach.</p><p>Journal of Crystal Growth, 361(1), 7384.</p><p>Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008).</p><p>Preparation and partial characterization of collagen sheet from fish (Lates</p><p>calcarifer) scales. International Journal of Biological Macromolecules, 42(1), 6</p><p>9.</p><p>Shavandi, A., Bekhit, A. E.-D. a., Ali, M. A., Sun, Z., & Gould, M. (2015).</p><p>Development and characterization of hydroxyapatite/-TCP/chitosan composites</p><p>for tissue engineering applications. Materials Science and Engineering: C, 56,</p><p>481493.</p><p>Shu, C., Yanwei, W., Hong, L., Zhengzheng, P., & Kangde, Y. (2005). Synthesis of</p><p>carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceramics</p><p>International, 31(1), 135138.</p><p>Sionkowska, A., & Kozlowska, J. (2013). Fish Scales as a Biocomposite of Collagen</p><p>and Calcium Salts. Key Engineering Materials, 587, 185190.</p><p>Sobczak-Kupiec, A., & Wzorek, Z. (2012). The influence of calcination parameters on</p><p>free calcium oxide content in natural hydroxyapatite. Ceramics International,</p><p>38(1), 641647.</p><p>Stoch, A., Jastrzbski, W., Brozek, A., Stoch, J., Szaraniec, J., Trybalska, B., & Kmita,</p><p>G. (2000). FTIR absorption-reflection study of biomimetic growth of phosphates</p><p>on titanium implants. Journal of Molecular Structure, 555, 375382.</p><p>Suchanek, W. L., & Riman, R. E. (2006). Hydrothermal Synthesis of Advanced Ceramic</p><p>Powders. Advances in Science and Technology, 45, 184193.</p><p>Sukaimi, J., Hamzah, S., & Ghazali, M. S. M. (2015). Green Synthesis and</p><p>Characterization of Hydroxyapatite From Fish Scale Biowaste. Applied Mechanics</p><p>and Materials, 695, 235238.</p><p>Tkalec, E., Popovi, J., Orli, S., Milardovi, S., & Ivankovi, H. (2014).</p><p>Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite</p><p>scaffold from cuttlefish bones. Materials Science & Engineering. C, Materials for</p><p>Biological Applications, 42, 57886.</p><p>Vallet-Reg, M., Pea, J., & Izquierdo-Barba, I. (2004). Synthesis of -tricalcium</p><p>phosphate in layered or powdered forms for biomedical applications. In Solid State</p><p>Ionics (Vol. 172, pp. 445449).</p><p>Venkatesan, J., Qian, Z. J., Ryu, B., Thomas, N. V., & Kim, S. K. (2011). A</p><p>comparative study of thermal calcination and an alkaline hydrolysis method in the</p><p>isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials</p><p>(Bristol, England), 6(3), 35003.</p><p>Yoganand, C. P., Selvarajan, V., Cannillo, V., Sola, A., Roumeli, E., Goudouri, O. M.,</p><p>Rouabhia, M. (2010). Characterization and in vitro-bioactivity of natural</p><p>hydroxyapatite based bio-glass-ceramics synthesized by thermal plasma</p><p>processing. Ceramics International, 36(6), 17571766.</p><p>Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A.</p><p>(2012). Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales.</p><p>Advanced Materials Research, 545, 235239.</p><p>Zaragoza, D. L., Teresita, E., Guzmn, R., & Gutirrez, L. R. R. (2007). Surface and</p><p>Physicochemical Properties of Calcium Phosphate from Bovine Bone.</p><p>Proceedings IJM, 711719.</p><p>Zhang, H., Member, S., Burdet, E., Poo, A. N., & Hutmacher, D. W. (2008).</p><p>Microassembly Fabrication of Tissue Engineering Scaffolds With Customized</p><p>Design, 5(3), 446456.</p><p>Zhang, Y., Liu, Y., Ji, X., Banks, C. E., & Zhang, W. (2011). Sea cucumber-like</p><p>hydroxyapatite: cation exchange membrane-assisted synthesis and its application</p><p>in ultra-sensitive heavy metal detection. Chemical Communications, 47(14), 4126.</p><p>Zhu, Y., Zhu, Z., Zhao, X., Liang, Y., Dai, L., & Huang, Y. (2016). Characterization,</p><p>dissolution and solubility of cadmium-calcium hydroxyapatite solid solutions at</p><p>25C. Chemical Geology, 423, 3448.</p><p></p> |