Development of hybrid system for automatic diagnosis of diabetic retinopathy /

The Optic Nerve Head (ONH) and Vascular Intersection (VI) are important features in retina fundus image (RFI). The application of artificial intelligence has not received much attention in the diagnosis, prediction and monitoring of diabetic retinopathy (DR). The hybrid artificial intelligent system...

全面介紹

Saved in:
書目詳細資料
主要作者: Safinaz binti Oap Kader Mohideen
格式: Thesis
語言:English
出版: Kuala Lumpur : Kulliyyah of Engineering, International Islamic University Malaysia, 2013
主題:
在線閱讀:http://studentrepo.iium.edu.my/handle/123456789/4634
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
LEADER 028360000a22002770004500
008 130711t2013 my a m m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
043 |a a-my--- 
050 |a RE661.D5 
100 1 |a Safinaz binti Oap Kader Mohideen 
245 1 |a Development of hybrid system for automatic diagnosis of diabetic retinopathy /  |c by Safinaz binti Oap Kader Mohideen 
260 |a Kuala Lumpur :   |b Kulliyyah of Engineering, International Islamic University Malaysia,   |c 2013 
300 |a xiii, 113 leaves :  |b ill. ;  |c 30cm. 
502 |a Thesis (MSMCT)--International Islamic University Malaysia, 2013. 
504 |a Includes bibliographical references (leaves 81-85). 
520 |a The Optic Nerve Head (ONH) and Vascular Intersection (VI) are important features in retina fundus image (RFI). The application of artificial intelligence has not received much attention in the diagnosis, prediction and monitoring of diabetic retinopathy (DR). The hybrid artificial intelligent system includes image processing techniques and neural network trained with back propagation algorithm is proposed in this research work. Combined Cross Number points (CCN) technique which uses a 5×5 window embedded with Artificial Neural Network (ANN) technique has been proposed in the vasculature detection in order to detect the combination of bifurcation and crossover points in (RFI). On the other hand, three techniques are proposed in the ONH detection, namely simple thresholding technique and hybrid numerical differential approach as well as exponential histogram technique.Performance analysis of the system shows that ANN based technique for vascular intersection points detection achieves 100% accuracy on simulated images and a minimum of 92% accuracy on RFI obtained from DRIVE database. Thus, the simulated images have been used to train the artificial neural network (ANN) and on convergence the network is used to test (RFI) from DRIVE database. In the ONH detection, hybrid numerical differential and exponential histogram technique produces 90 % of accuracy as compared to the simple thresholding technique which only achieves 53% of accuracy. 
596 |a 1 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Department of Mechatronics  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Department of Mechatronics 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/4634 
900 |a zhmn-hab-zhmn 
999 |c 437560  |d 469706 
952 |0 0  |6 T RE 000661 D000005 S000128D 002013  |7 0  |8 THESES  |9 759004  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o t RE 661 D5 S128D 2013  |p 00011288407  |r 2017-10-20  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF RE 000661 D000005 S000128D 002013  |7 0  |8 THESES  |9 851077  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf RE 661 D5 S128D 2013  |p 00011288408  |r 2017-10-26  |t 1  |v 0.00  |y THESISDIG