A discretization size and step size varying strategy in the numerical solution of I-Dimensional Schrodinger Equation
In this thesis we present a numerical solution of the I-dimensional Schrodinger equation using the method of lines approach (MOL) where we discretize the spatial dimension using some finite difference approximation leaving the time dimension to be the only independent variable in the resulting syste...
Saved in:
Internet
https://oarep.usim.edu.my/bitstreams/f5b5ac75-20f4-4821-96e1-4001c6703e53/downloadhttps://oarep.usim.edu.my/bitstreams/c2ece34e-3fa0-4b03-8627-7353f50c92c2/download
https://oarep.usim.edu.my/bitstreams/49d31285-30a2-4032-a9ab-69815f5fd57d/download
https://oarep.usim.edu.my/bitstreams/02308d37-7210-4510-a9e4-9307a1eb4009/download
https://oarep.usim.edu.my/bitstreams/3b0a1537-87cb-4bd3-87cd-deb96ecd851e/download
https://oarep.usim.edu.my/bitstreams/4ab1ff41-eefe-4cb1-9d7a-e7782f46afb8/download
https://oarep.usim.edu.my/bitstreams/2278f4be-954e-455a-b0a7-c5dc83954aad/download
https://oarep.usim.edu.my/bitstreams/e5b2fd83-2537-48ce-9a26-de4d53297cc7/download