An integral equation method for conformal mapping of doubly connected regions via the Kerzman-Stein and the Neumann Kernels
An integral equation method based on the Kerzman-Stein and the Neumann kernels for conformal mapping of doubly connected regions onto an annulus is presented. The theoretical development is based on the boundary integral equations for conformal mapping of doubly connected regions derived by Murid an...
محفوظ في:
المؤلف الرئيسي: | Mohamed, Nurul Akmal |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2007
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/2153/1/NurulAkmalMohamedMFS20071.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Numerical conformal mapping for exterior regions via the Kerzman-Stein Kernel and the cauchy's integral formula
بواسطة: Ranom, Rahifa
منشور في: (2005) -
Solving mixed dirichlet-neumann problem for laplace's equation in unbounded doubly connected region via integral equation with the generalized neumann kernel
بواسطة: Mohammed Hassan Zangana, Hemin
منشور في: (2014) -
Solving mixed boundary value problem VIA an integral equation with the generalized neumann kernel in bounded doubly connected region
بواسطة: Salim, Sarfraz Hassan
منشور في: (2012) -
Verification of boundary integral equation for conformal mapping of doubly connected regions onto a disk with a slit
بواسطة: Lai, Tze Wee
منشور في: (2010) -
Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
بواسطة: Aspon, Siti Zulaiha
منشور في: (2015)