Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif
Kajian ini bertujuan untuk menentukan aras soalan Matematik tingkatan empat yangbersesuaian berdasarkan Taksonomi Bloom dalam menggalakkan muridberkomunikasi secara efektif dan produktif. Kajian kualitatif ini melibatkan tiga orangmurid tingkatan empat di sebuah sekolah di daerah Seremban. Kaedah pe...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | zsm |
Published: |
2018
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=5918 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:5918 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
zsm |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Noor Akmar Azlan Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif |
description |
Kajian ini bertujuan untuk menentukan aras soalan Matematik tingkatan empat yangbersesuaian berdasarkan Taksonomi Bloom dalam menggalakkan muridberkomunikasi secara efektif dan produktif. Kajian kualitatif ini melibatkan tiga orangmurid tingkatan empat di sebuah sekolah di daerah Seremban. Kaedah pemerhatianmelalui rakaman video merupakan kaedah utama bagi pengumpulan data primer. Notalapangan dan hasil kerja murid juga diambil kira sebagai data sekunder bagimelengkapkan data video. Data video dianalisis dengan menggunakan model wacanaSfard dan Kieran. Dapatan kajian menunjukkan bahawa aras soalan berdasarkanTaksonomi Bloom memainkan peranan yang penting dalam menggalakkan komunikasiantara murid. Dua kategori komunikasi dikenal pasti. Kategori pertama melibatkan arasaplikasi dan analisis di mana murid terlibat secara efektif dan produktif dalamkomunikasi matematik ketika berinteraksi sesame mereka. Sebaliknya kategori keduamelibatkan aras pengetahuan dan kefahaman di mana murid tidak terlibat dalamkomunikasi matematik semasa berinteraksi sesame mereka. Kesimpulannya, arassoalan aplikasi dan analisis akan dapat menggalakkan komunikasi efektif dan produktifdalam pengajaran dan pembelajaran Matematik. Implikasinya, penggunaan aras soalanaplikasi dan analisis amat penting dalam membentuk murid untuk berkomunikasisecara efektif dan produktif sewaktu pembelajaran Matematik dalam bilik darjah. |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Noor Akmar Azlan |
author_facet |
Noor Akmar Azlan |
author_sort |
Noor Akmar Azlan |
title |
Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif |
title_short |
Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif |
title_full |
Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif |
title_fullStr |
Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif |
title_full_unstemmed |
Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif |
title_sort |
kesesuaian aras soalan matematik tingkatan empat berdasarkan taksonomi bloom bagi menggalakkan komunikasi efektif dan produktif |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2018 |
url |
https://ir.upsi.edu.my/detailsg.php?det=5918 |
_version_ |
1747833235878969344 |
spelling |
oai:ir.upsi.edu.my:59182021-05-03 Kesesuaian aras soalan Matematik tingkatan empat berdasarkan Taksonomi Bloom bagi menggalakkan komunikasi efektif dan produktif 2018 Noor Akmar Azlan QA Mathematics Kajian ini bertujuan untuk menentukan aras soalan Matematik tingkatan empat yangbersesuaian berdasarkan Taksonomi Bloom dalam menggalakkan muridberkomunikasi secara efektif dan produktif. Kajian kualitatif ini melibatkan tiga orangmurid tingkatan empat di sebuah sekolah di daerah Seremban. Kaedah pemerhatianmelalui rakaman video merupakan kaedah utama bagi pengumpulan data primer. Notalapangan dan hasil kerja murid juga diambil kira sebagai data sekunder bagimelengkapkan data video. Data video dianalisis dengan menggunakan model wacanaSfard dan Kieran. Dapatan kajian menunjukkan bahawa aras soalan berdasarkanTaksonomi Bloom memainkan peranan yang penting dalam menggalakkan komunikasiantara murid. Dua kategori komunikasi dikenal pasti. Kategori pertama melibatkan arasaplikasi dan analisis di mana murid terlibat secara efektif dan produktif dalamkomunikasi matematik ketika berinteraksi sesame mereka. Sebaliknya kategori keduamelibatkan aras pengetahuan dan kefahaman di mana murid tidak terlibat dalamkomunikasi matematik semasa berinteraksi sesame mereka. Kesimpulannya, arassoalan aplikasi dan analisis akan dapat menggalakkan komunikasi efektif dan produktifdalam pengajaran dan pembelajaran Matematik. Implikasinya, penggunaan aras soalanaplikasi dan analisis amat penting dalam membentuk murid untuk berkomunikasisecara efektif dan produktif sewaktu pembelajaran Matematik dalam bilik darjah. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=5918 https://ir.upsi.edu.my/detailsg.php?det=5918 text zsm closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Asikin. M. (2001). Realistic Mathematics Education (RME) : Paradigma barupembelajaran matematika. Makalah (Online). Tersedia : //http:www.eduksionline.info/ (20 Januari 2012).Ahmad Esa, Baharom Mohamad, Jamaluddin Hashim, Mohd Yusop Ab Hadi &Sarebah Warman. (2009). Komunikasi dalam matematik di kalangan kanakkanak.Persidangan Kebangsaan Pendidikan Sains dan Teknologi, UTHM.Andreas Ryve. (2006). Approaching Mathematical Discourse : Two analyticalframework and their relation to problem solving interactions. MalardalenUniversity Press Dissertations : No. 30.Artzt, A. F. & Armour Thomas, E. (1999). A cognitive model for examining teachersinstructional practice in mathematics : a guide for facilitating teacherreflection. Educational Studies in Mathematics, 40 (3), 211-235.Aziz Naim. (2002). Pendekatan bahasa murid dalam pengajaran dan pembelajaranmatematik. Berita Matematik, 51, 2-8.Aziz Omar, Sabri Ahmad & Tengku Zawawi Tengku Zainal. (2006). Isu-isu dalampendidikan matematik. Kuala Lumpur. Utusan Publications & DistributionsSdn Bhd.Barwell, R. (2005). Integrating language and content : Issues from the mathematicsclassroom. Linguistics and Education, 16(2), 205- 218.Brenner, M.E. (1994). A communication framework for mathematics : exemplaryinstruction for culturally different students. Language & learning : Educationlinguistics diverse students. Albany:SUNY Press.Bloom, B. B.,Masia, B. B. & Krathwohl, D. (1964). Taxanomy of educationalobjectives: the cognitive domain. New York: David McKay Company Inc.Bogdan, R. C. & Biklen, S. K. (1982). Qualitative Research for Education : AnIntroduction to Theory and Methods. Boston : Allyn and Bacon.Bottorff, J. L. (1994). Using videotaped recordings in qualitative research. In Moise, J(Ed), Critical issues in qualitative research methods, (pp. 244-261). ThousandOaks, CA : Sage Publications.Catherine, C. Stein. (2007). Promoting mathematical discourse in the classroom.Mathematics Teacher (NCTM). Vol. 101, No 4.Catherine D. Bruce. (2007). Student interaction in the math classroom : stealing ideasor building understanding. Research Monograph. Ontorio.Catherine Marshall & Gretchen B. Rossman. (1995). Designing Qualitative Reseacrh.Sage Publications : 2???? Edition.Chazan, D. (2000). Beyond formulas in mathematics and teaching : Dynamics of thehigh school algebra classroom. New York, NY : Teachers College Press.Cheah, U. H. (2007). Conceptualizing a framework for mathematics communicationin Malaysia primary schools. Third APEC Tsukuba International Conference: Innovation of classroom teaching and learning through lesson study- focusingon mathematical communication, Tokyo and Kanazawa, Japan, 1-8.Clement, M. A. (1999). Language aspects of mathematical modelling in primaryschool. Proceedings of the Fourth Annual Conference of the Department ofScience and Mathematics Education. Gadong : ETC Universiti BruneiDarussalam.Cobb, P. & Whitenack, J. W. (1996). A method for conducting longitudinal analysesof classroom video recordings and transcripts. Educational Studies inMathematics, 30 (3), 213-228.David Clarke & Peter Sullivan. (1991). Communication in the classroom: Theimportance of good questioning. Deakin University.David Tall & Mohamad Rashidi Razali. (1991). Diagnosing students difficulties inlearning mathematics. Coventry : University of Warwick.Gagne, R. (1985). The Conditions Of Learning (4th ed.). New York : Holt, Rinehart &Winston.Garofalo, J. & Lester, F. K. (1985). Metacognition, cognitive monitoring andmathematical performance. Journal for Research in Mathematics Education.16(3). 163- 176.Gizem Karnali. (2011). An enaluative calculus project : Applying Blooms Taxonomyto the calculus classroom. PRIMUS, 21(8), 721-733. Taylor & Francis Group.Good, T. L. (1988). Obseravtional research grounding theory in classrooms.Educational Psychologist, 23(4), 375-379.Griffee, D. T. (2005). Research tips : Classroom observation data collection, part II.Journal of Development Education, 29(2), 36-37.Hatano, G. & Inagaki, K. (1991). Sharing cognition through collective comprehensionactivity. In L. Resnick, J. Levine & S. Teasley (Eds.). Perspective on sociallyshared cognition. (331-348). Washington, DC : American PsychologicalAssociation.Harold, L. Scheon. (2003). Teaching mathematics through problem solving : grades 6-12. National Council of Teachers of Mathematics.Hufferd-Ackles, K., Fuson, K. & Sherin, M. G. (2004). Describing levels andcomponents of a maths-talk community. Journal for Research in MathematicsEducation, 35. 81-116.Johari Hassan & Norsuriani Ab Aziz. (n.d). Faktor-faktor yang mempengaruhi minatterhadap matematik di kalangan pelajar sekolah menengah. FakultiPendidikan, UTM.Johnston, J. S. (2009). What does the skill of observation look like in a young children?International Journal of Science Education, 31(18), 2511-2525.John R. Kirby & N. H. Williams. (1991). Learning Problems : A cognitive approach .Kagan & Woo Ltd (1768).Jonathan Wolff. (2009). Cognitive Disability In A Society of Equals. Volume 40 Issue3-4. September 2009.Jorgensen, Danny L. (1989). Participant Observation: A Methodology for HumanStudies, Newbury Park, CA : Sage Publications.Kamaludin Ahmad. (1996). Modul Pengajaran Matematik Sekolah Rendah:Pengajaran Pemusatan Murid dan Berasaskan Konstruktivisme. MaktabPerguruan Mohd Khalid, Johor Bharu.Karnowski & Cramer. (1995). The informal language in respecting mathematics idea.Teaching Childrens Mathematics. NCTM. VOL 1. No. 6 (332- 335).Kathleen Cotton. (n.d). Classroom questioning . North West Regional EducationalLaboratory.Kementerian Pendidikan Malaysia. (2013). Dimuat turun daripadahttp://buletinkpm.blogspot.my/2012_04_01_archivE.html.Keri Witherell. (2010). Communication of mathematics within cooperative learninggroups. Action research project report. (MAT Degree, University of Nebraska-Lincoln, 2004).Khalid, M. & Tengah, M. K. A. (2007). Communication in mathematics : th role oflanguage and its consequences for English as second language students. ThirdAPEC-Tsukuba International Conference : Innovation of classroom teachingand learning through lesson study- focusing on mathematical communication,Tokyo and Kanazawa, Japan, 1-8.Kimberly Hirscfeld-Cotton. (2008). Mathematical communication, conseptualunderstanding and students attitudes toward mathematics .Action ResearchProject Report. (MATT Degree, University of Nebraska-Lincoln, 2008)Kieran, C. (2001). The mathematical discourse of 13-year-old partnered problemsolving and its relation to the mathematics that emerges. Educational StudiesIn Mathematics. 46(1-3), 187-228.Krulik, S. (1995). Problem solving in school mathematics . Reston: The NationalCouncil of Teachers of Mathematics.Lampert, M. (1989). Choosing and using mathematical tools in classroom discourse.Advances in research on teaching (Vol. 1, pp, 223- 264). Greenwich, CT : JAIPress.Lau, P. N., Singh, P. & Hwa, T. Y. (2009). Constructing mathematics in interactiveclassroom context. Educational Studies in Mathematics.72 (3), 307-324.Levels & Types of Questions. (2006). Instructional Development : Center ForTeaching Excellence, daripadahttp://www.oir.uiuc.edu/Did/does/QUESTION/quest1.html.Lim, C. S. & Lourdusamy, A. (2001). Factors affecting students abilities to solveoperational and word problems in mathematics. Journal of Science andMathematics Education in Southeast Asia, 24(1), 84-95.Lim, C. S. & Chew, C. M. (2007). Mathematical communication in malaysianbilingual classrooms. Third APEC Tsukuba International Conference :Innovation of classroom teaching and learning through lesson study-focusingon mathematical communication, Tokyo & Kanazawa, Japan, 1-7.Lindsey Shorser. (n.d). Blomms taxonomy interpreted for mathematics, fromwww.coun.uvie.ca/learning/exams/blooms-taxonomy.htmlMack, N., Woodsong, C., Macqueen, K. M., Guest, G. & Naney, E. (2005). QualitativeResearch Methods: A data collectors field guide. Family Health International,North Carolina , USa.Maimun, A. L. (2010). The Effectiveness of Strategies And Techniques In TeachingAnd Learning Islamic Education. International Conference on Education andEducational Technologies, 218-223.Maher, C. A. (2002). How students structure their own investigations and educate us:What we have learned from a fourteen year study. In A.D Cockburn & E. Nardi(Eds.).Proceedings of the Twenty-sixth Annual Meeting of the InternationalGroup for the Psychology of Mathematics Education (PME26). University ofEast Anglia.Mansor Ahmad Saman, Razali Mohamad & Shawaludin Anis. (1984). Pengantarkomunikasi. Penerbit USM. Pengajian Ilmu Kemanusiaan.Mariana M. Petkova. (2009). Classroom discourse and teacher talk influences onEnglish Lamguage learner students mathematics experiences. GraduateSchool Thesis and Dissertations, University of South Florida.Mary E. Brenner. (1998). Development of mathematical communication in problemsolving groups by language minority students. Bilingual ResearchJournal.22:2, 3-4, Spring, Summer & Fall.Martin, L. C. (1999). The nature of the folding back phenomenon within the Pirie-Kieran theory for the growth of mathrematical understanding and theassociated implications for teachers and learners of mathematics. Unpublisheddoctoral dissertation, University of Oxford, UK.Merriam, S. B. (1998). Qualitative research and case study applications in education.San Francisco: Jossey- Bass.Ministry of Education Malaysia (MOE). (2003). Mathematics for IntegratedCurriculum for Secondary School : Curriculum specification Form 2. KL:Curriculum Development Centre.Mohd Faizal Nizam Lee Abdullah & Paola Iannone. (2010). Analysis of classroominteraction from the combined view of self-regulating strategies and discourseanalysis : What can we learn?.Proceedings of the British Congress ForMathematics Education.Mok Soon Sang. (1996). Pedagogi 2 : Perlaksanaan Pengajaran. Subang Jaya,Selangor : Kumpulan Budiman Sdn. Bhd.Mohamad Najib Abdul Ghafar. (1999). Penyelidikan Pendidikan Skudai: PenerbitanUniversiti Teknologi Malaysia.Morgan, J. C. & Schreiber, J. E. (1969). How to ask questions. Washington, DC.National Council for the Social Studies. (ERIC Document No. ED033887).Muhammad Yusof Arshad & Fatimah Zaharah Seman. (2011). Analisis item soalanmatematik Sijil Pelajaran Malaysia tahun 2003- 2006 mengikut domainkognitif Taksonomi Bloom. Journal of Science & Mathematics Educational ,Volume 2, 39-50. Fakulti Pendidikan, UTM.National Council of Teachers of Mathematics. (1991). Professional standards forteaching mathematics. Reston, VA : NCTM.National Council of Teachers of Mathematics. (2000). Principles and standards forschool mathematics. Reston, VA : NCTM.National Research Council. (2001). Communication in math. Fromwww.nctm.org/Handlers/AttachmentHandler.ashx?attachmentIDNewman, A. (1997). Strategies for Diagnosis and Remediation. Sydney: HarcourtBrace Jovanich.Noraini Idris. (1999). Linguistics Aspects of Mathematics Education. Gadong : ETCUniversity Brunie Darussalam.Noor Shah Saad. (2005). Pengajaran Matematik Sekolah Rendah & Menengah : Teoridan Pengkaedahan. Petaling Jaya : Harmoni Publication & Distributions SdnBhd.OECD. (2004). OECD of Principles of Corporate Governance. Organisation ForEconomic Co-Operation and Software :1987-1996.Ong, S. L. & Yoong, S. (2003). Membanding dimensionality ujian masalah berayatmatematik. Second International Conference on Measurement and Evaluationin Education (ICMEE), 341-353. Universiti Sains Malaysia, Pulau Pinang.Ontario . (2007). Asking effective questions. Capacity Building Series. Special edition#21Ontario. (2010). Communication in the mathematics classroom. Capacity B uildingSeries. Special Edition #13.Pressini, D. & Bassett, J. (1996). Mathematical communication in students responsesto a performance assessment task. In P.C. Elliot and M. J. Kenney (Eds.), 1996yearbook: Communication in mathematics K-12 and beyond. (pp. 20-28).Reston (VA):NCTM.Perry, N. E. (2002). Intruduction: using qualitative methods to enrich understandingsof self-regulated learning. Educational Psychologist, 37(1), 1-3.Phillip, L. Groisser. (1994). How to use the Fine Art of Questioning. Teachers ParcticalPress. Prentice-Hall, Eaglewood Cliffs, N.J.Pusat Perkembangan Kurikulum, KPM. (1992). Amalan yang berkesan untukmeningkatkan prestasi dalam matematik di sekolah menengah. Keadaan masakini (satu saranan untuk tindakan sekolah).Pusat Perkembangan Kurikulum. (2001). Mathematics for intergrated curriculum forsecondary school : Curriculum Specification Form 2, KL : CurriculumDevelopment Centre.Pirie, S. E. B. (1996a). Classroom video-recording: when, why and how does it offervaluable data source for qualitative research? Proceedings of the 16th AnnualMeeting of the North America Chapter of the International Group for thePsychology of Mathematics Education. Panama City, Panama.Pimm, D. (1996). Diverse Communication. In P.C Elliot, (Ed.) 1996 yearbook :Communication in mathematics , K-12 and beyond, (pp. 11-19). Reston, VA:NCTM.Powell, A. B., Francisco, J. M. & Maher, C. A. (2003). An analytical model forstudying the development of learners mathematical ideas and reasoning usingvideotape data. Journal of mathematics behavior, 22(4), 405-435.Ryve, A. (2004). Can collaborative concept mapping create mathematicallyproductive discourses? Educational Studies in Mathematics. 56(2/3), 157-177.Ryve, A. (2006).Making explicit the analysis of students mathematical discourserevisitinga newly developed methodological framework. Educational Studiesin Mathematics. 62(2), 191-209.Rachelle Mayo. (2007). Connection between communication and math abilities.Summative Projects for MA Degree. University of Nebraska-Lincoln.Ramli Mohamad. (1984). Komunikasi Asas. Kuala Lumpur. Dewan Bahasa & Pustaka.Redfield, D. L. & Rousseau, E. W. (1981). A meta-analysis of experimental researchon teacher questioning behavior. Review of Educational Research, 51(1), 237-245.Sutton, C. (1999). Communication in the Classroom. Hodder and Stoughton, London.Schoenfeld, A. H. (2002). Research Methods in (mathematics) education. In L. D.English (Ed.), Handbook of International research in mathematics education.(pp. 435-487). NJ: Lawrence Erlbaum.Sfard, A. (2001). There is more to discourse than meets the ears : looking at thinkingas communication to learn more about mathematical learning. EducationalStudies in Mathematics, 46(1-3), 13-57.Sfard, A. (2008). Thinking as communicating : Human development, the growth ofdiscourses and mathematizing. New York : Cambridge University Press.Sfard, A, & Kieran, C. (2001). Cognition as communication : rethinking learning-bytalkingthrough multi-faceted analysis of students mathematical interactions.Mind, Culture and Activity, 8(1), 42-76.Schuck, S. & Keaney, M. (2004). Digital video as a tool in research projects:zoomingin on current issues. In L. Cantoni & C. Mcloughlin (Eds.), Proceedings of Ed-Media 2004 World Conference on Educational Multimedia, Hypermedia andTelecommunications, (pp.2085-2092).Spradely, J. P. (1986). In Borg, W.R. and Gall, M. D. (1989). Educational Research:An Introduction Sth Edn. New York : Longman.Stipek, D., Salmon, J. M., Givvin, K. B., Kazemi, E., Saxe, G. & Macgyvers, V. L.(1998). The value of practices discovering emotion:113 suggestedlymotivation researched promoted by mathematics education reformers. Journalfor research in mathematics education, 29, 465-488.Sullivan, P., Clarke, DJ. & Wallbridge, M. (1991). Problem solving with conventionalmathematics content : Responses of pupils to open mathematical tasks,Mathematics Teaching and Learning Centre Report No.1.Szetela, W. & Nicol, C. (1992). Evaluating problem-solving in mathematics.Educational Leadership, 49(8), 42-45.Turner, J. C. (2002). The classroom environment and students reports of avoidancestrategies in mathematics :A multi-method study. Journal of EducationalPsychology, 94, 88-106.Wilen, W.W. (2001). Exploring myths about teacher questioning in the social studiesclassroom. The Social Studies, 92(1), 26-32.Siegel, M. & Judith. (1998). Supporting students mathematical inquiries throughreading. Journal for Research in Mathematics Education, 29(4), 378-388.Suyitno Amin. (2004). Dasar-dasar dan Proses Pembelajaran Matematika I.Semarang : FMIPA UNNES.Tran Vui. (2006). Enhancing classroom communication to develop studentsmathematical thinking. Universiti Hue, Vitenam.Utari Sumarmo. (2004). Kemandirian Belajar : Apa, Mengapa dan BagaimanaDikembangkan Pada Peserta Didik. Seminar Pendidikan Matematika. Vol. 8.Zaharah Hussin. (2014). Komunikasi dalam penyelesaian masalah matematik dalamkalangan murid tingkatan empat. Tesis. Dr. Fal, Universiti Sains Malaysia. |